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Measurable Space

▶ Experiment: repeatable procedure with a well-defined set of outcomes

▶ Sample space: set Ω of possible experiment outcomes
▶ Example: Ω = {HH,HT ,TH,TT} or Ω = { , , , , , }

▶ Event: subset A of the sample space Ω
▶ Example: A = {HH}, B = {HT ,TH}, A,B ⊆ Ω

▶ σ-algebra: set F of subsets of Ω closed under complementation and
countable union

▶ Borel σ-algebra: the smallest σ-algebra B containing all open sets from a
topological space Ω (needed because there is no translation invariant way to
assign a finite measure to all subsets of [0, 1))

▶ Measurable space: tuple (Ω,F), where Ω is a sample space and F is a
σ-algebra
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Probability Space

▶ Measure on (Ω,F): function µ : F → R satisfying:
▶ non-negativity: µ(A) ≥ 0 for all A ∈ F and µ(∅) = 0

▶ countable additivity: µ (∪iAi ) =
∑

i µ(Ai ) for countable number of sets
Ai ∈ F that are pairwise disjoint, i.e., Ai ∩ Aj = ∅

▶ Properties of measure µ on (Ω,F):
▶ subadditivity: µ (∪iAi ) ≤

∑
i µ(Ai ) for countable number of sets Ai ∈ F

▶ max{µ(A), µ(B)} ≤ µ(A ∪ B) = µ(A) + µ(B)− µ(A ∩ B) ≤ µ(A) + µ(B)

▶ Probability measure: measure P : F → [0, 1] that satisfies P(Ω) = 1

▶ Probability space: tuple (Ω,F ,P), where Ω is a sample space, F is a
σ-algebra, and P is a probability measure
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Conditional and Totial Probability
▶ Conditional probability: P(A ∩ B) = P(A | B)P(B)

▶ Bayes rule: assume P(B) > 0

P(A | B) = P(A ∩ B)

P(B)
=

P(B | A)P(A)
P(B)

▶ Total probability law: if {A1, . . . ,An} is a partition of Ω, i.e., Ω =
⋃

i Ai

and Ai ∩ Aj = ∅, ∀i ̸= j , then:

P(B) =
n∑

i=1

P(B ∩ Ai )

▶ Corollary: if {A1, . . . ,An} is a partition of Ω, then:

P(Ai | B) =
P(B | Ai )P(Ai )∑n
j=1 P(B | Aj)P(Aj)

▶ Independent events: P (
⋂

i Ai ) =
∏

i P(Ai )
▶ observing one event does not give any information about another
▶ disjoint events are not independent: observing one tells us that the other will

not occur
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Random Variable

▶ Random variable: function X : Ω → Rn from (Ω,F) to (Rn,B) such that,
for every B ∈ B, the set A = {ω ∈ Ω | X (ω) ∈ B} is contained in F

▶ Cumulative distribution function (CDF) of random variable X : function
F (x) := P(X ≤ x) with the following properties:
▶ non-decreasing: x ≤ y (elementwise) ⇒ F (x) ≤ F (y)

▶ right-continuous: lim
x↓y

F (x) = F (y) for all y ∈ Rn

▶ lim
x1,...,xn→∞

F (x) = 1 and lim
xi→−∞

F (x) = 0 for all i

(a) Discrete CDF (b) Continuous CDF (c) Mixed CDF
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Random Variable
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CDF Examples
▶ X ∼ U([a, b])

F (x) =


0 x < a
x−a
b−a a ≤ x ≤ b

1 x > b

▶ X ∼ U({a, b})

F (x) =


0 x < a

1/2 a ≤ x < b

1 x ≥ b

▶ X ∼ Exp(λ) with λ > 0

F (x) =

{
0 x < 0

1− e−λx x ≥ 0

▶ X ∼ N (µ, σ2)

F (x) =
1√
2πσ2

∫ x

−∞
exp

(
−1

2

(y − µ)2

σ2

)
dy
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Probability Density Function

▶ Probability density function (pdf) of a continuous random variable
X : (Ω,F) → (Rn,B): function p : Rn 7→ [0, 1] such that:

▶ p(x) ≥ 0

▶
∫
p(x)dx = 1

▶ Intuition: the pdf p(x) of X behaves like a derivative of the CDF F (x):
▶ F (x) = P(X ≤ x) =

∫ x

−∞ p(y)dy

▶ P(a < X ≤ b) = F (b)− F (a) =
∫ b

a
p(y)dy

▶ P(X = x) = limϵ→0

∫ x+ϵδx

x
p(y)dy = 0
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Probability Mass Function
▶ Integer set: Z := {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
▶ Probability mass function (pmf) of a discrete random variable

X : (Ω,F) → (Z, 2Z): function m : Z 7→ [0, 1] such that:

▶ m[i ] ≥ 0
▶

∑
i∈Z m[i ] = 1

▶ Properties of the pmf m of X :
▶ F (i) = P(X ≤ i) =

∑
j≤i m[j ]

▶ P(a < X ≤ b) = F (b)− F (a) =
∑

a<j≤b m[j ]

▶ P(X = i) = m[i ] ∈ [0, 1]

▶ Dirac delta function:

δ(x) :=

{
∞ x = 0

0 x ̸= 0

∫ ∞

−∞
f (x)δ(x)dx = f (0)

∫ ∞

−∞
δ(x)dx = 1

▶ A pdf can be defined for a discrete random variable X ∈ Z with pmf m using
the Dirac delta function:

p(x) =
∑
i∈Z

m[i ]δ(x − i)
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pdf and pmf Examples

▶ X ∼ U([a, b])

p(x) =


0 x < a
1

b−a a ≤ x ≤ b

0 x > b

▶ X ∼ U({a, b})

m[i ] =

{
1
2 i ∈ {a, b}
0 else

▶ X ∼ Exp(λ) with λ > 0

p(x) =

{
0 x < 0

λe−λx x ≥ 0

▶ X ∼ N (µ, σ2)

p(x) =
1√
2πσ2

exp

(
−1

2

(x − µ)2

σ2

)
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Expectation and Variance

▶ Consider a random variable X with pdf p and a (measurable) function g

▶ The expectation of g(X ) is:

E [g(X )] =

∫
g(x)p(x)dx

▶ The variance of g(X ) is:

Var [g(X )] = E
[
(g(X )− E[g(X )]) (g(X )− E[g(X )])⊤

]
= E

[
g(X )g(X )⊤

]
− E[g(X )]E[g(X )]⊤

▶ The variance of a sum of random variables is:

Var

[
n∑

i=1

Xi

]
=

n∑
i=1

Var [Xi ] +
n∑

i=1

∑
j ̸=i

Cov [Xi ,Xj ]

Cov [Xi ,Xj ] = E
[
(Xi − E[Xi ])(Xj − E[Xj ])

⊤] = E
[
XiX

⊤
j

]
− E[Xi ]E[Xj ]

⊤
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Expectation and Variance Examples

▶ X ∼ U([a, b])

E[X ] =

∫
yp(y)dy =

1

b − a

∫ b

a

ydy =
b2 − a2

2(b − a)
=

1

2
(a+ b)

Var [X ] =

∫
y2p(y)dy − E[X ]2 =

b3 − a3

3(b − a)
− 1

4
(a+ b)2 =

1

12
(b − a)2

▶ X ∼ U({a, b})

E[X ] =
∑

i∈{a,b}

i m[i ] =
1

2
(a+ b)

Var [X ] = E[X 2]− E[X ]2 =
1

2
(a2 + b2)− 1

4
(a+ b)2 =

1

4
(b − a)2

13



Expectation and Variance Examples
▶ X ∼ Exp(λ) with λ > 0

E[X ] =

∫ ∞

0

yλe−λydy
z=λy , dz=λdy
==========

1

λ

∫ ∞

0

ze−zdz

u=z, dv=e−zdz
===========
du=dz, v=−e−z

1

λ

((
−ze−z

) ∣∣∣∣∞
0

+

∫ ∞

0

e−zdz

)
=

1

λ
(0 + 1) =

1

λ

Var [X ] =

∫ ∞

0

y2λe−λydy − 1

λ2

z=λy , dz=λdy
==========

1

λ2

(∫ ∞

0

z2e−zdz − 1

)
u=z2, dv=e−zdz

============
du=2zdz, v=−e−z

1

λ2

((
−z2e−z

) ∣∣∣∣∞
0

+ 2

∫ ∞

0

e−zdz − 1

)
=

1

λ2

▶ X ∼ N (µ, σ2)

E[X − µ] =
1√
2π

∫ ∞

−∞

(y − µ)

σ
exp

(
−1

2

(y − µ)2

σ2

)
dy

z= (y−µ)2

2σ========
dz= (y−µ)

σ dy

1√
2π

(∫ µ2/2σ

∞
e−z/σdz +

∫ ∞

µ2/2σ

e−z/σdz

)
= 0
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Gaussian Distribution

▶ Gaussian random vector X ∼ N (µ,Σ)
▶ parameters: mean µ ∈ Rn, covariance Σ ∈ Sn

≻0 (symmetric positive definite
n × n matrix)

▶ pdf: ϕ(x;µ,Σ) := 1√
(2π)n det(Σ)

exp
(
− 1

2
(x− µ)⊤Σ−1(x− µ)

)
▶ expectation: E[X ] =

∫
xϕ(x;µ,Σ)dx = µ

▶ variance: Var [X ] = E
[
(X − E[X ]) (X − E[X ])⊤

]
= Σ

▶ Gaussian mixture X ∼ NM({αk}, {µk}, {Σk})
▶ parameters: weights αk ≥ 0,

∑
k αk = 1,

means µk ∈ Rn, covariances Σk ∈ Sn
⪰0

▶ pdf: p(x) :=
∑

k αkϕ(x;µk ,Σk)

▶ expectation: E[X ] =
∫
xp(x)dx =

∑
k αkµk =: µ̄

▶ variance: Var [X ] = E
[
XX⊤]− E[X ]E[X ]⊤=

∑
kαk

(
Σk + µkµ

⊤
k

)
− µ̄µ̄⊤
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pdf of a Mixture of Two 2-D Gaussians
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Independent Random Variables

▶ The random variables {Xi}ni=1 with joint CDF F (x1, . . . , xn) and marginal
CDFs {Fi (xi )}ni=1 are jointly independent iff:

F (x1, . . . , xn) =
n∏

i=1

Fi (xi ), for all x1, . . . , xn ∈ R.

▶ The random variables {Xi}ni=1 with joint pdf/pmf p(x1, . . . , xn) and marginal
pdfs/pmfs {pi (xi )}ni=1 are jointly independent iff:

p(x1, . . . , xn) =
n∏

i=1

pi (xi ), for all x1, . . . , xn ∈ R.

▶ Let X and Y be random variables and suppose E[X ], E[Y ], and E[XY ] exist.
Then, X and Y are uncorrelated iff E[XY ] = E[X ]E[Y ] or equivalently
Cov [X ,Y ] = 0.

▶ Independence implies uncorrelatedness
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Conditional and Total Probability

▶ Total probability: If two random variables X ,Y have a joint pdf p(x , y), the
marginal pdf p(x) of X is:

p(x) =

∫
p(x , y)dy

▶ Conditional probability: If two random variables X ,Y have a joint pdf
p(x , y), the pdf p(x |y) of X conditioned on Y = y and the pdf p(y |x) of Y
conditioned on X = x satisfy

p(x , y) = p(x |y)p(y) = p(y |x)p(x)

▶ Bayes rule: The pdf p(x |y) of X conditioned on Y = y can be expressed in
terms of the pdf p(y |x) of Y conditioned on X = x and the marginal pdf
p(x) of X :

p(x |y) = p(y |x)p(x)
p(y)

=
p(y |x)p(x)∫

p(y | x ′)p(x ′)dx ′
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Joint and Marginal Distribution Example

▶ Suppose V = (X ,Y ) is a continuous random vector with density
pV (x , y) = 8xy for 0 < y < x and 0 < x < 1

▶ Let g(x , y) = 2x + y

▶ Determine E [g(V )]

▶ Evaluate E [X ] and E [Y ] by finding the marginal densities of X and Y and
then evaluating the appropriate univariate integrals

▶ Determine Var [g(V )]
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Joint and Marginal Distribution Example

E [2X + Y ] =

∫ 1

0

∫ x

0

(2x + y)8xy dydx =
32

15

pX (x) =

∫ x

0

8xy dy = 4x3 for 0 ≤ x ≤ 1

E [X ] =

∫ 1

0

xpX (x)dx =

∫ 1

0

4x4dx =
4

5

pY (y) =

∫ 1

y

8xy dx = 4y − 4y3 for 0 ≤ y ≤ 1

E [Y ] =

∫ 1

0

ypY (y)dy =

∫ 1

0

4y2 − 4y4dy =
8

15

Var [g(V )] = E
[
(g(V )− E [g(V )])2

]
= E

[(
2X + Y − 32

15

)2
]

=

∫ 1

0

∫ x

0

(
2x + y − 32

15

)2

8xy dydx =
17

75
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Conditional Probability Example

▶ Suppose that V = (X ,Y ) is a discrete random vector with probability mass
function:

pV (x , y) =



0.10 if (x , y) = (0, 0)

0.20 if (x , y) = (0, 1)

0.30 if (x , y) = (1, 0)

0.15 if (x , y) = (1, 1)

0.25 if (x , y) = (2, 2)

0 elsewhere

▶ What is the conditional probability that V is (0, 0) given that V is (0, 0) or
(1, 1)?

▶ What is the conditional probability that X is 1 or 2 given that Y is 0 or 1?

▶ What is the probability that X is 1 or 2?

▶ What is the probability mass function of X | Y = 0?

▶ What is the expected value of X | Y = 0?
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Conditional Probability Example

P (V ∈ {(0, 0)} | V ∈ {(0, 0), (1, 1)}) = P (V ∈ {(0, 0)} ∩ {(0, 0), (1, 1)})
P (V ∈ {(0, 0), (1, 1)})

=
0.10

0.25
= 0.4

P (X ∈ {1, 2} | Y ∈ {0, 1}) = P (V ∈ {1, 2} × R | V ∈ R× {0, 1})

=
P (V ∈ {(1, 0), (1, 1)})

P (V ∈ {(0, 0), (0, 1), (1, 0), (1, 1)})
=

0.45

0.75
= 0.6

P (X ∈ {1, 2}) = P (V ∈ {1, 2} × R) = 0.7

pX |Y=0(x) =
pV (x , 0)∑

x′∈{0,1} pV (x
′, 0)

=
1

0.4
pV (x , 0) =

{
0.25 if x = 0

0.75 if x = 1

E [X | Y = 0] =
∑

x∈{0,1}

xpX |Y=0(x) = pX |Y=0(1) = 0.75
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Change of Density

▶ Convolution: Let X and Y be independent random variables with pdfs p
and q, respectively. Then, the pdf of Z = X + Y is given by the convolution
of p and q:

[p ∗ q](z) =
∫

p(z − y)q(y)dy =

∫
p(x)q(z − x)dx

▶ Change of Density: Let Y = f (X ) be random variables related by an
invertible function f such that dy =

∣∣det ( dfdx (x))∣∣ dx . The pdf of py (y) of Y
and the pdf px(x) of X are related by change of variables:

P(Y ∈ A) = P(X ∈ f −1(A)) =

∫
f −1(A)

px(x)dx

=

∫
A

1∣∣det ( dfdx (f −1(y))
)∣∣px(f −1(y))︸ ︷︷ ︸

py (y)

dy
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Change of Density Example

▶ Let X ∼ N (0, σ2) and Y = f (X ) = exp(X )

▶ Note that f (x) is invertible f −1(y) = log(y)

▶ The infinitesimal integration volumes for y and x are related by:

dy =

∣∣∣∣det(df

dx
(x)

)∣∣∣∣ dx = exp(x)dx

▶ Using change of density with A = [0,∞) and f −1(A) = (−∞,∞):

P(Y ∈ [0,∞)) =

∫ ∞

−∞
ϕ(x ; 0, σ2)dx =

∫ ∞

0

1

exp(log(y))
ϕ(log(y); 0, σ2)dy

=

∫ ∞

0

1

y

1√
2πσ2

exp

(
−1

2

log2(y)

σ2

)
︸ ︷︷ ︸

p(y)

dy
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Change of Density Example

▶ Let V := (X ,Y ) be a random vector with pdf:

pV (x , y) :=

{
2y − x x < y < 2x and 1 < x < 2

0 else

▶ Let T := (M,N) = g(V ) :=
(
2X−Y

3 , X+Y
3

)
be a function of V

▶ Note that X = M + N and Y = 2N −M and, hence, the pdf of V is
non-zero for 0 < m < n/2 and 1 < m + n < 2. Also:

det

(
dg

dv

)
= det

[
2/3 −1/3
1/3 1/3

]
=

1

3

▶ The pdf T is:

pT (m, n) =


1

|det( dg
dv (m+n,2n−m))|pV (m + n, 2n −m),

0 < m < n/2 and

1 < m + n < 2,

0, else.
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Structure of Robotics Problems
▶ Time: t (discrete or continuous)

▶ Robot state: xt (e.g., position, orientation, velocity)

▶ Control input: ut (e.g., force, torque)

▶ Observation: zt (e.g., image, laser scan, inertial measurements)

▶ Map state: mt (e.g., occupancy map)
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Markov Assumptions
▶ The control inputs u0:t and observations z0:t are known (observable)

▶ The robot states x0:t and map m0:t are unknown (partially observable)

▶ Overloaded notation: we consider the joint robot and map state (xt ,mt) as
a single random variable xt

▶ Markov assumptions
▶ The state xt+1 only depends on the previous input ut and state xt , i.e., xt+1

given ut , xt is independent of the history x0:t−1, z0:t−1, u0:t−1

▶ The observation zt only depends on the state xt

▶ Motion model: function f or equivalently probability density function pf
that describes the state xt+1 resulting from applying input ut at state xt :

xt+1 = f (xt ,ut ,wt) ∼ pf (· | xt ,ut) wt = motion noise

▶ Observation model: function h or equivalently probability density function
ph that describes the observation zt depending on xt

zt = h(xt , vt) ∼ ph(· | xt) vt = observation noise
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Joint Distribution Factorization

▶ The Markov assumptions induce a factorization of the joint probability
density function of the states x0:T , observations z0:T , and inputs u0:T−1:

p(x0:T , z0:T ,u0:T−1)

Conditional
=======
probability

p(zT |x0:T , z0:T−1,u0:T−1)p(x0:T , z0:T−1,u0:T−1)

Markov
=======
assumption

ph(zT |xT )︸ ︷︷ ︸
observation model

p(x0:T , z0:T−1,u0:T−1)

Conditional
=======
probability

ph(zT |xT )p(xT |x0:T−1, z0:T−1,u0:T−1)p(x0:T−1, z0:T−1,u0:T−1)

Markov
=======
assumption

ph(zT |xT ) pf (xT |xT−1,uT−1)︸ ︷︷ ︸
motion model

p(uT−1|xT−1)︸ ︷︷ ︸
control policy

p(x0:T−1, z0:T−1,u0:T−2)

= · · ·

= p(x0)︸ ︷︷ ︸
prior

T∏
t=0

ph(zt | xt)︸ ︷︷ ︸
observation model

T−1∏
t=0

pf (xt+1 | xt ,ut)︸ ︷︷ ︸
motion model

T−1∏
t=0

p(ut | xt)︸ ︷︷ ︸
control policy
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Probabilistic Parameter Estimation

▶ Consider data D generated by probabilistic model p(D|θ) with parameters θ

▶ Maximum Likelihood Estimation (MLE): maximize the likelihood of the
data D given the parameters θ:

θ∗ ∈ argmax
θ

p(D|θ)

▶ Maximum A Posteriori (MAP): maximize the likelihood of the parameters
θ given the data D:

θ∗ ∈ argmax
θ

p(θ|D) = argmax
θ

p(D|θ)p(θ) = argmax
θ

p(D,θ)
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MAP Formulation of SLAM
▶ SLAM as a MAP problem:

▶ data: D = {z0:T , u0:T−1}
▶ parameters: θ = x0:T

▶ joint pdf: p(D,θ) = p(x0)
T∏
t=0

ph(zt | xt)
T−1∏
t=0

pf (xt+1 | xt , ut)
T−1∏
t=0

p(ut | xt)

▶ Factor graph optimization (usually p(ut |xt) is not considered):

min
x0:T

− log p(x0)−
T∑
t=0

log ph(zt |xt)−
T−1∑
t=0

log pf (xt+1 | xt ,ut)

▶ Start with initial guess x̂0:T , e.g., from odometry and feature triangulation

▶ Linearize motion model f (x, u,w) and observation model h(x, v)

▶ Solve the linearized problem to obtain a descent direction x̃0:T

▶ Update the guess x̂′0:T = x̂0:T + α x̃0:T

▶ Perform descent by re-linearizing around x̂′0:T and obtaining a new descent
direction x̃′0:T
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Motion Model Linearization
▶ Motion model linearization around state x̂t and noise 0:

xt+1 = f (xt ,ut ,wt) ≈ f (x̂t ,ut , 0) + Ft(xt − x̂t) + Qtwt

▶ Motion model Jacobians:

Ft =
df

dx
(x̂t ,ut , 0) Qt =

df

dw
(x̂t ,ut , 0)

▶ Let x̃t := xt − x̂t and ηt+1 := x̂t+1 − f (x̂t ,ut , 0):

x̃t+1 + x̂t+1 ≈ f (x̂t ,ut , 0) + Ft x̃t + Qtwt

x̃t+1 + ηt+1 ≈ Ft x̃t + Qtwt

▶ Motion model pdf with wt ∼ N (0,W ) and Wt := QtWQ⊤
t :

pf (xt+1|xt ,ut) ≈
1√

(2π)dx det(Wt)
exp

(
−1

2

(
x̃t+1 + ηt+1 − Ft x̃t

)⊤
W−1

t

(
x̃t+1 + ηt+1 − Ft x̃t

))
log pf (xt+1|xt ,ut) ≈

− 1

2
log((2π)dx det(Wt))−

1

2

(
x̃t+1 + ηt+1 − Ft x̃t

)⊤
W−1

t

(
x̃t+1 + ηt+1 − Ft x̃t

)
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Observation Model Linearization

▶ Observation model linearization around state x̂t and noise 0:

zt = h(xt , vt) ≈ h(x̂t , 0) + Ht(xt − x̂t) + Rtvt

▶ Observation model Jacobians:

Ht =
dh

dx
(x̂t , 0) Rt =

dh

dv
(x̂t , 0)

▶ Let x̃t := xt − x̂t and z̃t := zt − h(x̂t , 0):

z̃t = Ht x̃t + Rtvt

▶ Observation model pdf with vt ∼ N (0,V ) and Vt := RtVR
⊤
t :

ph(zt |xt) ≈
1√

(2π)dz det(Vt)
exp

(
−1

2
(z̃t − Ht x̃t)

⊤ V−1
t (z̃t − Ht x̃t)

)
log ph(zt |xt) ≈ −1

2
log((2π)dz det(Vt))−

1

2
(z̃t − Ht x̃t)

⊤ V−1
t (z̃t − Ht x̃t)
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Descent Direction from Linearized MAP Problem

▶ Linearized MAP problem is a least-squares problem:

min
x̃0:T

{
∥Σ−1/2

0 x̃0∥22 +
T∑
t=0

∥V−1/2
t (z̃t − Ht x̃t) ∥22 +

T−1∑
t=0

∥W−1/2
t

(
x̃t+1 + ηt+1 − Ft x̃t

)
∥22

}

▶ Using that

∥∥∥∥(x1x2
)
−
(
y1
y2

)∥∥∥∥2
2

= ∥x1 − y1∥22 + ∥x2 − y2∥22 for x1, y1 ∈ Rd1 ,

x2, y2 ∈ Rd2 , rewrite the least-squares cost in matrix notation:

∥Σ−1/2
0 x̃0∥22 +

T∑
t=0

∥V−1/2
t (z̃t − Ht x̃t) ∥22 +

T−1∑
t=0

∥W−1/2
t

(
x̃t+1 + ηt+1 − Ft x̃t

)
∥22

= ∥Σ−1/2
0 x̃0∥2 +

∥∥∥∥∥∥∥
 V

−1/2
0 (z̃0 − H0x̃0)

...

V
−1/2
T (z̃T − HT x̃T )


∥∥∥∥∥∥∥
2

2

+

∥∥∥∥∥∥∥∥


W
−1/2
0 (η1 + x̃1 − F0x̃0)

...

W
−1/2
T−1 (ηT + x̃T − FT−1x̃T−1)


∥∥∥∥∥∥∥∥
2

2
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Descent Direction from Linearized MAP Problem

▶ Using that

∥∥∥∥(x1x2
)
−
(
y1
y2

)∥∥∥∥2
2

= ∥x1 − y1∥22 + ∥x2 − y2∥22 for x1, y1 ∈ Rd1 ,

x2, y2 ∈ Rd2 , rewrite the least-squares cost in matrix notation:

∥Σ−1/2
0 x̃0∥22 +

T∑
t=0

∥V−1/2
t (z̃t − Ht x̃t) ∥22 +

T−1∑
t=0

∥W−1/2
t

(
x̃t+1 + ηt+1 − Ft x̃t

)
∥22

= ∥Σ−1/2
0 x̃0∥2 +

∥∥∥∥∥∥∥
V

−1/2
0 H0

. . .

V
−1/2
T HT


 x̃0

...
x̃T

−

V
−1/2
0 z̃0
...

V
−1/2
T z̃T


∥∥∥∥∥∥∥
2

2

+

∥∥∥∥∥∥∥∥∥∥∥


W

−1/2
0 F0 −W

−1/2
0

W
−1/2
1 F1

. . .

. . . −W
−1/2
T−1

W
−1/2
T−1 FT−1


 x̃0

...
x̃T

−


W

−1/2
0 η1
...

W
−1/2
T−1 ηT


∥∥∥∥∥∥∥∥∥∥∥

2

2
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Descent Direction from Linearized MAP Problem

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



Σ
−1/2
0|0

V
−1/2
0 H0

. . .
. . .

V
−1/2
T HT

W
−1/2
0 F0 −W

−1/2
0

W
−1/2
1 F1

. . .

. . . −W
−1/2
T−1

W
−1/2
T−1 FT−1


︸ ︷︷ ︸

J

 x̃0
...
x̃T

−



0

V
−1/2
0 z̃0
...
...

V
−1/2
T z̃T

W
−1/2
0 η1

W
−1/2
1 η2
...

W
−1/2
T−1 ηT


︸ ︷︷ ︸

b

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

= ∥J x̃0:T − b∥22
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Descent Direction from Linearized MAP Problem

▶ Obtain a descent direction x̃0:T from the linearized MAP problem:

min
x̃0:T

∥J x̃0:T − b∥22

▶ Setting the gradient to zero leads to the normal equations:

J⊤J x̃0:T = J⊤b

▶ The Jacobian matrix J is sparse

▶ J⊤J is the info matrix of the Gaussian distribution of x̃0:T | z0:T ,u0:T−1

▶ The normal equations can be solved via:
▶ Cholesky factorization of J⊤J

▶ QR factorization of J

▶ QR factorization is a more efficient and robust way to solve the normal
equations because it avoids computing J⊤J, which is slow and squares the
condition number of J

37



Descent Direction from Linearized MAP Problem
▶ Number of variables: n

▶ Number of measurement constraints: m

▶ QR factorization: J = Q

[
R
0

]
∈ Rm×n

▶ R ∈ Rn×n is the upper-triangular square root information matrix

R⊤R = J⊤J

▶ Q ∈ Rm×m is an orthogonal matrix: Q⊤Q = I

▶ Descent direction via QR factorization:

∥J x̃0:T − b∥22 =
∥∥∥∥Q [R0

]
x̃0:T − b

∥∥∥∥2
2

=

∥∥∥∥Q⊤Q

[
R
0

]
x̃0:T − Q⊤b

∥∥∥∥2
2

=

∥∥∥∥[R0
]
x̃0:T −

[
b′1
b′2

]∥∥∥∥2
2

= ∥R x̃0:T − b′1∥22 + ∥b′2∥22︸ ︷︷ ︸
residual

▶ Since R is upper-triangular, back-substitution can be used to compute x̃0:T
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Markov Assumptions

▶ Motion model: given xt , ut , the state xt+1 is independent of the history
x0:t−1, z0:t−1, u0:t−1:

xt+1 = f (xt ,ut ,wt) ∼ pf (· | xt ,ut)

▶ Observation model: given xt , the observation zt is independent of the
history x0:t−1, z0:t−1, u0:t−1:

zt = h(xt , vt) ∼ ph(· | xt)
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Bayes Filter

▶ Bayes filter: a probabilistic inference technique for estimating the state xt of
a dynamical system by combining evidence from control inputs ut and
observations zt using the Markov assumptions, conditional probability,
total probability, and Bayes rule

▶ The Bayes filter keeps track of:
▶ Predicted pdf: pt+1|t(xt+1) := p(xt+1 | z0:t , u0:t)

▶ Updated pdf: pt+1|t+1(xt+1) := p(xt+1 | z0:t+1, u0:t)

▶ Special cases of the Bayes filter:
▶ Particle filter

▶ Kalman filter

▶ Forward algorithm for Hidden Markov Models
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Bayes Filter Prediction and Update Steps

▶ Starting with a prior pdf pt|t(xt), the Bayes filter uses a prediction step to
obtain a predicted pdf pt+1|t(xt+1) by incorporating information about the
motion model pf and input ut and an update step to obtain an updated pdf
pt+1|t+1(xt+1) by incorporating information about the observation model ph
and observation zt+1

▶ Prediction step: given a prior pdf pt|t of xt and control input ut , use the
motion model pf to compute the predicted pdf pt+1|t of xt+1:

pt+1|t(x) =

∫
pf (x | s,ut)pt|t(s)ds

▶ Update step: given a predicted pdf pt+1|t of xt+1 and measurement zt+1,
use the observation model ph to obtain the updated pdf pt+1|t+1 of xt+1:

pt+1|t+1(x) =
ph(zt+1 | x)pt+1|t(x)∫
ph(zt+1 | s)pt+1|t(s)ds
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Bayes Filter Illustration
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Bayes Filter Derivation

pt+1|t+1(xt+1) =p(xt+1 | z0:t+1,u0:t)

Bayes
====
rule

1

ηt+1
p(zt+1 | xt+1, z0:t ,u0:t)p(xt+1 | z0:t ,u0:t)

Markov
=======
assumption

1

ηt+1
ph(zt+1 | xt+1)p(xt+1 | z0:t ,u0:t)

Total
=======
probability

1

ηt+1
ph(zt+1 | xt+1)

∫
p(xt+1, xt | z0:t ,u0:t)dxt

Conditional
=======
probability

1

ηt+1
ph(zt+1 | xt+1)

∫
p(xt+1 | z0:t ,u0:t , xt)p(xt | z0:t ,u0:t)dxt

Markov
=======
assumption

1

ηt+1
ph(zt+1 | xt+1)

∫
pf (xt+1 | xt ,ut)p(xt | z0:t ,u0:t−1)dxt

=
1

ηt+1
ph(zt+1 | xt+1)

∫
pf (xt+1 | xt ,ut)pt|t(xt)dxt

▶ Normalization constant: ηt+1 = p(zt+1 | z0:t ,u0:t)
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Bayes Filter

▶ Motion model: xt+1 = f (xt ,ut ,wt) ∼ pf (· | xt ,ut)

▶ Observation model: zt = h(xt , vt) ∼ ph(· | xt)

▶ Bayes filter: recursive computation of p(xT |z0:T ,u0:T−1) that tracks:
▶ Updated pdf: pt|t(xt) := p(xt | z0:t , u0:t−1)

▶ Predicted pdf: pt+1|t(xt+1) := p(xt+1 | z0:t , u0:t)

pt+1|t+1(xt+1) =

1
ηt+1︷ ︸︸ ︷
1

p(zt+1|z0:t ,u0:t)
ph(zt+1 | xt+1)

Predict: pt+1|t(xt+1)︷ ︸︸ ︷∫
pf (xt+1 | xt ,ut)pt|t(xt)dxt︸ ︷︷ ︸

Update
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Bayes Smoother

▶ Bayes smoother: recursive computation of p(xt |z0:T ,u0:T−1) for all
t ∈ {0, . . . ,T} instead of only the most recent state xT

▶ Smoothed pdf: pt|T (xt) := p(xt | z0:T , u0:T−1) for t ∈ {0, . . . ,T}

▶ Forward pass: compute p(xt+1 | z0:t+1,u0:t) and p(xt+1 | z0:t ,u0:t) for
t = 0, . . . ,T via the Bayes filter

▶ Backward pass: for t = T − 1, . . . , 0 compute:

p(xt | z0:T ,u0:T−1)
Total

=======
Probability

∫
p(xt | xt+1, z0:T ,u0:T−1)p(xt+1 | z0:T ,u0:T−1)dxt+1

Markov
========
Assumption

∫
p(xt | xt+1, z0:t ,u0:t)p(xt+1 | z0:T ,u0:T−1)dxt+1

Bayes
====
Rule

p(xt | z0:t ,u0:t−1)︸ ︷︷ ︸
forward pass

∫ [ motion model︷ ︸︸ ︷
pf (xt+1 | xt ,ut) p(xt+1 | z0:T ,u0:T−1)

p(xt+1 | z0:t ,u0:t)︸ ︷︷ ︸
forward pass

]
dxt+1
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