
ECE276A: Sensing & Estimation in Robotics
Lecture 5: Factor Graph SLAM

Nikolay Atanasov

natanasov@ucsd.edu

1

mailto:natanasov@ucsd.edu


Outline

Introduction to SLAM

Factor Graph SLAM

2



Simultaneous Localization and Mapping (SLAM)
▶ SLAM is a fundamental problem for mobile robot autonomy

▶ Basic information necessary to perform any robot task:
▶ Where am I? ⇒ Localization

▶ What is around me? ⇒ Mapping

▶ SLAM problem: given sensor measurements z0:T (e.g., images) and control
inputs u0:T−1 (e.g., velocity), estimate the robot state trajectory x0:T (e.g.,
pose) and build a map m of the environment

3



Mathematical Formulation of SLAM Problems
▶ Mapping: given robot state trajectory x0:T and sensor measurements z0:T

with observation model h, build a map m of the environment

min
m

T∑
t=0

∥zt − h(xt ,m)∥22

▶ Localization: given a map m of the environment, sensor measurements z0:T
with observation model h, and control inputs u0:T−1 with motion model f ,
estimate the robot state trajectory x0:T

min
x0:T

T∑
t=0

∥zt − h(xt ,m)∥22 +
T−1∑
t=0

∥xt+1 − f (xt ,ut)∥22

▶ SLAM: given initial robot state x0, sensor measurements z1:T with
observation model h, and control inputs u0:T−1 with motion model f ,
estimate the robot state trajectory x1:T and build a map m

min
x1:T ,m

T∑
t=1

∥zt − h(xt ,m)∥22 +
T−1∑
t=0

∥xt+1 − f (xt ,ut)∥22

4



Example: Localization with Linear Models

▶ State: xt ∈ Rn

▶ Motion model: xt+1 = f (xt ,ut) = Fxt + Gut

▶ Observation model: zt = h(xt) = Hxt

▶ Localization: given x0 = 0, sensor measurements z1:T , and control inputs
u0:T−1, estimate the state trajectory x1:T

min
x1:T

c(x1:T ) :=
T∑
t=1

∥zt − Hxt∥22 +
T−1∑
t=0

∥xt+1 − Fxt − Gut∥22

▶ Gradient descent: initialize x
(0)
1:T and iterate:

x
(k+1)
1:T = x

(k)
1:T − α(k)∇c(x

(k)
1:T )

5



Example: Localization with Linear Models

▶
∥∥∥∥(x1x2

)
−
(
y1
y2

)∥∥∥∥2
2

= ∥x1 − y1∥22 + ∥x2 − y2∥22 for x1, y1 ∈ Rd1 , x2, y2 ∈ Rd2

▶ Express the least-squares localization problem in matrix notation:

c(x1:T ) =
T∑
t=1

∥zt − Hxt∥22 +
T−1∑
t=0

∥xt+1 − Fxt − Gut∥22

=

∥∥∥∥∥∥∥
 z1 − Hx1

...
zT − HxT


∥∥∥∥∥∥∥
2

2

+

∥∥∥∥∥∥∥
 x1 − Fx0 − Gu0

...
xT − FxT−1 − GuT−1


∥∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥∥
H . . .

H


x1

...
xT

−

z1...
zT


∥∥∥∥∥∥∥
2

2

+

∥∥∥∥∥∥∥∥∥∥


−I

F
. . .
. . .

. . .

F −I


x1

...
xT

+


Fx0 + Gu0

Gu1
...

GuT−1


∥∥∥∥∥∥∥∥∥∥

2

2

6



Example: Localization with Linear Models
▶ Objective:

c(x1:T ) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



H
. . .

. . .

H
−I

F
. . .
. . .

. . .

F −I



x1
...
xT

+



−z1
...

−zT
Fx0 + Gu0

Gu1
...

GuT−1



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

= ∥Ax1:T + b∥22
▶ Gradient:

∇c(x1:T ) = 2A⊤(Ax1:T + b)

▶ Gradient descent: initialize x
(0)
1:T and iterate:

x
(k+1)
1:T = x

(k)
1:T − 2α(k)A⊤(Ax

(k)
1:T + b)

7



Project 1: Orientation Tracking

▶ Consider a rigid body undergoing pure rotation

▶ State: orientation qt ∈ H∗ of the body frame relative to the world frame

▶ Control: body-frame angular velocity ut ∈ R3 obtained from gyroscope
measurements in rad/sec during time interval τt

▶ Motion model: qt+1 = f (qt , τtut) := qt ◦ exp([0, τtut/2])

▶ Observation model: body-frame acceleration zt ∈ R3 obtained from
accelerometer measurements in m/sec2 should approximately match the
world-frame gravity acceleration −ge3:

zt = h(qt) := q−1
t ◦ [0, −ge3] ◦ qt

8



Project 1: Orientation Tracking
▶ Starting with q0 = [1, 0] ∈ H∗, formulate an optimization problem to

estimate q1:T using the gyroscope inputs u0:T−1 and accelerometer
measurements z1:T

▶ Distance on H∗: the distance between two quaternions q1,q2 ∈ H∗ can be
measured by the rotation angle ∥θ12∥2 of the axis-angle representation θ12 of
the relative rotation q12 = q−1

1 q2:

d(q1,q2) = ∥θ12∥2 = ∥2 log(q−1
1 q2)∥2

▶ We formulate a constrained optimization problem because we require that
qt is a valid orientation, i.e., qt ∈ H∗:

min
q1:T

c(q1:T ) :=
T∑
t=1

∥zt − h(qt)∥22 +
T−1∑
t=0

∥2 log
(
q−1
t+1 ◦ f (q, τtut)

)
∥22

s.t. ∥qt∥2 = 1, ∀t

▶ Possible approach: projected gradient descent

q
(k+1)
1:T = ΠH∗

(
q
(k)
1:T − α(k)∇c(q

(k)
1:T )

)
9



Project 1: Panorama

▶ Input: image I and camera-to-world orientation R

▶ Suppose the image lies on a sphere and compute the world coordinates of
each pixel:

1. Find longitude (λ) and latitude (ϕ) of each pixel using the number of rows
and columns and the horizontal (60◦) and vertical (45◦) fields of view

2. Convert spherical (λ, ϕ, 1) to Cartesian coordinates assuming depth 1

3. Rotate the Cartesian coordinates to the world frame using R

▶ Project world pixel coordinates to a cylinder and unwrap:

1. Convert Cartesian to spherical coordinates

2. Inscribe the sphere in a cylinder so that a point (λ, ϕ, 1) on the sphere has
height ϕ on the cylinder and longitude λ along the cylinder circumference

3. Unwrap the cylinder surface to a rectangular image with width 2π radians and
height π radians

4. Different options for sphere to plane projection: equidistant, equal area, Miller,
etc. (see https://en.wikipedia.org/wiki/List_of_map_projections)

10

https://en.wikipedia.org/wiki/List_of_map_projections


Project 1: Panorama

11



Outline

Introduction to SLAM

Factor Graph SLAM

12



Factor Graph

▶ Factor graph: bipartite graph
describing data (observations zt ,
inputs ut) and variables (states xt ,
landmarks mj) in a SLAM problem

▶ Nodes: variables to be estimated: robot states xt and landmark states mj

▶ Factors: relate two variables by input ut or observation zt data and
associated motion or observation model:
▶ Motion factor: error between state xt+1 and its motion prediction f (xt , ut):

ef (xt+1, xt) = xt+1 ⊖ f (xt , ut)

▶ Observation factor: error between observation zt,j and its prediction h(xt ,mj)

eh(xt ,mj) = zt,j ⊖ h(xt ,mj)

▶ We use the symbol ⊖ to indicate that the difference between two variable
should respect the geometry of their space, e.g., y ⊖ x = y − x for x, y ∈ Rd

but y ⊖ x = 2 log(x−1y) for x, y ∈ H∗

13



Factor Graph SLAM
▶ Front-end: construction of factor graph using odometry, laser-scan

matching, feature matching, etc.

▶ Back-end: graph optimization to estimate the variables (x0:T , {mj})

▶ Back-end optimization problem with variables xi associated with the graph
vertices i ∈ V and factors e(xi , xj) associated with the graph edges (i , j) ∈ E :

min
{xi}

∑
(i,j)∈E

ϕij(e(xi , xj))

where ϕij : Rd 7→ R is a distance function, e.g., ϕij(e) = e⊤Ωije with
positive-definite Ωij

14



Pose Graph

▶ Variables: robot poses Ti

▶ Measurements: relative poses from odometry and loop closures: T̄ij

▶ Factors: relative pose vectors e(Ti ,Tj) = log(T̄−1
ij T−1

i Tj)
∨

15



Pose Graph Optimization

▶ Pose graph

▶ Loop closure: observing previously seen areas generates factors between
non-successive robot poses

▶ Pose graph optimization: with ϕij(e) = e⊤W⊤
ij Wije = ∥Wije∥22:

min
{Ti}

∑
(i,j)∈E

∥Wij log(T̄
−1
ij T−1

i Tj)
∨∥22

16



Factor Graph Optimization
▶ Factor graph optimization with variables x =

[
x⊤1 · · · x⊤n

]⊤
:

min
x

∑
(i,j)∈E

ϕij(e(xi , xj))

▶ Initial guess x(0) is obtained from odometry (e.g., encoders, point cloud
registration) and landmark initialization (e.g., triangulation of image features)

▶ A descent method is used for optimization:

x(k+1) = x(k) + α(k)δx(k)

▶ E.g., the Levenberg-Marquardt algorithm is used for ϕij(e) = e⊤W⊤
ij Wije:∑

ij

J⊤ij W
⊤
ij WijJij + λD

 δx(k) = −
∑
ij

J⊤ij W
⊤
ij e(x

(k)
i , x

(k)
j )

where Jij =
∂e(xi ,xj )

∂x

∣∣
x=x(k)

is the Jacobian of e(xi , xj) with respect to all

variables x evaluated at x = x(k)

17



Factor Graph Optimization Libraries

▶ Georgia Tech Smoothing and Mapping (GTSAM) Library:
https://github.com/borglab/gtsam

▶ General Graph Optimization (g2o) Library:
https://github.com/RainerKuemmerle/g2o

▶ Ceres Solver: https://github.com/ceres-solver/ceres-solver

▶ SymForce: https://github.com/symforce-org/symforce

▶ miniSAM: https://github.com/dongjing3309/minisam

18

https://github.com/borglab/gtsam
https://github.com/RainerKuemmerle/g2o
https://github.com/ceres-solver/ceres-solver
https://github.com/symforce-org/symforce
https://github.com/dongjing3309/minisam


Factor Graph Optimization: Sparsity

19



Factor Graph Optimization: Example

(a) Before optimization (b) After optimization

https://www.youtube.com/watch?v=KYvOqUB_odg

20

https://www.youtube.com/watch?v=KYvOqUB_odg


Landmark-Based SLAM

min
{Tt},{mj}

∑
t

∥Wij log(T̄
−1
t,t+1T

−1
t Tt+1)

∨∥22 +
∑
t,j

∥Vij(zt,j − h(Tt ,mj))∥22

21



Landmark-Based SLAM

22



Landmark-Based SLAM: Sparsity

Hessian: J⊤J =

23



Landmark-Based SLAM: Example

https://www.youtube.com/watch?v=OdJ042prg_M

24

https://www.youtube.com/watch?v=OdJ042prg_M


Landmark-Based SLAM: Variable Marginalization

▶ What if we only need a subset of the variables?

▶ Normal equations: J⊤Jδx = −J⊤e

▶ Hessian matrix blocks:

J⊤Jδx =

[
Ωaa Ωab

Ω⊤
ab Ωbb

] [
x̃a
x̃b

]
=

[
ca
cb

]
= −J⊤e

▶ Pre-multiply by

[
I −ΩabΩ

−1
bb

0 I

]
and subtract second from first equation:

[
Ωaa − ΩabΩ

−1
bb Ω

⊤
ab 0

Ω⊤
ab Ωbb

] [
x̃a
x̃b

]
=

[
ca − ΩabΩ

−1
bb cb

cb

]
▶ We can obtain x̃a by solving the smaller system determined by the Schur

complement of Ωbb:

(Ωaa − ΩabΩ
−1
bb Ω

⊤
ab)x̃a = ca − ΩabΩ

−1
bb cb

25



Landmark-Based SLAM: Variable Marginalization

▶ Probabilistic perspective of Schur complement:[
x̃a
x̃b

]
∼ N

([
Ωaa Ωab

Ω⊤
ab Ωbb

]−1 [
ca
cb

]
,

[
Ωaa Ωab

Ω⊤
ab Ωbb

]−1
)

▶ Marginal of x̃a:

p(x̃a) =

∫
p(x̃a, x̃b)d x̃b

= ϕ
(
x̃a; (Ωaa − ΩabΩ

−1
bb Ω

⊤
ab)

−1(ca − ΩabΩ
−1
bb cb), (Ωaa − ΩabΩ

−1
bb Ω

⊤
ab)

−1
)

▶ Marginalizing a variable creates non-zero off-diagonals (called fill-in) in the
information matrix for all variables that had a non-zero off-diagonal element
with the marginalized variable ⇒ loss of sparsity

▶ In graph terms, variable elimination creates a clique between the neighbors of
the eliminated node

26



Landmark-Based SLAM: Variable Marginalization

27



Landmark-Based SLAM: Variable Marginalization

28



Smoothing vs Filtering

▶ Smoothing: equivalent to MAP optimization
▶ many variables: estimates entire robot trajectory and map
▶ sparse Hessian matrix J⊤J

▶ Fixed-lag smoothing:
▶ fewer variables: estimate only variables in a time window
▶ denser Hessian matrix after Schur complement to marginalize old variables

▶ Filtering:
▶ fewest variables: estimate only current pose and landmarks
▶ densest Hessian matrix after Schur complement to marginalize all old variables

29


	Introduction to SLAM
	Factor Graph SLAM

