ECE276A: Sensing & Estimation in Robotics
Lecture 3: Rotations

Nikolay Atanasov

natanasov@ucsd.edu

UC San Diego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

mailto:natanasov@ucsd.edu

Outline

Rigid Body Motion

Rigid Body Motion

> Consider a rigid body moving in a fixed world reference frame { W}

> Body reference frame {B}: it is sufficient to specify the motion of one point
p(t) € R3 and 3 coordinate axes ry(t), ra(t), r3(t) attached to the point

w}
€1

> A point s on the rigid body has fixed coordinates sg € R? in the body frame
{B} but time-varying coordinates sy/(t) € R in the world frame {W}

Rigid Body Motion

> A rigid body in 3D is free to translate (3 degrees of freedom) and rotate (3
degrees of freedom)

» The pose T(t) € SE(3) of a rigid body reference frame {B} at time t in a
fixed world frame {W} is determined by:

1. the position p(t) € R? of {B} relative to {W},

2. the orientation R(t) € SO(3) of {B} relative to { W}, determined by the 3
coordinate axes ri(t), r2(t), r3(t).

» The space of positions R? is familiar

» How do we describe the space of orientations SO(3) and the space of poses
SE(3)?

Special Euclidean Group

» Rigid body motion is described by a sequence of functions that describe
how the coordinates of 3-D points on the object change with time

> Rigid body motion preserves distances (preserves vector norms) and does not
allow reflection of the coordinate system (preserves vector cross products)

» Euclidean Group E(3): a set of functions g : R® — R3 that preserve the
norm of any two vectors

» Special Euclidean Group SE(3): a set of functions g : R® — R3 that
preserve the norm and the cross product of any two vectors

1. Norm: ||g.(u) — g«(v)|| = |lv — u||, Yu,v € R®
2. Cross product: g.(u) X g«(v) = g«(u x v), Yu,v € R®
where g, (x) := g(x) — g(0).

> Corollary: SE(3) elements g also preserve:
L. Angle: u'v =12 ([lut+v|® = lu—v|?) = u'v=g(u) g.(v), YuveR’
2. Volume: Yu,v,w € R?, g.(u)"(g.(v) x g«(w)) =u" (v x w)
(volume of parallelepiped spanned by u, v, w)

Orientation and Rotation
» Pure rotational motion is a special case of rigid body motion
» The orientation of a body frame {B} in the world frame {W} is determined

by three orthogonal vectors r; = g(e1), r2 = g(ez), r3 = g(e3) with
coordinates transformed from {B} to {W}

> The vectors organized in a 3x3 matrix specify the orientation of {B} in {W}:
wiRey = [12 1] €RVC

» Consider a point with coordinates sg € R3 in {B}
> Its coordinates sy in {W} are:
T2
sw = [sglir1 + [sg]ar2 + [sB]3r3
= RSB

» The rotation transformation g from
{B} to {W} is a linear function:

g(s) =Rs [sBl2

Special Orthogonal Group SO(3)

1 ifi=j

0 otherwise

» Since ry, 1y, r3 form an orthonormal basis, the inverse of R is its transpose:

» rq, 1y, r3 form an orthonormal basis: r,-TrJ- =

RTR=1 R'=RT
» R belongs to the orthogonal group:
03) ={ReR¥**|RTR=RR" =1}
> Distances are preserved since RTR = I
IR(x =I5 = (x—y)"RTR(x—y) = (
H

> Reflections are not allowed since det(R) =

x—y) (x—y) =lx —yl3

(I’Q X r3) =1:

R(x x y) = R (x x (R"Ry)) = (R&R")Ry = det(R)(Rx) x (Ry)

» R belongs to the special orthogonal group:

SO(3) = {RcR¥*>3 | R"TR =I,det(R) = 1}

Parametrizing 2-D Rotations

>

There are 2 common ways to parametrize a rotation matrix R € SO(2)

Rotation angle: a 2-D rotation of a
point sg € R? can be parametrized by
an angle 6 around the z-axis:

sw = R(0)ss = [cos@ —sin 0] .

sinf cosf

6 > 0: counterclockwise rotation

Unit-norm complex number: a 2-D rotation of [sg]; + i[sg]2 € C can be
parametrized by a unit-norm complex number e’? € C:

e'%([sg]1 + i[sg]2) = ([s8]1 cos @ — [sg]asin) + i([sg]1 sin O + [sg]2 cos H)

Parametrizing 3-D Rotations

» There are 3 common ways to parametrize a rotation matrix R € SO(3)

» Euler angles: an extension of the rotation angle parametrization of 2-D
rotations that specifies rotation angles around the three principal axes

> Axis-Angle: an extension of the rotation angle parametrization of 2-D
rotations that allows the axis of rotation to be chosen freely instead of being
a fixed principal axis

» Unit Quaternion: an extension of the unit-norm complex number
parametrization of 2-D rotations

Outline

Euler-Angle Rotation Parametrization

10

Euler Angle Parametrization
» Uses three angles that specify rotations around the three principal axes
» There are 24 different ways to apply these rotations
> Extrinsic axes: the rotation axes remain static
> Intrinsic axes: the rotation axes move with the rotations

> Each of the two groups (intrinsic and extrinsic) can be divided into:
» Euler Angles: rotation about one axis, then a second, and then the first
> Tait-Bryan Angles: rotation about all three axes

» The Euler and Tait-Bryan Angles each have 6 possible choices for each of the
extrinsic/intrinsic groups leading to 2 x 2 x 6 = 24 possible conventions to
specify a rotation sequence with three given angles

> For simplicity, we refer to all 24 conventions as Euler Angles and explicitly
specify:
> r (rotating = intrinsic) or s (static = extrinsic)
> xyz or zyx or zxz, etc. (order of rotation axes)
» An extrinsic rotation is equivalent to an intrinsic rotation by the same angles
but with inverted rotation order:

SXyz = rzyx

11

Principal 3-D Rotations

» A rotation by an angle ¢ around the x-axis is represented by:

1 0 0
R«(¢) := |0 cos¢p —sing
0 sing coso

» A rotation by an angle 6 around the y-axis is represented by:

cos@ 0 sinf
R,(0) := 0 1 0
—sinf 0 cosf

» A rotation by an angle ¢ around the z-axis is represented by:

cosy —siny 0
R.(¢) := |sinyy cosyp 0O
0 0 1

12

Roll Pitch Yaw Convention

> Roll (¢), pitch (0), yaw (1)) angles are used in
aerospace engineering to specify rotation of an
aircraft around the x, y, and z axes, respectively

Roll

> Intrinsic yaw (v), pitch (), roll (¢) rotation (rzyx):
> A rotation v about the original z-axis
> A rotation 0 about the intermediate y-axis
> A rotation ¢ about the transformed x-axis

> Extrinsic roll (¢), pitch (8), yaw (¢) rotation (sxyz):
> A rotation ¢ about the global x-axis
> A rotation 0 about the global y-axis
> A rotation v about the global z-axis

» Both conventions define the following body-to-world rotation:

R = R:(¥)Ry (0)Rx(¢)
cosyy —siny 0 cosf 0 sind| |1 0
= |sinyy cosyy O 0 1 0 0 coso¢
0 0 1| [—sinf 0 cos@| |0 sing

Yaw

Y
Pitch

0
—sin¢

cos @

13

Gimbal Lock

>

>

Angle parametrizations are widely used due to their simplicity

Unfortunately, in 3-D, angle parametrizations are not one-to-one and lead to
singularities known as gimbal lock

Example: if the pitch becomes § = 90°, the roll and yaw become associated
with the same degree of freedom and cannot be uniquely determined.

The following leads to the same rotation matrix R for any choice of §:
R = R:(¢)Ry(m/2)Re(¢ + 6)

Gimbal lock is a problem only if we want to recover the rotation angles from
a rotation matrix

14

Outline

Axis-Angle Rotation Parametrization

15

Cross Product and Hat Map

> The cross product of two vectors x,y € R3 is also a vector in R3:

X2)3 — X3 0 —x3 x n
XXy = |x3y1 —xy3| = | x3 0 —xi| |y2| =Ry
X1y2 — X2y1 —X2 X 0 Y3

» The cross product x X y can be represented by a linear map X called the hat
map

» The hat map *: R® — 50(3) transforms a vector x € R3 to a
skew-symmetric matrix:

0 —X3 X2
£=|xs 0 —-x T = —x
—X2 X1 0

> The vector space R3 and the space of skew-symmetric 3 x 3 matrices s0(3)
are isomorphic, i.e., there exists a one-to-one map (the hat map) that
preserves their structure

16

Hat Map Properties

> Lemma: A matrix M € R3*3 is skew-symmetric iff M = % for some x € R3.

> The inverse of the hat map is the vee map, V : s0(3) — R3, that extracts
the components of the vector x = XV from the matrix X.

> Hat map properties: for any x,y € R3, A € R3*3:

>

>
>
4
>
>
>

Xy =XXy=—-yXX=—Yx
£2=xx"—-x"x/

g2k (_xTx)kﬁ

—Ltr(x9) =x"y

XA+ ATx = ((tr(A)] — A)x)"

tr(%A) = Jtr(x(A— AT)) = —xT(A— AT)Y
(Ax)" = det(A)A" TRA™?

17

Axis-Angle Parametrization

» Consider a point s € R? rotating about an axis
1 € R3 at constant unit velocity:

() = x s(t) = s(t)

» This is a linear time-invariant (LTI) system of
ordinary differential equations determined by the
skew-symmetric matrix 7} ___

» The solution to this LTI system specifies the trajectory of the point s:
s(t) = exp(t#)s(0)
> Since s undergoes pure rotation, we know that:
s(t) = R(t)s(0)

> Since the rotation is determined by constant unit velocity, the elapsed time t
is equal to the angle of rotation 6:

R(6) = exp(67)
18

Exponential Map from s0(3) to SO(3)

» Any rotation can be represented as a rotation about a unit-vector axis
n € R3 through angle § € R

» The axis-angle parametrization can be combined in a single rotation vector
0 :=0nck3

> Exponential map exp : 50(3) — SO(3) maps a skew-symmetric matrix 0
obtained from an axis-angle vector 6 to a rotation matrix R:
o0
1 A 1.
n=0
» The matrix exponential defines a map from the space of skew-symmetric
matrices 50(3) to the space of rotation matrices SO(3)
> The exponential map is surjective but not injective: every element of SO(3)
can be generated from multiple elements of s0(3), e.g., any vector

(18] + 27k) 2 7ey for integer k leads to the same R

> The exponential map is not commutative: e%1e% #£ %2e% £ %1492 pless
6,0, — 0,0, =0
19

Rodrigues Formula

» Rodrigues Formula: closed-from expression for the exponential map from

50(3) to SO(3):
- sin |0\ 4 1—cos||@]\ 52
R=exp(0) =1+ (1ol 0+ BT 0

» The formula is derived using that o = (—076)"0:

R > 1 an
exp(0) =1+ —b

=0

sin ||0||> o <1—cos||0|) 2
0+ | ——>n—)0
16]] 16112

_ =012 5 (= (—1)70]27 42
_H(;@”W)‘H(;M)O

20

Logarithm Map from SO(3) to so(3)
> VR € SO(3), there exists a (non-unique) @ € R3 such that R = exp(6)
)

> Logarithm map log : SO(3) — s0(3) is the inverse of exp(d):

0 = ||| = arccos (”(R;l> > :Z fnjef/i,ng;en §=0andn
6 1 [Re-Rs]l > Hu(R) = L thend=r

n= 161 — 2sin([|0]) [gz’ - gi; and for any i € {1,2,3}:

0 16l T n=%(1+R)e,

9:'°g(R):m(R—R) 2(1+ Ri)

> The matrix exponential “integrates” 8 e 50(3) for one second; the matrix
logarithm “differentiates” R € SO(3) to obtain 6 € s0(3)

21

Outline

Quaternions

22

Quaternions

» Quaternions: H = C + Cj generalize complex numbers C = R + R/

Aa=q+qi+qji+ak=[g q) ij=—ji=k P=72=k=-1

» As in 2-D, 3-D rotations can be represented using “unit complex numbers"”,
i.e., unit-norm quaternions:

H.:={qeH|q¢+q/q =1}

> To represent rotations without singularities, we embed a 3-D space SO(3)
into a 4-D space H and introduce a unit-norm constraint

> A rotation matrix R € SO(3) can be obtained from a unit quaternion q:

E(q) = [7qv7 qsl +é\lv]

RO = E@E@ Gy~ [aqv. g~

» The space of quaternions H, is a double covering of SO(3) because two
unit quaternions correspond to the same rotation: R(q) = R(—q)

23

Quaternion Axis-Angle Parametrization

> A rotation around a unit axis i := % € R3 by angle 6 := ||0)|| can be
represented by a unit quaternion:

[(3 (2)] e

> A rotation around a unit axis 7 € R3 by angle § can be recovered from a unit
quaternion q = [gs, q,] € H.:

1 .
1 _qu, ifO#£0
6 = 2 arccos = ¢ sin(0/2)
(@) {o, if =0

» The inverse transformation above has a singularity at § = 0 because the

transformation from @ to g is many-to-one and there are infinitely many
rotation axes that can be used

24

Quaternion Operations

Addition q+p:=[gs+ps, 9 +p/]

Multiplication qop := [gsps — 4] Py, gsPv + PsAv + Ay X P,]

Conjugation §:=[qs, —q,]

Norm lall == +vd?>+ala, |laopl = qllPpl

Inverse ql:= Tl

Rotation [0, X]=qo[0, x]oq~! = [0, R(q)x]
Velocity q4=13q0[0, w]=1G(q)"w

Exp exp(a) = e [cos [y, 1y sin la. |
Log log(q) := [Iog llall, Hq arccos HQH}

» Exp: constructs q € H., from rotation vector 8 € R3: q = exp ([0, g})

» Log: recovers a rotation vector 8 € R3 from q € H

< [0, 8] = 2log(q)

25

Quaternion Multiplication and Rotation
» Quaternion multiplication: qop := [qspS —q/py, gspy + Psqy +qy X pv]

» Quaternion multiplication q o p can be represented using linear operations:
qop=[a],p=[plra
[a], == [a G(a)'] G(a) =[-av, gs/ — @&.]
lalg = [a E(a)T] E(a) = [-av, 95/ +&/]
> Rotating a vector x € R3 by quaternion q € Hl, is performed as:
ao[0. xloq™* = [0, X] = [0, R(q)x]

» This provides the relationship between a quaternion q and its corresponding
rotation matrix R(q):

h&k}:qﬂﬁﬂ0¢*=hhhhﬁ]

@ £@'fa c@]|;)

o Cwear] b - et

26

Example: Rotation with a Quaternion
> Let x = e, be a point in frame {A}

» What are the coordinates of x in frame {B} which is rotated by 6§ = /3 with
respect to {A} around the x-axis?

» The quaternion corresponding to the rotation from {B} to {A} is:

s =[S0 = L[]

» The quaternion corresponding to the rotation from {A} to {B} is:
_ 113
_ 1_ _ =
BAA = AQg" = AQB = 5 {GJ

» The coordinates of x in frame {B} are:

Bqa o [0, x]quzlzl [\/ﬂ o [0] o{ 3

4 |—e €2 €

1 0 V3l _1] o
74 \@ez—elxez e 72 92—\/§E3

27

Representations of Orientation (Summary)
> Rotation Matrix: an element of the Special Orthogonal Group:

RecSOB):={RecR¥>3| R'R=1 ,det(R)=1
—_ —

distances preserved | eflection

» Euler Angles: roll ¢, pitch 6, yaw 1) specifying a sxyz or rzyx rotation:

R = R:(¢)Ry(0)Re(0)

> Axis-Angle: 6 ¢ R3 specifying rotation about axis 1 := ‘% through angle
0 :=10]:
R A 1,2 143 sin]|@]|\ o [1—cos|@|\ 42
R =exp(0) = 1+6+ —0 +50 + I+< 0+ 0
2”3 10l 16112

> Unit Quaternion: q =[gs, q.] € H. :={q€H| ¢’ +q)q, =1}:

E(a) =[-av, s/ +6/]

o T
R = E(q)G(q) G(q) = [—9qv, gs! — G,]

28

Outline

Poses

29

Rigid Body Pose

> Let {B} be a body frame whose position and orientation with respect to the
world frame {W} are p € R® and R € SO(3), respectively

» The coordinates of a point sg € R3 can be converted to the world frame by
first rotating the point and then translating it to the world frame:

sw = Rsg+p

> The homogeneous coordinates of a point s € R3 are

ool

where the scale factor A allows representing points arbitrarily far away from
the origin as A —» 0, e.g., s = [1 2 1 O]T

» Rigid-body transformations are linear in homogeneous coordinates:

30

Special Euclidean Group SE(3)

» The pose of a rigid body can be described by a matrix T in the special
Euclidean group:

SE(3) := {T = [ORT 'ﬂ ‘ R € SO(3),p € R3} C R4

» The pose of a rigid body T specifies a transformation from the body frame
{B} to the world frame {W}:

. wiRsy (wyipP(s
o Tiay = [{ \Rie) wiPe)

» A point with body-frame coordinates sg, has world-frame coordinates:
sy = Rsg + valent to |SW| = | & P||sB
w = Rsg +p equivalent to 1= lom 1l |1

» A point with world-frame coordinates sy, has body-frame coordinates:

RS R A

31

Composing Transformations

> Given a robot with pose {yy Ty1y at time t; and (wy Ty} at time ty, the
relative transformation from inertial frame {2} at time t, to inertial frame
{1} at time t; is:
-1
wTe =uTw wTe = (wTy) w e
_ Ry —wmiRLy < wipy] [wi Ry (wypry
0" 1 0" 1

> The pose T, of a robot at time ¢, always specifies a transformation from the
body frame at time t, to the world frame so we will not explicitly write the
world frame subscript

> The relative transformation from inertial frame {2} with world-frame pose T
to an inertial frame {1} with world-frame pose Tj is:

1 =T;'T,

32

Summary

Rotation SO(3) Pose SE(3)
RTR=1 R
Representation | R : T = P
det(R) =1 0T 1
Transformation | s,y = Rsg sw = Rsg+p
RT —RT
Inverse R1=RT T1= P
0’ 1

Composition

wRe = wRa aRB

wle=wTaals

33

	Rigid Body Motion
	Euler-Angle Rotation Parametrization
	Axis-Angle Rotation Parametrization
	Quaternions
	Poses

