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Bayes Filter

▶ Motion model: xt+1 = f (xt ,ut ,wt) ∼ pf (· | xt ,ut)

▶ Observation model: zt = h(xt , vt) ∼ ph(· | xt)

▶ Bayes filter: recursive computation of p(xT |z0:T ,u0:T−1) that tracks:
▶ Updated pdf: pt|t(xt) := p(xt | z0:t , u0:t−1)

▶ Predicted pdf: pt+1|t(xt+1) := p(xt+1 | z0:t , u0:t)

pt+1|t+1(xt+1) =

1
ηt+1︷ ︸︸ ︷
1

p(zt+1|z0:t ,u0:t)
ph(zt+1 | xt+1)

Predict: pt+1|t(xt+1)︷ ︸︸ ︷∫
pf (xt+1 | xt ,ut)pt|t(xt)dxt︸ ︷︷ ︸

Update
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Histogram Filter
▶ Histogram filter: implementation of the Bayes filter for discrete random

variable xt that belongs to a discrete set X

▶ In this case, we can work with probability mass functions (pmfs) mt|t [x],
mt+1|t [x], and mf [x′|x,u] over the discrete set X

▶ Due to the connection between a pdf and a pmf, integration in the Bayes
filter reduces to summation

▶ Prediction step: given prior pmf mt|t and input ut , use the motion model
mf to compute a predicted pmf mt+1|t :

mt+1|t [xt+1] =
∑
s∈X

mf [xt+1 | s,ut ]mt|t [s]

▶ Update step: given predicted pmf mt+1|t and observation zt+1, use the
observation model ph to obtain an updated pmf mt+1|t+1:

mt+1|t+1[xt+1] =
ph(zt+1 | xt+1)mt+1|t [xt+1]∑

s∈X ph(zt+1 | s)mt+1|t [s]
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Efficient Histogram Filter Prediction

▶ Let X be a regular grid discretization of Rd

▶ Motion model: x′ = f [x,u] +w

▶ Assume bounded “Gaussian” noise w

▶ Prediction step:
▶ shift the prior pmf data mt|t [x] at each grid index x ∈ X to a new grid index x′

according to the motion model x′ = f [x, u]

▶ convolve the shifted grid values with a separable Gaussian kernel:

▶ This reduces the prediction step cost from O(n2) to O(n) where n is the
number of grid cells in X
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Adaptive Histogram Filter

▶ The accuracy of the histogram filter is limited by the size of the grid X

▶ A high-resolution grid becomes very computationally expensive in high
dimensional state spaces because the number of cells is exponential in the
number of dimensions

▶ Adaptive Histogram Filter: represents the pmf via adaptive discretization,
e.g., an octree data structure
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Histogram Filter Localization
▶ Robot Localization Problem: Given a map m, a sequence of inputs u0:t−1,

and a sequence of measurements z0:t , infer the state of the robot xt

Prior:

Update:

Predict:

Update:
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Particle Filter

▶ Particle filter: Bayes filter in which pt+1|t(xt+1) = p(xt+1|z0:t ,u0:t) and
pt+1|t+1(xt+1) = p(xt+1|z0:t+1,u0:t) are discrete distributions with N possible
values called particles

▶ A probability mass function α[1], . . . , α[N] over N values µ[1], . . . ,µ[N] can
be viewed as a continuous-space probability density function:

p(x) =
N∑

k=1

α[k]δ(x− µ[k])

where δ is the Dirac delta function:

δ(x) :=

{
∞ x = 0

0 x ̸= 0

∫ ∞

−∞
f (x)δ(x)dx = f (0)

∫ ∞

−∞
δ(x)dx = 1
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Particle Filter

▶ Particle: a hypothesis that the value of x is µ[k] with probability α[k]

▶ The particle filter uses particles with locations µ[k] and weights α[k] for
k = 1, . . . ,N to represent the pdfs pt|t and pt+1|t :

pt|t(xt) =
N∑

k=1

αt|t [k]δ
(
xt − µt|t [k]

)
pt+1|t(xt+1) =

N∑
k=1

αt+1|t [k]δ
(
xt+1 − µt+1|t [k]

)
▶ To derive the particle filter, substitute these pdfs in the Bayes filter prediction

and update steps

▶ The prediction and update steps should maintain the form of the pdfs as a
mixture of delta functions
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Particle Filter Prediction Step

▶ Plug pt|t(xt) =
N∑

k=1

αt|t [k]δ
(
xt − µt|t [k]

)
in the Bayes filter prediction step:

pt+1|t(xt+1) =

∫
pf (xt+1 | xt ,ut)

N∑
k=1

αt|t [k]δ
(
xt − µt|t [k]

)
dxt

=
N∑

k=1

αt|t [k]pf (xt+1 | µt|t [k],ut)

▶ Since the predicted pdf is not a mixture of delta functions we need to
approximate it

▶ Apply the motion model to each particle µt|t [k] to obtain
µt+1|t [k] ∼ pf (· | µt|t [k],ut) and approximate:

pt+1|t(xt+1) =
N∑

k=1

αt|t [k]pf (xt+1 | µt|t [k],ut) ≈
N∑

k=1

αt|t [k]δ(xt+1 − µt+1|t [k])

▶ The prediction step changes only the particle positions but not their weights
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Particle Filter Update Step

▶ Plug pt+1|t(xt+1) =
N∑

k=1

αt|t [k]δ
(
xt+1 − µt+1|t [k]

)
in the Bayes filter update

step:

pt+1|t+1(xt+1) =
ph (zt+1 | xt+1)

∑N
k=1 αt|t [k]δ

(
xt+1 − µt+1|t [k]

)
∫
ph (zt+1 | s)

∑N
j=1 αt|t [j ]δ

(
s− µt+1|t [j ]

)
ds

=
N∑

k=1

 αt+1|t [k]ph
(
zt+1 | µt+1|t [k]

)
∑N

j=1 αt+1|t [j ]ph
(
zt+1 | µt+1|t [j ]

)


︸ ︷︷ ︸
αt+1|t+1[k]

δ(x− µt+1|t [k]︸ ︷︷ ︸
µt+1|t+1[k]

)

▶ The updated pdf turns out to be a mixture of delta functions so no
approximation is necessary

▶ The update step changes only the particle weights but not their positions
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Particle Resampling

▶ Particle depletion: most updated particle weights become close to zero
because a finite number of particles is not enough to represent the state pdf,

e.g., the observation likelihoods ph
(
zt+1 | µt+1|t [k]

)
may be small at all

k = 1, . . . ,N

▶ Resampling tries to avoid particle depletion by adding new particles at
locations with high weights and reducing the particles at locations with low
weights. It focuses the representation power of the particles to likely regions.

▶ Given particle set
{
µt|t [k], αt|t [k]

}
, resampling is applied if the effective

number of particles: Neff := 1∑N
k=1(αt|t [k])

2 is less than a threshold

▶ Resampling
▶ Draw j ∈ {1, . . . ,N} independently with replacement with probability αt|t [j ]

▶ Add µt|t [j ] with weight 1
N

to the new particle set

▶ Repeat N times
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Particle Filter Summary

▶ Prior: xt | z0:t ,u0:t−1 ∼ pt|t(xt) :=
∑N

k=1 αt|t [k]δ
(
xt ;µt|t [k]

)
▶ Prediction: let µt+1|t [k] ∼ pf (· | µt|t [k],ut) and αt+1|t [k] = αt|t [k] so that:

pt+1|t(xt+1) ≈
N∑

k=1

αt+1|t [k]δ
(
xt+1 − µt+1|t [k]

)
▶ Update: rescale the particle weights based on the observation likelihood:

pt+1|t+1(xt+1) =
N∑

k=1

 αt+1|t [k]ph
(
zt+1 | µt+1|t [k]

)
∑N

j=1 αt+1|t [j ]ph
(
zt+1 | µt+1|t [j ]

)
 δ

(
xt+1 − µt+1|t [k]

)

▶ Resampling: If Neff := 1∑N
k=1(αt+1|t+1[k])

2 ≤ N/10, resample the particle set{
µt+1|t+1[k], αt+1|t+1[k]

}
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Particle Filter Summary
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Particle Filter Localization (1-D)

Prior:

Update:

Predict:

Resample:
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Particle Filter Localization (1-D)

Prior:

Update:

Predict:

Resample:
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Stratified Resampling

▶ Sampling the particle set {µ[k], α[k]} independently results in high variance,
i.e., sometimes samples with large weights might not be selected, while
samples with very small weights may be selected multiple times

▶ Stratified resampling: guarantees that samples with large weights appear at
least once and those with small weights – at most once
▶ Add the particle weights along the circumference of a circle

▶ Divide the circle into N equal pieces and sample a uniform distribution in each
piece

▶ Select the particles corresponding to the uniform distribution samples

▶ Stratified resampling is optimal in terms of variance (Thrun et al. 2005)
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Stratified Resampling

Stratified Resampling

1: Input: particle set {µ[k], α[k]}Nk=1

2: Output: resampled particle set
3: j ← 1, c ← α[1]
4: for k = 1, . . . ,N do
5: u ∼ U

(
0, 1

N

)
6: β = u + k−1

N
7: while β > c do
8: j = j + 1, c = c + α[j ]

9: add
(
µ[j ], 1

N

)
to the new set

▶ Systematic resampling: the same as stratified resampling except that the
same uniform is used for each piece, i.e., u ∼ U

(
0, 1

N

)
is sampled only once

before the for loop above.
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SLAM Overview

▶ SLAM problem: given sensor measurements z0:T (e.g., LiDAR scans) and
control inputs u0:T−1 (e.g., velocity), estimate the robot state trajectory x0:T
(e.g., pose) and build a map m of the environment
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Mapping

▶ Given a robot state trajectory x0:T and a sequence of measurements z0:T ,
build a map m of the environment
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Sparse Map Representations

▶ Point cloud: a collection of points,
potentially with properties, e.g., color

▶ Landmarks: a collection of objects, each
having a category, position, orientation,
shape, etc.

▶ Surfels: a collection of oriented discs
containing photometric information
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Dense Map Representations

▶ Implicit Surface Models:
▶ Occupancy-based: assign occupied (+1) or

free (−1) labels over the space of the
environment

▶ Distance-based: measure the signed
distance (negative inside) to the
environment surfaces

▶ Explicit Surface Models:
▶ Polygonal mesh: a collection of points and

connectivity information among them,
forming polygons
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Occupancy Grid Map

▶ One of the simplest and most widely used representations

▶ The environment is divided into a regular grid
with n cells

▶ Occupancy grid: a vector m ∈ Rn, whose
i-th entry indicates whether the i-th cell is
free (mi = −1) or occupied (mi = 1)

▶ The cells are called pixels (pictures (pics)
elements) in 2D and voxels (volumes
elements) in 3D
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Probabilistic Occupancy Grid Mapping

▶ Occupancy grid mapping: the occupancy grid
m is unknown and needs to be estimated given
the robot trajectory x0:t and a sequence of
observations z0:t

▶ Since the map is unknown and the measurements
are uncertain, we maintain a probability mass
function p(m | z0:t , x0:t) over time

▶ Independence Assumption: most occupancy grid mapping algorithms
assume that the cell values are independent conditioned on the robot
trajectory:

p(m | z0:t , x0:t) =
n∏

i=1

p(mi | z0:t , x0:t)

▶ It is sufficient to track the probability of being occupied,
γi,t := p(mi = 1 | z0:t , x0:t), for each map cell i = 1, . . . , n
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Probabilistic Occupancy Grid Mapping

▶ Model the map cells mi as independent Bernoulli random variables

mi =

{
+1 (Occupied) with prob. γi,t := p(mi = 1 | z0:t , x0:t)
−1 (Free) with prob. 1− γi,t

▶ How do we update γi,t over time?

▶ Bayes Rule:

γi,t = p(mi = 1 | z0:t , x0:t)

=
1

ηt
ph(zt | mi = 1, xt)p(mi = 1 | z0:t−1, x0:t−1)

=
1

ηt
ph(zt | mi = 1, xt)γi,t−1

(1− γi,t) = p(mi = −1 | z0:t , x0:t) =
1

ηt
ph(zt | mi = −1, xt)(1− γi,t−1)
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Probabilistic Occupancy Grid Mapping

▶ Odds ratio of the Bernoulli random variable mi updated via Bayes rule:

o(mi | z0:t , x0:t) : =
p(mi = 1 | z0:t , x0:t)
p(mi = −1 | z0:t , x0:t)

=
γi,t

1− γi,t

=
ph(zt | mi = 1, xt)

ph(zt | mi = −1, xt)︸ ︷︷ ︸
gh(zt |mi ,xt)

γi,t−1

1− γi,t−1︸ ︷︷ ︸
o(mi |z0:t−1,x0:t−1)

▶ Observation model odds ratio: gh(zt | mi , xt)

▶ Using Bayes rule again, we can simplify the observation odds ratio:

gh(zt | mi , xt) =
ph(zt | mi = 1, xt)

ph(zt | mi = −1, xt)
=

p(mi = 1 | zt , xt)
p(mi = −1 | zt , xt)︸ ︷︷ ︸
inverse observation model

odds ratio

p(mi = −1)
p(mi = 1)︸ ︷︷ ︸
map prior
odds ratio
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Probabilistic Occupancy Grid Mapping

▶ Observation model odds ratio:

gh(zt | mi , xt) =
p(mi = 1 | zt , xt)
p(mi = −1 | zt , xt)︸ ︷︷ ︸
inverse observation model

odds ratio

p(mi = −1)
p(mi = 1)︸ ︷︷ ︸
map prior
odds ratio

▶ Assume zt indicates whether mi is occupied or not. Then, the inverse
observation model odds ratio specifies how much we trust the observations,
i.e., it is the ratio of true positives versus false positives:

p(mi = 1 | mi is observed occupied at time t)

p(mi = −1 | mi is observed occupied at time t)
=

80%

20%
= 4

▶ The second term p(mi=1)
p(mi=−1) is just a prior occupancy odds ratio and may be

chosen as 1 (occupied and free space are equally likely) or < 1 (optimistic
about free space)
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Probabilistic Occupancy Grid Mapping

▶ Odds ratio occupancy grid mapping:

o(mi | z0:t , x0:t) = gh(zt | mi , xt)o(mi | z0:t−1, x0:t−1)

▶ Observation model odds ratio: gh(zt | mi , xt) =
p(mi=1|zt ,xt)
p(mi=−1|zt ,xt)

p(mi=−1)
p(mi=1)

▶ Take log to convert the products to sums

▶ Log-odds of the Bernoulli random variable mi :

λi,t := λ(mi | z0:t , x0:t) := log o(mi | z0:t , x0:t)

▶ Log-odds occupancy grid mapping:

λi,t = log
p(mi = 1 | zt , xt)
p(mi = −1 | zt , xt)︸ ︷︷ ︸

∆λi,t

−λi,0 + λi,t−1
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Probabilistic Occupancy Grid Mapping

▶ Log-odds occupancy grid mapping: estimating the probability mass
function of mi conditioned on z0:t and x0:t is equivalent to accumulating the
log-odds ratio ∆λi,t of the inverse measurement model:

λi,t = λi,t−1 + (∆λi,t − λi,0)

▶ If the map prior is uniform, i.e., occupied and free space are equally likely:
λi,0 = log 1 = 0

▶ Assuming that zt indicates whether mi is occupied or not, the log-odds ratio
∆λi,t of the inverse measurement model specifies the measurement “trust”,
e.g., for an 80% correct sensor:

∆λi,t = log
p(mi = 1 | zt , xt)
p(mi = −1 | zt , xt)

=

{
+ log 4 if zt indicates mi is occupied

− log 4 if zt indicates mi is free
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LiDAR Occupancy Grid Mapping

▶ Maintain grid of map log-odds λi,t for i = 1, . . . , n

▶ Given a new LiDAR scan zt+1, transform it to the
world frame using the robot pose xt+1

▶ Determine the cells that the LiDAR beams pass
through, e.g., using Bresenham’s line rasterization
algorithm

▶ For each observed cell i , decrease the log-odds if it was observed free or
increase the log-odds if the cell was observed occupied:

λi,t+1 = λi,t ± log 4

▶ Constrain λMIN ≤ λi,t ≤ λMAX to avoid overconfident estimation

▶ May introduce a decay on λi,t to handle changing maps

▶ The map pmf γi,t can be recovered from the log-odds λi,t via the logistic
sigmoid function:

γi,t = p(mi = 1 | z0:t , x0:t) = σ(λi,t) =
exp (λi,t)

1 + exp (λi,t)
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Project 2: Magic Differential-Drive Robot

▶ Wheel encoders

▶ IMU

▶ 2D Lidar

▶ RGBD camera
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Project 2: Localization and Texture Mapping
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Localization

▶ Given a map m, a sequence of control inputs u0:T−1, and a sequence of
measurements z0:T , infer the robot state trajectory x0:T
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Markov Localization in Occupancy Grid Maps

▶ Use a particle filter to maintain the pdf p(xt |z0:t ,u0:t−1,m) of the robot
state xt over time

▶ Each particle µt|t [k] is a hypothesis on the state xt with confidence αt|t [k]

▶ The particles specify the pdf of the robot state at time t:

pt|t(xt) := p(xt | z0:t ,u0:t−1,m) ≈
N∑

k=1

αt|t [k]δ
(
xt − µt|t [k]

)
▶ Prediction step: use the input ut and motion model pf to obtain the

predicted pdf pt+1|t(xt+1)

▶ Update step: use the observation zt+1 and observation model ph to obtain
the updated pdf pt+1|t+1(xt+1)
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Prediction Step with Differential-drive Robot Model
▶ Each particle µt|t [k] ∈ R3 represents a possible 2-D position (x , y) and

orientation θ

▶ Prediction step: for every particle µt|t [k], k = 1, . . . ,N, compute:

µt+1|t [k] = f
(
µt|t [k],ut + ϵt

)
αt+1|t [k] = αt|t [k]

▶ f (x, u) is the differential-drive motion model

▶ ut = (vt , ωt) is the linear and angular velocity input

▶ ϵt ∼ N
(
0,

[
σ2
v 0
0 σ2

ω

])
is 2-D Gaussian motion noise

▶ If ut is unknown it can be obtained from wheel encoders (linear velocity vt)
and an IMU sensor (angular velocity ωt):
▶ The distance traveled during time τt for a given encoder count zt , wheel

diameter d , and 360 ticks per revolution is: τtvt ≈ πdzt
360

▶ The angular velocity ωt is provided by the gyroscope yaw rate measurement
directly
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Update Step with LiDAR Correlation Model

▶ Update step: the particle poses remain unchanged but the weights are
scaled by the observation model:

µt+1|t+1[k] = µt+1|t [k] αt+1|t+1[k] ∝ ph(zt+1 | µt+1|t [k],m)αt+1|t [k]

▶ Need to define a LiDAR observation model: ph(z | x,m)

▶ LiDAR correlation model: likelihood model ph(z|x,m) for LiDAR scan z
obtained from sensor pose x in occupancy grid m. Set the LiDAR scan
likelihood proportional to the correlation between the scan’s world-frame
projection y = r(z, x) via the robot pose x and the occupancy grid m:

ph(z|x,m) ∝ corr (r(z, x),m)

▶ Transform the scan zt+1 to the world frame using µt+1|t [k], find all cells
yt+1[k] in the grid corresponding to the scan, and update the particle weights
using the scan-map correlation:

αt+1|t+1[k] ∝ corr (yt+1[k],m)αt+1|t [k]
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Update Step with LiDAR Correlation Model

▶ Computing correlation between LiDAR scan z obtained from pose x and
occupancy grid map m:
▶ Transform the scan z from the LiDAR frame to the world frame using the

robot pose x (transformation from the body frame to the world frame)

▶ Find all grid coordinates y that correspond to the scan, i.e., y is a vector of
grid cell indices i which are visited by the LiDAR scan rays, e.g., obtained
using Bresenham’s line rasterization algorithm

▶ Let y = r(z, x) be the transformation from a lidar scan z to grid cell indices y.
Definite the correlation corr(r(z, x),m) between the transformed and
discretized scan y and the occupancy grid m as:

corr(y,m) =
∑
i

1{yi = mi}

where:

1{yi = mi} =

{
1, if yi = mi ,

0, else.

39



Update Step with LiDAR Correlation Model

▶ Transform the scan zt+1 to the world frame using µt+1|t [k] and find all cells
yt+1[k] in m corresponding to the scan

▶ The correlation corr (yt+1[k],m) is large if yt+1[k] and m agree
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Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)

42



Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)

49



Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)

51



Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)
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Inverse Transform Sampling

▶ How do we sample from a target distribution with pdf p(x) and CDF
F (x) =

∫ x

−∞ p(s)ds?

▶ Proposal distribution: U(0, 1)

▶ Inverse transform sampling:

1. Draw u ∼ U(0, 1)

2. Return inverse CDF value:

µ = F−1(u)

3. The CDF of F−1(u) is:

P(F−1(u) ≤ x) = P(u ≤ F (x))

= F (x)
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Rejection Sampling

▶ Can we sample from a target distribution with pdf p(x) without using its
CDF F (x)?

▶ Proposal distribution: easy-to-sample pdf q(x), e.g., Uniform or Gaussian,
that satisfies p(x) ≤ 1

λq(x) for some λ ∈ (0, 1)

▶ Rejection sampling:

1. Draw µ ∼ q(·) and u ∼ U(0, 1)

2. Return µ only if u
λ
q(µ) ≤ p(µ)

▶ If λ is small, many rejections are necessary. Good q(x) and λ are difficult to
choose.
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Sample Importance Resampling

▶ Can we sample from a target distribution with pdf p(x) without scaling by
λ ∈ (0, 1)?

▶ Proposal distribution: pdf q(x)

▶ Sample importance resampling

1. Draw µ[1], . . . , µ[N] from q(·)

2. Compute importance weights α[k] = p(µ[k])
q(µ[k])

and normalize α[k] = α[k]∑
j α[j]

3. Draw µ[k] independently with replacement from {µ[1], . . . , µ[N]} with
probability α[k]

▶ If q(x) is a poor approximation of p(x), then even the best samples from
q(x) may not be good samples for resampling
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Particle Filter

▶ Particle filter: Monte-Carlo approximation of pdf pt|t(xt) = p(xt |z0:t ,u0:t−1)

using a finite weighted set of particles
{
µt|t [k], αt|t [k]

}
updated over time t

▶ Particles
{
µt|t [k], αt|t [k]

}
approximate pt|t(xt) in the sense that the

weighted sum of any function g evaluated over the particle set converges to
the expectation with respect to pt|t(xt):

N∑
k=1

αt|t [k]g(µt|t [k])→
∫

g(xt)pt|t(xt)dxt as N →∞

▶ Idea: apply sample importance resampling to target distribution:

p(x0:t+1|z0:t+1,u0:t) = p(xt+1|zt+1,ut , xt)p(x0:t |z0:t ,u0:t−1)

▶ Proposal distribution:

q(x0:t+1|z0:t+1,u0:t) = q(xt+1|zt+1,ut , xt)q(x0:t |z0:t ,u0:t−1)
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Sample Importance Resampling in the Particle Filter
1. Sample µt+1|t+1[1], . . . ,µt+1|t+1[N] from q(xt+1|zt+1,ut , xt)q(x0:t |z0:t ,u0:t−1)

▶ Since µt|t [1], . . . ,µt|t [N] from q(x0:t |z0:t , u0:t−1) are already available from the
prior, we only need to sample:

µt+1|t+1[k] ∼ q(xt+1|zt+1, ut , xt = µt|t [k]) ∀k = 1, . . . ,N

▶ The performance depends on the choice of proposal q(xt+1|zt+1, ut , xt)

▶ Common proposal choice: motion model q(xt+1|zt+1, ut , xt) = pf (xt+1|xt , ut);
easy to sample from but may be suboptimal because zt+1 is not considered

2. Compute and normalize importance weights:

αt+1|t+1[k] ∝
p(µt+1|t+1[k]|zt+1,ut ,µt|t [k])p(µt|t [k]|z0:t ,u0:t−1)

q(µt+1|t+1[k]|zt+1,ut ,µt|t [k])q(µt|t [k]|z0:t ,u0:t−1)

=
ph(zt+1|µt+1|t+1[k])pf (µt+1|t+1[k]|µt|t [k],ut)

pf (µt+1|t+1[k]|µt|t [k],ut)
αt|t [k]

= ph(zt+1|µt+1|t+1[k])αt|t [k]

3. Resample: if Neff is small, draw µt+1|t+1[k] independently with replacement

from
{
µt+1|t+1[1], . . . , µt+1|t+1[N]

}
with probability αt+1|t+1[k] and reset the

weights to 1/N
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