ECE276A: Sensing & Estimation in Robotics
Lecture 5: Factor Graph SLAM

Nikolay Atanasov

natanasov@ucsd.edu

UC San Diego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

mailto:natanasov@ucsd.edu

Outline

Introduction to SLAM

Simultaneous Localization and Mapping (SLAM)

> SLAM is a fundamental problem for mobile robot autonomy

» Basic information necessary to perform any robot task:
» Where am I?7 = Localization

» What is around me? = Mapping
» SLAM problem: given sensor measurements zq. 1 (e.g., images) and control

inputs ug.7—1 (e.g., velocity), estimate the robot state trajectory xo.7 (e.g.,
pose) and build a map m of the environment

o«

Mathematical Formulation of SLAM Problems

» Mapping: given robot state trajectory xo.7 and sensor measurements zy. 1
with observation model h, build a map m of the environment

)
min 3"z — h(xe. m)[3
t=0

» Localization: given a map m of the environment, sensor measurements zq. T
with observation model h, and control inputs ug.7_; with motion model f,
estimate the robot state trajectory xo.1

T T-1
Ti” Z 1ze — h(xe, m)[|5 + Z Xe1 — F(xe,ue)lf5
*T =0 t=0

» SLAM: given initial robot state xg, sensor measurements z;.7 with
observation model h, and control inputs ug.7_1 with motion model f,
estimate the robot state trajectory x1.7 and build a map m

T-1

.
min Z 1ze = h(xe,m)|3 + Z xe41 = F(xe, ue)5
-1

X1 7,m
’ t=0

Example: Localization with Linear Models

» State: x; € R"
» Motion model: x;1 = f(x¢,ur) = Fx; + Guy
> Observation model: z; = h(x;) = Hx;

» Localization: given xo = 0, sensor measurements z;.7, and control inputs
Ug.7_1, estimate the state trajectory x;.1

mln Cc X1 T Z ||Zt thH2 + Z ||Xt+1 — Fx¢ — Gut||§

> Gradient descent: initialize x(l?)T and iterate:

k+1 k k
X7 = %7 — aVe(y)

Example: Localization with Linear Models

~[16)-(2)

» Express the least-squares localization problem in matrix notation:

2
_ 2 2 d d
= , ,
Ix1 = y1ll5 + l|x2 — y2l|5 for x1, 1 € R", xo,1» € R

T T-1
c(xw:7) Z llze — Hxe|l3 + Z [%e41 — Fxe — Gue3
t=1 t=0

2

[z; — Hxq x; — Fxg — Gug
= : + :
_ZT — HXT 5 _XT — FXT,1 — GUT,1 A
_ _ —1
H % 7 2 % Fxo + Gug
F GU1
= AR 3 R .
H| \x z R X)
L i T 711, E T Gur_;

Example: Localization with Linear Models

» Objective:
- - 2
]
wl (o —zr
C(Xl;T) = _ + | Fxo + Gug
XT GU1
F .
. GUT_1
i F -])
= [|Ax.7 + blf3
» Gradient:

Ve(x1.7) = 2AT (Axy.7 + b)

> Gradient descent: initialize x(l?)T and iterate:

X7 = i — 2009AT (A + b)

Project 1: Orientation Tracking

» Consider a rigid body undergoing pure rotation
» State: orientation q; € H, of the body frame relative to the world frame

» Control: body-frame angular velocity u; € R3 obtained from gyroscope
measurements in rad/sec during time interval 7;

» Motion model: q¢y1 = f(q;, 7eus) 1= q; 0 exp([0, Teu./2])

» Observation model: body-frame acceleration z; € R® obtained from
accelerometer measurements in m/sec? should approximately match the
world-frame gravity acceleration —ges:

ze= h(ae) == a; ' o [0, —ges] o q;

Project 1: Orientation Tracking

> Starting with qo = [1, 0] € H,, formulate an optimization problem to
estimate q1.7 using the gyroscope inputs ug.7_1 and accelerometer
measurements z;.7

» Distance on H,: the distance between two quaternions qi, g, € H, can be
measured by the rotation angle ||012||2 of the axis-angle representation 61, of
the relative rotation qi; = qflqz:

d(a1,a2) = [|612[]2 = ||2log(a; 'a2)|2

» We formulate a constrained optimization problem because we require that
q: is a valid orientation, i.e., q; € H,:

T T-1
min c(qur) = _llze = h(@:)[3 + D _ 21og (i o f(a, meue)) [
' t=1 t=0

st. gl =1, Vt

» Possible approach: projected gradient descent

a5 = N, (o) — a9V c(af?)

Project 1: Panorama

» Input: image / and camera-to-world orientation R

» Suppose the image lies on a sphere and compute the world coordinates of
each pixel:

1. Find longitude (A) and latitude (¢) of each pixel using the number of rows
and columns and the horizontal (60°) and vertical (45°) fields of view

2. Convert spherical (A, ¢, 1) to Cartesian coordinates assuming depth 1
3. Rotate the Cartesian coordinates to the world frame using R

» Project world pixel coordinates to a cylinder and unwrap:
1. Convert Cartesian to spherical coordinates

2. Inscribe the sphere in a cylinder so that a point (A, ¢, 1) on the sphere has
height ¢ on the cylinder and longitude X along the cylinder circumference

3. Unwrap the cylinder surface to a rectangular image with width 27 radians and
height 7 radians

4. Different options for sphere to plane projection: equidistant, equal area, Miller,
etc. (see https://en.wikipedia.org/wiki/List_of_map_projections)

10

https://en.wikipedia.org/wiki/List_of_map_projections

Project 1: Panorama

11

Outline

Factor Graph SLAM

12

landmarks

Factor Graph
» Factor graph: bipartite graph
describing data (observations z;,
inputs u;) and variables (states x;, robotposes

landmarks m;) in a SLAM problem o (=) Py (=) PY

odometry factors

measurement factory

> Nodes: variables to be estimated: robot states x; and landmark states m;

» Factors: relate two variables by input u; or observation z; data and
associated motion or observation model:
> Motion factor: error between state x.41 and its motion prediction f(x, u;):
er(Xtr1,Xt) = Xer1 © F(Xt, ur)
> Observation factor: error between observation z;; and its prediction h(x., m;)
en(xe, m;) = z¢; © h(xe, m;)

» We use the symbol & to indicate that the difference between two variable
should respect the geometry of their space, e.g., y © x =y — x for x,y € R
but y © x = 2log(x~y) for x,y € H.

13

Factor Graph SLAM
» Front-end: construction of factor graph using odometry, laser-scan
matching, feature matching, etc.

» Back-end: graph optimization to estimate the variables (xo.7, {m;})

node positions
¥]

Graph Graph _
raw Construction Optimization -7
data (Front-End) graph (Back-End) - -

(nodes & edges) (x;\:/ '

» Back-end optimization problem with variables x; associated with the graph
vertices i € V and factors e(x;, ;) associated with the graph edges (/,/) € &:

m|n Z oij(e(xi, x;))
(ij)ee

where ¢; : RY — R is a distance function, e.g., ¢;(e) = e Q;;e with
positive-definite €;;
14

Pose Graph

» Variables: robot poses T;
> Measurements: relative poses from odometry and loop closures: 7_',-j

» Factors: relative pose vectors e(T;, T;) = log(7_',1_1 M)

15

Pose Graph Optimization

T r Ts
!p
Q@‘V L56. 56 S (R4a, p45) T4
N w
; ~
» Pose graph ‘7A~ (R% Psa) Qo?‘
(R 2) ‘*' (Rag,P29) ’»*
3

» Loop closure: observing previously seen areas generates factors between
non-successive robot poses

> Pose graph optimization: with ¢;(e) = e W, Wje = || W;e|3:

min || W;log(T; M T,)V 113
T (ij)e€

16

Factor Graph Optimization

o . . T
> Factor graph optimization with variables x = [x{ -+ x|
m|n Z oij(e(xi, x;j))
(ij)ee

> Initial guess x(9) is obtained from odometry (e.g., encoders, point cloud
registration) and landmark initialization (e.g., triangulation of image features)

» A descent method is used for optimization:

KHD) — 3 (K) | (k) gy (k)

> E.g., the Levenberg-Marquardt algorithm is used for ¢;(e) = e W[Wye:

ZJT W, Wiy +AD | ox¥) = ZJT W e(x(¥),)

i

Be(x, 7xj) |

where J;; = L 1S the Jacobian of e(x;, x;) with respect to all

variables x evaluated at x = x(K)
17

Factor Graph Optimization Libraries

» Georgia Tech Smoothing and Mapping (GTSAM) Library:
https://github.com/borglab/gtsam

> General Graph Optimization (g20) Library:
https://github.com/RainerKuemmerle/g20

» Ceres Solver: https://github.com/ceres-solver/ceres-solver
» SymForce: https://github.com/symforce-org/symforce

» miniSAM: https://github.com/dongjing3309/minisam

18

https://github.com/borglab/gtsam
https://github.com/RainerKuemmerle/g2o
https://github.com/ceres-solver/ceres-solver
https://github.com/symforce-org/symforce
https://github.com/dongjing3309/minisam

Factor Graph Optimization:

Jacobian J
nhnLT1T,Ts To T;

Sparsity

P RuP)>*£R“P”)->.

Hessian JTJ

T, T, T,Ts T, T,

aka.
... Information

Matrix of
the estimate

i e g on e By

19

Factor Graph Optimization: Example

22

(a) Before optimization (b) After optimization

https://www.youtube.com/watch?v=KYvOqUB_odg

20

https://www.youtube.com/watch?v=KYvOqUB_odg

Landmark-Based SLAM

(T 2 Wi toB(Tea Tt o)1+ 3 Ve = A(Tesmi)3
t j T

.o Jacobian J Hessian JTJ

L, TT T p P n T T,

L &

t_.v/ |
ime 2
+ Time 1 H_
P p: -
Graph -
JAvSY O
S]

T

P

P1 P2

Landmark-Based SLAM

22

Landmark-Based SLAM: Sparsity

Hessian: JTJ =

23

Landmark-Based SLAM: Example

https://www.youtube.com/watch?v=04J042prg_M

24

https://www.youtube.com/watch?v=OdJ042prg_M

Landmark-Based SLAM: Variable Marginalization
» What if we only need a subset of the variables?
» Normal equations: JT Jéx = —JTe

» Hessian matrix blocks:

T _ Qaa Qab ia _ |G| _ T
J J(SX_[Q;, Q| %] = lcs =—Je

I —QaQ,,

» Pre-multiply by {0 /

] and subtract second from first equation:

Qoo — QpQp20L 0] [%] _ [ea — QupQptcs
Q;rb Q| [Xp| Cp

» We can obtain X, by solving the smaller system determined by the Schur
complement of Qpp:

(Qaa - QabQ;le;rb)ia =C; — QabQEblcb

25

Landmark-Based SLAM: Variable Marginalization

» Probabilistic perspective of Schur complement:

ia N Qaa Qab - C, Qaa Qab -
ib Qg—b be Cp ’ Q;rb be

» Marginal of X,:

p(Xa) = /P(ia, %p)dXp
= ¢ (ia; (Qaa - QabQ;le;rb)il(ca - QabQ;blcb)v (Qaa - QabQ;bIQ;rb)il)

» Marginalizing a variable creates non-zero off-diagonals (called fill-in) in the
information matrix for all variables that had a non-zero off-diagonal element
with the marginalized variable = loss of sparsity

» In graph terms, variable elimination creates a clique between the neighbors of
the eliminated node

26

Landmark-Based SLAM: Variable Marginalization

?H}L L4\\; ét+1\/}*~ Ly
&\ \
T ,
(T ™ [l
Ly) ; | (L3) _ g

) [Lo | . Lo

X,

<t4+1
Ly

L3
Ly

27

Landmark-Based SLAM: Variable Marginalization

Marginalize £

p (&1, €2,€3,€4, 65, o) s Na GY e P (&2.83,64,65. 66

1 &2 &3 &4 &5 So 3 £2 &3 &1 &5 & £ £2 €3 £4 &5 Eo €2 &3 €4 &5 Eo

& Aaa = AapA5508a & 1 &

[= € &

& — & = &
3 ‘

‘\.1.1“ Age &s &s

&) ‘ I3 &

&o

(&)
)

{&

Smoothing vs Filtering

> Smoothing: equivalent to MAP optimization
> many variables: estimates entire robot trajectory and map
> sparse Hessian matrix J ' J

> Fixed-lag smoothing:
> fewer variables: estimate only variables in a time window
> denser Hessian matrix after Schur complement to marginalize old variables

> Filtering:
> fewest variables: estimate only current pose and landmarks
> densest Hessian matrix after Schur complement to marginalize all old variableg9

	Introduction to SLAM
	Factor Graph SLAM

