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Localization and Odometry from Point Features

▶ Point-cloud map: consider a map represented as a set of points mi ∈ Rd

▶ Observation model: relates an observation zi obtained from robot position
p and orientation θ or R with the point mi that generated it:
▶ Position Sensor: zi = R⊤(mi − p)

▶ Range Sensor: zi = ∥mi − p∥2

▶ Bearing Sensor: zi = arctan
(

mi,y−py
mi,x−px

)
− θ

▶ Camera Sensor: zi = Kπ
(
R⊤(mi − p)

)
▶ Localization Problem: Given landmark positions {mi}i and measurements

{zi}i at one time instance, determine the global robot position p and
orientation θ or R

▶ Odometry Problem: Given measurements zt,i , zt+1,i at two time instances,
determine the relative position tpt+1 and orientation tθt+1 or tRt+1 between
the two robot frames at time t and t + 1
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Outline

Localization and Odometry from Relative Position Measurements

Localization and Odometry from Bearing Measurements

Localization and Odometry from Range Measurements
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2-D Localization from Relative Position Measurements
▶ Goal: determine the robot position p ∈ R2 and orientation θ ∈ (−π, π]

▶ Given: two landmark positions m1,m2 ∈ R2 (world frame) and relative
position measurements (body frame):

zi = R⊤(θ)(mi − p) ∈ R2, i = 1, 2

▶ Let δz := z1 − z2 and J :=

[
0 −1
1 0

]
so that:

m1 −m2 =

[
cos θ − sin θ
sin θ cos θ

]
(z1 − z2) =

[
δz Jδz

](cos θ
sin θ

)
▶ As long as det

[
δz Jδz

]
= ∥δz∥22 = ∥m1 −m2∥22 ̸= 0, we can compute:(

cos θ
sin θ

)
=

1

∥δz∥22

[
δzx δzy
−δzy δzx

]
(m1 −m2) ⇒ θ = atan2(sin θ, cos θ)

▶ Given the orientation θ, we can then obtain the robot position:

p =
1

2
((m1 +m2)− R(θ)(z1 + z2))
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3-D Localization from Relative Position Measurements
▶ Goal: determine the robot position p ∈ R3 and orientation R ∈ SO(3)
▶ Given: three landmark positions m1,m2,m3 ∈ R3 (world frame) and relative

position measurements (body frame):

zi = R⊤(mi − p) ∈ R3, i = 1, 2, 3

▶ Let mij := mi −mj and zij = zi − zj and compute:

m12 ×m13 = (Rz12)× (Rz13) = R(z12 × z13)

▶ The vector m12 ×m13 provides orthogonal information to m1 and m2 and
can be used to estimate the orientation R as long as the three points are
not all on the same line:[

m12 m13 m12 ×m13

]
= R

[
z12 z13 z12 × z13

]
R =

[
m12 m13 m12 ×m13

] [
z12 z13 z12 × z13

]−1

▶ Given the orientation R, we can then obtain the robot position:

p =
1

3

3∑
i=1

(mi − Rzi )
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3-D Localization from Relative Position Measurements

▶ Goal: determine the robot position p ∈ R3 and orientation R ∈ SO(3)

▶ Given: n landmark positions mi ∈ R3 (world frame) and relative position
measurements (body frame):

zi = R⊤(mi − p) ∈ R3, i = 1, . . . , n

▶ Localization from relative position measurements is known as the point
cloud registration problem

▶ Given two sets {mi} and {zj} of points, find the transformation p, R that
aligns them

▶ The data association ∆ := {(i , j) : mi corresponds to zj} that specifies
which observation j corresponds to landmark i might not be available
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Point Cloud Registration

▶ Given two sets {mi} and {zj} of points in Rd , find the transformation
p ∈ Rd , R ∈ SO(d) and data association ∆ that align them:

min
R∈SO(d),p∈Rd ,∆

f (R,p,∆) :=
∑

(i,j)∈∆

wij∥(Rzj + p)−mi∥22
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Known Data Association: Kabsch Algorithm

▶ Find the transformation p ∈ Rd , R ∈ SO(d) between sets {mi} and {zi} of
associated points:

min
R∈SO(d),p∈Rd

f (R,p) :=
∑
i

wi∥(Rzi + p)−mi∥22

▶ The optimal translation is obtained by setting ∇pf (R,p) to zero:

0 = ∇pf (R,p) = 2
∑
i

wi ((Rzi + p)−mi )

▶ Let the point cloud centroids be:

m̄ :=

∑
i wimi∑
i wi

z̄ :=

∑
i wizi∑
i wi

▶ Solving ∇pf (R,p) = 0 for p leads to:

p = m̄− R z̄
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Known Data Association: Kabsch Algorithm
▶ Replace p = m̄− R z̄ in f (R,p):

f (R, m̄− R z̄) =
∑
i

wi∥R(zi − z̄)− (mi − m̄)∥22

▶ Define the centered point clouds:

δmi := mi − m̄ δzi := zi − z̄

▶ Finding the optimal rotation reduces to:

min
R∈SO(d)

∑
i

wi∥Rδzi − δmi∥22

▶ The objective function can be simplified further:∑
i

wi∥Rδzi − δmi∥22 =
∑
i

wi

(
δz⊤i R⊤R︸ ︷︷ ︸

I

δzi − 2δm⊤
i Rδzi + δm⊤

i δmi

)
▶ Note that:

▶ δz⊤i δzi and δm⊤
i δmi are constant wrt R

▶
∑

i wiδm
⊤
i Rδzi =

∑
i wi tr(δm

⊤
i Rδzi ) = tr

((∑
i wiδziδm

⊤
i

)
R
)
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Known Data Association: Kabsch Algorithm

▶ Wahba’s problem: to determine the rotation R that aligns two associated
centered point clouds {δmi} and {δzi}, we need to solve a linear
optimization problem in SO(d):

max
R∈SO(d)

tr(Q⊤R)

where Q :=
∑

i wiδmiδz⊤i

▶ Wahba’s problem can be solved via the Kabsch algorithm
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Known Data Association: Kabsch Algorithm
▶ Wahba’s problem: maxR∈SO(d) tr

(
Q⊤R

)
▶ SVD: let Q = UΣV⊤ be the singular value decomposition of Q

▶ The singular vectors U, V and singular values Σ satisfy:

Σii ≥ 0 U⊤U = I det(U) = ±1 V⊤V = I det(V ) = ±1

▶ Let W := U⊤RV such that W⊤W = I and det(W ) = ±1

▶ The columns wj of W are orthonormal, w⊤
j wj = 1, and hence:

1 = w⊤
j wj =

∑
i

W 2
ij ⇒ W 2

ij ≤ 1 ⇒ |Wij | ≤ 1

▶ Since Σ is diagonal with Σii ≥ 0:

tr(Q⊤R) = tr(ΣU⊤RV ) = tr(ΣW ) =
∑
i

ΣiiWii ≤
∑
i

Σii

▶ The maximum is achieved with W = I :

W = I ⇒ U⊤RV = I
avoids⇒

reflection
R = U


1

. . .

1
det(UV⊤)

V⊤
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Unknown Data Association: Iterative Closest Point (ICP)

▶ Find the transformation p, R between sets {mi} and {zj} of points with
unknown data association ∆

▶ ICP algorithm: iterates between finding associations ∆ based on closest
points and applying the Kabsch algorithm to determine p, R

▶ Initialize with p0, R0 (sensitive to initial guess) and iterate

1. Given pk , Rk , find correspondences (i , j) ∈ ∆ based on closest points:

i ↔ argmin
j

∥mi − (Rkzj + pk)∥22

2. Given correspondences (i , j) ∈ ∆, find pk+1, Rk+1 via Kabsch algorithm
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Unknown Data Association: Probabilistic ICP
▶ Many variations for determining the data association ∆ in ICP exist:

▶ data association via point-to-plane distance (Chen & Medioni, 1991)
▶ probabilistic data association (EM-ICP, Granger & Pennec, 2002)

▶ Place a probability density function π (e.g., Gaussian) at each mi to define a
mixture distribution for the data:

p(x) =
n∑

i=1

αiπ(x;mi , σ
2
i I ) αi ≥ 0

n∑
i=1

αi = 1

▶ Find parameters p, R to maximize the likelihood of {Rzj + p}j :

max
p,R

m∑
j=1

log
n∑

i=1

αiπ(Rzj + p;mi , σ
2
i I )

▶ Use EM to determine membership probabiliites (E step) and optimize the
parameters p, R (M step). ICP is a special case with σ2

i → 0

▶ Robustness: use exp
(
− |x−mi |β

2σ2
i

)
with β ∈ (0, 2) instead of exp

(
− |x−mi |2

2σ2
i

)
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Iterative Closest Point (ICP)
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Iterative Closest Point (ICP)
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Iterative Closest Point (ICP)
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Iterative Closest Point (ICP)
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Iterative Closest Point (ICP)
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Iterative Closest Point (ICP)
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Iterative Closest Point (ICP)
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Iterative Closest Point (ICP)
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Iterative Closest Point (ICP)
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Iterative Closest Point (ICP)
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Iterative Closest Point (ICP)
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Iterative Closest Point (ICP)
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Iterative Closest Point (ICP)
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Iterative Closest Point (ICP)
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Iterative Closest Point (ICP)
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Iterative Closest Point (ICP)
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Iterative Closest Point (ICP)
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2-D Odometry from Relative Position Measurements

▶ Goal: determine the relative transformation tpt+1 ∈ R2 and tθt+1 ∈ (−π, π]
between two robot frames at time t + 1 and t

▶ Given: relative position measurements zt,1, zt,2 ∈ R2 and zt+1,1, zt+1,2 ∈ R2

at consecutive time steps to two unknown landmarks

▶ If we consider the robot frame at time t to be the “world frame”, this
problem is the same as 2-D localization from relative position
measurements with mi := zt,i , zi := zt+1,i , p := tpt+1, θ := tθt+1
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3-D Odometry from Relative Position Measurements

▶ Goal: determine the relative transformation tpt+1 ∈ R3 and tRt+1 ∈ SO(3)
between two robot frames at time t + 1 and t

▶ Given: relative position measurements zt,i ∈ R3 and zt+1,i ∈ R3 at
consecutive time steps to n unknown landmarks

▶ If we consider the robot frame at time t to be the “world frame”, this
problem is the same as 3-D localization from relative position
measurements with mi := zt,i , zi := zt+1,i , p := tpt+1, R := tRt+1
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Summary: Rel. Position Measurements zi = R⊤(mi − p)

▶ Localization

m1,m2, z1, z2 ∈ R2

(m1 −m2) = R(θ)(z1 − z2)

p =
1

2

2∑
i=1

(mi − Rzi )

m1, zi ∈ R3, i = 1, 2, 3

mij := mi −mj , zij := zi − zj

[
m12 m13 m12 ×m13

]
= R

[
z12 z13 z12 × z13

]
p =

1

3

3∑
i=1

(mi − Rzi )

mi , zi ∈ R3, i = 1, . . . , n

δmi := mi −
1

n

n∑
j=1

mj ,

δzi := zi −
1

n

n∑
j=1

zj

R = argmax
R∈SO(3)

n∑
i=1

δm⊤
i Rδzi

Kabsch algorithm
==================
SVD(

∑n
i=1 δmiδz⊤i )=UΣV⊤

U

1 0 0
0 1 0
0 0 det(UV⊤)

V⊤

p =
1

n

n∑
i=1

(mi − Rzi )

▶ Odometry: same with mi = zt,i , zi := zt+1,i , p := tpt+1, R := tRt+1
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Outline

Localization and Odometry from Relative Position Measurements

Localization and Odometry from Bearing Measurements

Localization and Odometry from Range Measurements
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2-D Localization from Bearing Measurements

▶ Goal: determine the robot position p ∈ R2 and orientation θ ∈ (−π, π]

▶ Given: two landmark positions m1,m2 ∈ R2 (world frame) and bearing
measurements (body frame):

zi = arctan

(
mi,y − py
mi,x − px

)
− θ ∈ R, i = 1, 2

▶ The bearing constraints are equivalent to:

mi − p

∥mi − p∥2
=

[
cos(zi + θ)
sin(zi + θ)

]
= R(zi + θ)e1 ⇒ R⊤(zi )(mi − p) = ∥mi − p∥2

[
cos(θ)
sin(θ)

]
▶ To eliminate θ, the two constraints can be combined via:

0 = ∥m1 − p∥2
[
sin θ − cos θ

] [cos(θ)
sin(θ)

]
∥m2 − p∥2

= ∥m1 − p∥2
[
cos(θ)
sin(θ)

]⊤
R
(π
2

)[cos(θ)
sin(θ)

]
∥m2 − p∥2
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2-D Localization from Bearing Measurements

▶ The previous equation is quadratic in p:

(m1 − p)⊤R(z1)R
(π
2

)
R⊤(z2)(m2 − p) = 0

▶ Let η := z1 − z2 + π/2, so that:

p⊤R(η)p−
(
m⊤

1 R(η) +m⊤
2 R

⊤(η)
)
p+m⊤

1 R(η)m2 = 0

▶ Use the following to solve the quadratic equation:
▶ p⊤R(η)p = cos(η)p⊤p
▶ p⊤p+ 2b⊤p+ c = (p+ b)⊤(p+ b) + c − b⊤b

▶ As long as cos(η) ̸= 0, i.e., the robot and the two landmarks are not on
the same line:

(p− p0)
⊤(p− p0) =

(
p⊤0 p0 −

1

cos(η)
m⊤

1 R(η)m2

)
p0 :=

1

2 cos(η)

(
R⊤(η)m1 + R(η)m2

)
▶ The position p lies on one of the two circles containing m1 and m2
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2-D Localization from Bearing Measurements

▶ Pose disambiguation: obtain a third bearing measurement:

R⊤(zi )(mi − p) = ∥mi − p∥2
[
cos(θ)
sin(θ)

]
, i = 1, 2, 3

▶ Find β and γ such that R⊤(z1) + βR⊤(z2) + γR⊤(z3) = 0. Then:

R⊤(z1)m1 + βR⊤(z2)m2 + γR⊤(z3)m3︸ ︷︷ ︸
:=u

−
[
R⊤(z1) + βR⊤(z2) + γR⊤(z3)

]︸ ︷︷ ︸
0

p

= (∥m1 − p∥2 + β∥m2 − p∥2 + γ∥m3 − p∥2)
[
cos(θ)
sin(θ)

]

▶ We can compute θ as

[
cos(θ)
sin(θ)

]
= u

∥u∥2
and recover p from:

R⊤(zi )(mi − p) = ∥mi − p∥2
[
cos(θ)
sin(θ)

]
, i = 1, 2, 3
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3-D Localization from Bearing Measurements (P3P)

▶ Goal: determine the robot position p ∈ R3 and orientation R ∈ SO(3)

▶ Given: three landmark positions mi ∈ R3 (world frame) and pixel
measurements zi ∈ R3 (homogeneous coordinates, body frame) obtained
from a (calibrated pinhole) camera:

zi =
1

λi
R⊤(mi − p) λi = e⊤3

(
R⊤(mi − p)

)
= unknown scale

▶ If we determine λi , we can transform the P3P problem to 3-D localization
from relative position measurements
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Find the depths λi via Grunert’s method
▶ Normalize the bearing equations:

bi =
zi

∥zi∥2
=

λi

λi∥R⊤(mi − p)∥2
R⊤(mi − p) =

1

λ̄i

R⊤(mi − p)

where λ̄i = ∥R⊤(mi − p)∥2 = ∥mi − p∥2
▶ Cosines of the angles among the bearing vectors b1, b2, b3:

cos(γij) =
b⊤i bj

∥bi∥2∥bj∥2
= b⊤i bj

▶ Let ϵij := ∥mi −mj∥2 be the lengths of the triangle formed in the world
frame by m1,m2,m3. Applying the law of cosines gives:

λ̄2
i + λ̄2

j − 2λ̄i λ̄j cos(γij) = ϵ2ij

▶ Let λ̄2 = uλ̄1 and λ̄3 = v λ̄1 so that:

λ̄2
1(u

2 + v2 − 2uv cos(γ23)) = ϵ223

λ̄2
1(1 + v2 − 2v cos(γ13)) = ϵ213

λ̄2
1(u

2 + 1− 2u cos(γ12)) = ϵ212

39



Find the depths λi via Grunert’s method
▶ Equivalently

λ̄2
1 =

ϵ223
u2 + v2 − 2uv cos(γ23)

=
ϵ213

1 + v2 − 2v cos(γ13)
=

ϵ212
u2 + 1− 2u cos(γ12)

▶ Cross-multiplying the second fraction, with the first and the third:

u2 +
ϵ213 − ϵ223

ϵ213
v2 − 2uv cos(γ23) +

2ϵ223
ϵ213

v cos(γ13)−
ϵ223
ϵ213

= 0 (1)

u2 − ϵ212
ϵ213

v2 + 2v
ϵ212
ϵ213

cos(γ13)− 2u cos(γ12) +
ϵ213 − ϵ212

ϵ213
= 0 (2)

▶ Substituting (1) into (2):

u =

(
−1 +

ϵ223−ϵ212
ϵ213

)
v2 − 2

(
ϵ223−ϵ212

ϵ213

)
cos(γ13)v + 1 +

ϵ223−ϵ212
ϵ213

2(cos(γ12)− v cos(γ23))
(3)

▶ Substituting (3) into (1), we get a fourth-order polynomial in v :

a4v
4 + a3v

3 + a2v
2 + a1v + a0 = 0
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Polynomial Coefficients

a4 =

(
ϵ223 − ϵ212

ϵ213
− 1

)2

− 4
ϵ212
ϵ213

cos2(γ23)

a3 = 4

(
ϵ223 − ϵ212

ϵ213

(
1− ϵ223 − ϵ212

ϵ213

)
cos(γ13)−

(
1− ϵ223 + ϵ212

ϵ213

)
cos(γ23) cos(γ12) + 2

ϵ212
ϵ213

cos2(γ23) cos(γ13)

)
a2 = 2

((
ϵ223 − ϵ212

ϵ213

)2

− 1 + 2

(
ϵ223 − ϵ212

ϵ213

)2

cos2(γ13) + 2

(
ϵ213 − ϵ212

ϵ213

)
cos2(γ23) + 2

(
ϵ213 − ϵ223

ϵ213

)
cos2(γ12)

−4

(
ϵ223 − ϵ212

ϵ213

)
cos(γ23) cos(γ13) cos(γ12)

)
a1 = 4

(
−
(
ϵ223 − ϵ212

ϵ213

)(
1 +

ϵ223 − ϵ212
ϵ213

)
cos(γ13)−

(
1− ϵ223 + ϵ212

ϵ213

)
cos(γ23) cos(γ12) + 2

ϵ223
ϵ213

cos2(γ12) cos(γ13)

)
a0 =

(
1 +

ϵ223 − ϵ212
ϵ213

)2

− 4ϵ223
ϵ213

cos2(γ12)

▶ We can obtain up to 4 real solutions for v , which we can substitute in (3) to
obtain u.

▶ We can recover λ̄1 from u and v via the fraction relationship

▶ Having λ̄1, λ̄2 := uλ̄1, and λ̄3 := v λ̄1 we have converted the P3P problem
into 3-D localization from relative position measurements
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3-D Localization from Bearing Measurements (PnP)

▶ Goal: determine the robot position p ∈ R3 and orientation R ∈ SO(3)

▶ Given: landmark positions mi ∈ R3 (world frame) and pixel measurements
zi ∈ R3 (homogeneous coordinates) obtained from a (calibrated pinhole)
camera for i = 1, . . . , n:

zi =
1

λi
R⊤(mi − p) λi = e⊤3 (R

⊤(mi − p)) = unknown scale

▶ The PnP problem is a constrained nonlinear least-squares minimization:

min
λi ,R,p

n∑
i=1

∥zi −
1

λi
R⊤(mi − p)∥22

s.t. R⊤R = I , detR = 1, λi = e⊤3 (R
⊤(mi − p))
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Solving the PnP Problem

▶ Terzakis and Lourakis, ECCV’20:
▶ Eliminate the auxiliary variables λi and directly optimize over p and R

▶ The optimal translation is a function of R and can be eliminated to obtain
optimization in R only

▶ Sequential quadratic programming with careful initialization on the 8-sphere

▶ Hesch and Roumeliotis, ICCV’11:
▶ Express p and λi in terms of R and eliminate them to obtain an optimization

in R only

▶ Use Cayley-Gibbs-Rodrigues rotation parameterization to obtain a polynomial
system of equations

R = (I + ĝ)−1(I − ĝ) =
1

1 + g⊤g
((1− g⊤g)I + 2gg⊤ − 2ĝ)

where g ∈ R3 is related to the angle θ and axis η of rotation as: g = η tan θ
2
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Solving the PnP Problem (Terzakis and Lourakis, ECCV’20)
▶ Re-write the PnP objective in quadratic form:

min
r,b

n∑
i=1

(Ai r + b)⊤Qi (Ai r + b)

where Ai := I ⊗m⊤
i ∈ R3×9, r = vec(R⊤), b = −R⊤p,

Qi = (zie
⊤
3 − I )⊤(zie

⊤
3 − I ) ∈ R3×3

▶ The optimal translation is:

b = Pr P = −

(
n∑

i=1

Qi

)−1( n∑
i=1

QiAi

)

▶ With Ω =
∑n

i=1(Ai +P)⊤Qi (Ai +P), we get a non-linear quadratic program:

min
mat(r)∈SO(3)

r⊤Ωr

▶ Use sequential quadratic programming initialized from solutions of
minr∈S8 r

⊤Ωr
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Solving the PnP Problem (Hesch and Roumeliotis, ICCV’11)

▶ The constraints λizi = R⊤(mi − p) can be re-written in matrix form as:

z1 −I
. . .

...
zn −I


︸ ︷︷ ︸

A


λ1

...
λn

−R⊤p


︸ ︷︷ ︸

x

=

R
⊤

. . .

R⊤


︸ ︷︷ ︸

W

m1

...
mn


︸ ︷︷ ︸

d

where A and d are known or measured, x are the unknowns we wish to
eliminate, and W is a block diagonal matrix of the unknown rotation R

▶ Express p and λi in terms of the other quantities:

x = (A⊤A)−1A⊤Wd =

[
U
V

]
Wd

where (A⊤A)−1A⊤ is partitioned so that the scale parameters are a function
of U and the translation −R⊤p is a function of V .
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Solving the PnP Problem (Hesch and Roumeliotis, ICCV’11)

x = (A⊤A)−1A⊤Wd =

[
U
V

]
Wd

▶ Exploiting the sparse structure of A, the matrices U and V can be computed
in closed form

▶ Both λi and −R⊤p are linear functions of the unknown R⊤:

λi = u⊤i Wd − R⊤p = VWd, i = 1, . . . , n

where u⊤i is the i-th row of U

▶ We can rewrite the constraints λizi = R⊤(mi − p) as:

u⊤i Wd︸ ︷︷ ︸
λi

zi = R⊤mi + VWd︸ ︷︷ ︸
−R⊤p

▶ We have reduced the number of unknowns from 6 + n to 3
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Solving the PnP Problem (Hesch and Roumeliotis, ICCV’11)

▶ Cayley-Gibbs-Rodrigues rotation parameterization:

R⊤ =
C̄

1 + g⊤g
C̄ = (I − ĝ)−1(I + ĝ) = ((1− g⊤g)I3 + 2ĝ + 2gg⊤)

▶ The CGR parameters automatically satisfy the rotation matrix constraints,
i.e., R⊤R = I and det(R) = 1 and allow us to formulate an unconstrained
least-squares minimization in g.

▶ Reformulation into a polynomial system: Since R⊤ appears linearly in the
equations, we can cancel the denominator 1 + g⊤g. This leads to the
following formulation of the PnP problem:

min
g

J(g) =
n∑

i=1

∥∥∥∥∥∥∥u⊤i
C̄ . . .

C̄

dzi − C̄mi − V

C̄ . . .

C̄

d

∥∥∥∥∥∥∥
2

which contains all monomials up to degree four, i.e.,
{1, g1, g2, g3, g1g2, g1g3, g2g3, . . . , g4

1 , g
4
2 , g

4
3 }.
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Solving the PnP Problem (Hesch and Roumeliotis, ICCV’11)

▶ Since J(g) is a fourth-order polynomial, the optimality conditions form a
system of three third-order polynomials (derivatives with respect to g1, g2
and g3).

▶ Use a Macaulay resultant matrix (matrix of polynomial coefficients) to find
the roots of the third-order polynomials and hence compute all critical points
of J(g)

▶ Since the polynomial system is of constant degree (independent of n), it is
only necessary to compute the Macaulay matrix symbolically once

▶ Online, the elements of the Macaulay matrix are formed from the data (linear
operation in n) and the roots are determined via an eigen-decomposition of
the Schur complement (dense 27× 27 matrix) of the top block of the
Macaulay matrix (sparse 120× 120 matrix)
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2-D Odometry from Bearing Measurements

▶ Goal: determine the relative transformation tpt+1 ∈ R2 and tθt+1 ∈ (−π, π]
between two robot frames at time t + 1 and t

▶ Given: bearing measurements zt,i ∈ R and zt+1,i ∈ R at consecutive time
steps to n unknown landmarks

▶ Form unit-vectors bt,i and bt+1,i in the direction of zt,i and zt+1,i :

bt,i =

[
cos(zt,i )
sin(zt,i )

]
bt+1,i =

[
cos(zt+1,i )
sin(zt+1,i )

]
, i = 1, . . . , n

▶ The measurements are related as follows:

dt,ibt,i = tpt+1 + dt+1,iR(tθt+1)bt+1,i , i = 1, . . . , n

where dt,i , dt+1,i are the unknown distances to mi .

▶ There are 2n equations and 2n+ 3 unknowns, which means that this problem
is not solvable.

49



3-D Odometry from Bearing Measurements

▶ Goal: determine the relative transformation tpt+1 ∈ R3 and tRt+1 ∈ SO(3)
between two robot frames at time t + 1 and t

▶ Given: pixel coordinates zt,i ∈ R3 and zt+1,i ∈ R3 at consecutive time steps
to n unknown landmarks (n ≥ 5) with known camera calibration matrices
Kt and Kt+1

▶ Without loss of generality, assume that the first camera frame coincides with
the world frame and denote p = tpt+1 and R = tRt+1

▶ Let y
t,i

:= K−1
t zt,i and y

t+1,i
:= K−1

t+1zt+1,i be the normalized pixel

coordinates so that:

λt,iyt,i = mi , λt,i = e⊤3 mi = unknown depth

λt+1,iyt+1,i
= R⊤(mi − p), λt+1,i = e⊤3 R

⊤(mi − p) = unknown depth
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Epipolar Constraint and Essential Matrix
▶ The pixel projections of landmark mi in the two images satisfy:

λt,iyt,i = λt+1,iRyt+1,i
+ p

▶ To eliminate the unknown depths λt,i , λt+1,i , pre-multiply by p̂ and note that
p̂y

t,i
is perpendicular to y

t,i
:

λt,iy
⊤
t,i
p̂y

t,i︸ ︷︷ ︸
0

= λt+1,iy
⊤
t,i
p̂Ry

t+1,i
+ y⊤

t,i
p̂p︸ ︷︷ ︸
0

▶ Epipolar constraint: the normalized pixel coordinates y
t,i

= K−1
t zt,i and

y
t+1,i

= K−1
t+1zt+1,i of the same point mi in two calibrated cameras with

relative pose (R,p) of cam 2 in the frame of cam 1 satisfy:

0 = y⊤
t,i

(p̂R) y
t+1,i

= y⊤
t,i
Ey

t+1,i

where E := p̂R ∈ R3×3 is the essential matrix

▶ Essential matrix characterization: a non-zero E ∈ R3×3 is an essential
matrix iff its singular value decomposition is E = Udiag(σ, σ, 0)V⊤ for some
σ ≥ 0 and U,V ∈ SO(3)
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3-D Odometry from Bearing Measurements (8-Pt Alg)

▶ The epipolar constraint 0 = y⊤
t,i
Ey

t+1,i
is linear in the elements of E :

0 = ȳ⊤i e

where ȳi := vec(y
t,i
y⊤
t+1,i

) ∈ R9, e := vec(E ) ∈ R9, and vec(·) is the
vectorization of a matrix, which stacks its columns into a vector

▶ Stacking ȳi from all 8 observations together, we obtain an 8× 9 matrix

Ȳ :=
[
ȳ1 · · · ȳ8

]⊤
leading to the following equation for e:

Ȳ e = 0

▶ Thus, e is a singular vector of Ȳ associated to a singular value that equals
zero

▶ If at least 8 linearly independent vectors ȳi are used to construct Ȳ , then the
singular vector is unique (up to scalar multiplication) and e and E can be
determined
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3-D Odometry from Bearing Measurements (5-Pt Alg)

▶ The essential matrix E can be recovered from Ȳ e = 0, even if only 5 linearly
independent vectors ȳi are available using the fact that:

0 = EE⊤E − 1

2
tr(EE⊤)E

▶ Stacking ȳi ’s together, we obtain a 5× 9 matrix Ȳ :=
[
ȳ1 · · · ȳ5

]⊤
▶ The right nullspace of Ȳ has dimension 4 and the vectors that span the

nullspace (obtained from SVD or QR decomposition) correspond to 3× 3
matrices Ni , i = 1, . . . , 4 such that

E = α1N1 + α2N2 + α3N3 + α4N4, αi ∈ R

▶ Since the measurements are scale-invariant, we can arbitrarily fix α4 = 1

▶ Substituting E = α1N1 + α2N2 + α3N3 + N4, we obtain 9 cubic-in-αi

equations and can recover up to 10 solutions for E
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3-D Odometry from Bearing Measurements

▶ Once E is recovered, p and R can be computed from the singular value
decomposition of E

▶ Pose recovery from the essential matrix: there are exactly two relative
poses corresponding to a non-zero essential matrix E = Udiag(σ, σ, 0)V⊤:

(p̂,R) =
(
URz

(π
2

)
diag(σ, σ, 0)U⊤,UR⊤

z

(π
2

)
V⊤
)

(p̂,R) =
(
URz

(
−π

2

)
diag(σ, σ, 0)U⊤,UR⊤

z

(
−π

2

)
V⊤
)

▶ Only one of these will place the points in front of both cameras

▶ The ambiguity can be resolved by intersecting the measurements of a single
point and verifying which solution places it on the positive optical z-axis of
both cameras
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Bearing Measurement Triangulation
▶ Goal: determine the coordinates of a point m ∈ R3 observed by two cameras

in the reference frame of the first camera

▶ Given: pixel coordinates z1 ∈ R2 and z2 ∈ R2 obtained from two calibrated
cameras with known relative transformation p ∈ R3 and R ∈ SO(3) of cam 2
in the frame of cam 1:

λ1z1 = m, λ1 = e⊤3 m = unknown depth

λ2z2 = R⊤(m− p), λ2 = e⊤3 R
⊤(m− p) = unknown depth

▶ We can determine m = λ1z1 by solving for the unknown depth λ1 using the
second measurement equation

▶ Note that λ2 = λ1e⊤3 R
⊤z1 − e⊤3 R

⊤p and thus:(
λ1e

⊤
3 R

⊤z1 − e⊤3 R
⊤p
)
z2 = λ1R

⊤z1 − R⊤p(
R⊤p− e⊤3 R

⊤pz2
)︸ ︷︷ ︸

a

1

λ1
=
(
R⊤z1 − e⊤3 R

⊤z1z2
)︸ ︷︷ ︸

b

1

λ1
=

a⊤b

a⊤a
⇒ m =

a⊤a

a⊤b
z1
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Summary: Bearing Measurements zi =
1
λi
R⊤(mi − p)

▶ 2-D Localization: given m1,m2 ∈ R2 and z1, z2 ∈ [−π, π]

1. 2-D bearing: 1
λi
R⊤(θ)(mi − p) = R(zi )e1

2. Eliminate θ:

0 = λ1e
⊤
1 R(θ)R

(π
2

)
R(θ)e1λ2 = (m1 − p)⊤R(z1)R

(π
2

)
R⊤(z2)(m2 − p)

3. The position p in on one of two circles containing m1 and m2 and we need a
third bearing measurement z3 to disambiguate it

4. Find β, γ such that R⊤(z1) + βR⊤(z2) + γR⊤(z3) = 0 and combine

R⊤(zi )(mi − p) = λi

[
cos(θ)
sin(θ)

]
to solve for θ

5. Orientation:

[
cos(θ)
sin(θ)

]
= u

∥u∥2
for u = R⊤(z1)m1 + βR⊤(z2)m2 + γR⊤(z3)m3

▶ 3-D Localization (P3P): mi ∈ R3, zi ∈ R3 (homogeneous), i = 1, 2, 3

1. Convert P3P to relative position localization by determining the depths
λ1, λ2, λ3 via Grunert’s method

2. Define angles γij among normalized z1, z2, z3 and apply the law of cosines:
λ2
i + λ2

j − 2λiλj cos(γij) = ∥m1 −mj∥22
3. Let λ2 = uλ1 and λ3 = vλ1 and combine the 3 equations to get a fourth order

polynomial: a4v
4 + a3v

3 + a2v
2 + a1v + a0 = 0
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Summary: Bearing Measurements zi =
1
λi
R⊤(mi − p)

▶ 3-D Localization (PnP)

1. Rewrite λizi = R⊤(mi − p) in matrix form and solve for
x := (λ1, . . . , λn,−R⊤p)⊤ in terms of R

2. The equations for λi and −R⊤p turn out to be linear in R so we are left with
one equation with 3 unknowns (the 3 degrees of freedom of R)

3. Obtain a fourth order polynomial J(g) in terms of the Cayley-Gibbs-Rodrigues
rotation parameterization g

4. Compute a Macaulay matrix of the coefficients of J(g) symbolically once.
Online, determine the roots of J(g) via an eigen-decomposition of the Schur
complement of the Macaulay matrix.

▶ 2-D Odometry: not solvable

▶ 3-D Odometry: 5-point or 8-point algorithm:

1. Obtain E from the epipolar constraint: 0 = vec
(
y
t,i
y⊤
t+1,i

)⊤
vec (E),

i = 1, . . . , 5 and the property 0 = EE⊤E − 1
2
tr(EE⊤)E

2. Recover two possible camera poses based on SVD(E) = Udiag(σ, σ, 0)V⊤

and choose the one that places the measurements in front of both cameras
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Outline

Localization and Odometry from Relative Position Measurements

Localization and Odometry from Bearing Measurements

Localization and Odometry from Range Measurements

58



2-D Localization from Range Measurements
▶ Goal: determine the robot position p ∈ R2 and orientation θ ∈ (−π, π]
▶ Given: two landmark positions m1,m2 ∈ R2 (world frame) and range

measurements (body frame):

zi = ∥mi − p∥2 ∈ R, i = 1, 2

▶ Because all possible positions whose distance to m1 is z1 is a circle, the
possible robot positions are given by the intersection of two circles
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2-D Localization from Range Measurements

▶ Applying the law of cosines to the triangle gives:

z22 = z21 + ∥m2 −m1∥22 − 2z1∥m2 −m1∥2 cosϕ

▶ Solving for ϕ and then the circle intersection points provides the possible
robot positions:

p = m2 + z2R(±ϕ)
m1 −m2

∥m1 −m2∥2
▶ The orientation of the robot θ is not identifiable
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2-D Localization from Range Measurements

▶ Pose disambiguation: the robot can make a move with known translation
p∆ (measured in the frame at time t) and take two new range measurements

▶ There are 2 possible robot positions at each time frame for a total of 4
combinations but comparing ∥pt+1 − pt∥2 to the known ∥p∆∥2 leaves only
two valid options (and we cannot distinguish between them)

▶ To obtain the orientation, we use geometric constraints:

pt+1 − pt = R(θt)p∆ =

[
p∆,x −p∆,y

p∆,y p∆,x

] [
cos θt
sin θt

]

▶ As long as det

[
p∆,x −p∆,y

p∆,y p∆,x

]
= ∥p∆∥22 ̸= 0, we can compute:

[
cos θt
sin θt

]
=

1

∥p∆∥22

[
p∆,x p∆,y

−p∆,y p∆,x

]
(pt+1 − pt)

θt = atan2(sin θt , cos θt)
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3-D Localization from Range Measurements

▶ Goal: determine the robot position p ∈ R3 and orientation R ∈ SO(3)

▶ Given: three landmark positions m1,m2,m3 ∈ R3 (world frame) and range
measurements (body frame):

zi = ∥mi − p∥2 ∈ R, i = 1, 2, 3

▶ All possible positions whose distance to m1 is z1 is a sphere

▶ The possible robot positions are the intersections of three spheres

▶ To find the intersection of 3 spheres, we first find the intersection of sphere
one and two (a circle) and of sphere two and three (a circle). The
intersection of these two circles gives the possible robot positions.

▶ Degenerate case: all landmarks are on the same line – the intersection of
the spheres is a circle with infinitely many possible robot positions
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3-D Localization from Range Measurements
▶ Intersecting circle of spheres with radii z1 and z2: center o12, radius r12,

normal vector n12 (perpendicular to the circle plane)

▶ Law of Cosines: z22 = z21 + ∥m2 −m1∥22 − 2z1∥m2 −m1∥2 cos θ12

▶ Geometric relationships:

o12 = m1 + z1 cos θ12n12

r12 = z1| sin(θ12)|

n12 =
m2 −m1

∥m2 −m1∥2

▶ Intersecting circle of spheres with radii z2 and z3: center o23, radius r23,
normal vector n23 (perpendicular to the circle plane):

o23 = m2 + z2 cos θ23n23 r23 = z2| sin(θ23)| n23 =
m3 −m2

∥m3 −m2∥2
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3-D Localization from Range Measurements

▶ The intersecting points of the two circles can be obtained from:

n⊤12(o12 − o) = 0

n⊤23(o23 − o) = 0

(n12 × n23)
⊤(o12 − o) = 0

 n⊤12
n⊤23

(n12 × n23)⊤

 o =

 n⊤12o12
n⊤23o23

(n12 × n23)⊤o12


▶ As long as the three landmarks are not on the same line, we can uniquely

solve for o:

det

 n⊤12
n⊤23

(n12 × n23)⊤

 ̸= 0 ⇔ n12 and n23 not colinear

▶ The two possible robot positions are:

p = o12 + r12R(n12,±θ)
o− o12

∥o− o12∥2
cos θ =

∥o− o12∥2
r12

▶ As in the 2-D case, the robot orientation R is not identifiable
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3-D Localization from Range Measurements

▶ Pose disambiguation: the robot can make a move with known translation
p∆ ∈ R3 and rotation R∆ ∈ SO(3) and take three new range measurements

▶ As in the 2-D case, after eliminating the impossible robot positions, we
should be left with only two options for pt and pt+1

▶ Given pt , pt+1, p∆, and R∆, we can now obtain Rt

pt+1 = pt + Rtp∆

▶ This is not sufficient because the rotation about p∆ is not identifiable

▶ The robot needs to move a second time to a third pose pt+2,Rt+2 with
known translation p∆,2 ∈ R3 and take three more range measurements to the
three landmarks:

pt+2 = pt+1 + Rt+1p∆,2 = pt+1 + RtR∆p∆,2
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3-D Localization from Range Measurements

▶ Putting the previous two equations together:

pt+1 − pt = Rtp∆

pt+2 − pt+1 = RtR∆p∆,2

▶ Taking a cross product between the two:

(pt+1 − pt)× (pt+2 − pt+1) = Rt(p∆ × R∆p∆,2)

▶ As long as U := [p∆, R∆p∆,2, p∆ × R∆p∆,2)] is nonsingular, i.e., p∆ and
R∆p∆,2 are not co-linear or equivalently the three robot positions are not
on the same line, we can determine the robot orientation:

Rt = [(pt+1 − pt), (pt+2 − pt+1), (pt+1 − pt)× (pt+2 − pt+1)]U
−1
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2-D Odometry from Range Measurements

▶ Goal: determine the relative transformation tpt+1 ∈ R2 and tθt+1 ∈ (−π, π]
between two robot frames at time t + 1 and t

▶ Given: range measurements zt,i ∈ R and zt+1,i ∈ R at consecutive time
steps to n unknown landmarks

▶ Let mt+1,i be the relative position to the i-th landmark at t + 1 so that:

zt+1,i = ∥mt+1,i∥2
zt,i = ∥tpt+1 + R(tθt+1)mt+1,i∥2

▶ Squaring and combining these equations, we get:

[tpt+1]
⊤

tpt+1 + 2m⊤
t+1,iR

⊤(tθt+1)tpt+1 = z2t,i − z2t+1,i , i = 1, . . . , n

▶ We have n equations with n + 3 unknowns (3 for the relative pose and n for
the unknown directions to the landmarks at t + 1), which is not solvable.
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3-D Odometry from Range Measurements

▶ Goal: determine the relative transformation tpt+1 ∈ R3 and tRt+1 ∈ SO(3)
between two robot frames at time t + 1 and t

▶ Given: range measurements zt,i ∈ R and zt+1,i ∈ R at consecutive time
steps to n unknown landmarks

▶ Following the same derivation as in the 2-D case, we obtain:

[tpt+1]
⊤

tpt+1 + 2m⊤
t+1,i [tRt+1]

⊤
tpt+1 = z2t,i − z2t+1,i , i = 1, . . . , n

▶ We have n equations with 2n + 6 unknowns (6 for the relative pose and 2n
for the unknown directions to the landmarks at t + 1), which is not solvable.
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Summary: Range Measurements zi = ∥mi − p∥2
▶ 2-D Localization: given m1,m2 ∈ R2 and z1, z2 ∈ R

1. Law of Cosines: z22 = z21 + ∥m2 −m1∥22 − 2z1∥m2 −m1∥2 cos θ
2. Position: p = m2 + z2R(±θ) m1−m2

∥m1−m2∥2
3. Move with known p∆, θ∆ (in frame t)
4. Orientation: (pt+1 − pt) = R(θt)p∆

▶ 3-D Localization: given m1,m2,m3 ∈ R3 and z1, z2, z3 ∈ R
1. Intersection of 2 circles with centers o12, o23, radii r12, r23, normals n12, n23

obtained via Law of Cosines and point o on intersecting line: n⊤
12

n⊤
23

(n12 × n23)
⊤

 o =

 n⊤
12o12

n⊤
23o23

(n12 × n23)
⊤o12


2. Position: p = o12 + r12R(n12,±θ) o−o12

∥o−o12∥2
, where cos θ = ∥o−o12∥2

r12
3. Move twice with known p∆,R∆, p∆,2,R∆,2

4. Orientation: as long as U := [p∆, R∆p∆,2, p∆ × R∆p∆,2)] is nonsingular:

Rt = [(pt+1 − pt), (pt+2 − pt+1), (pt+1 − pt)× (pt+2 − pt+1)]U
−1

▶ Odometry: not solvable
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