ECE276A: Sensing & Estimation in Robotics Lecture 11: Matrix Lie Groups

Nikolay Atanasov

natanasov@ucsd.edu

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Outline

Manifolds and Matrix Lie Groups

SO(3) Geometry

SE(3) Geometry

Manifold Optimization

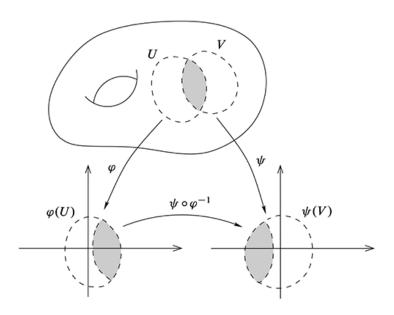
Topology

- **Topology** on set \mathcal{X} is a set \mathcal{T} of subsets of \mathcal{X} , called **open sets**, such that:
 - $ightharpoonup \mathcal{X}$ and \emptyset are open
 - finite intersection of open sets is open
 - uncountably infinite union of open sets is open
- **Topological space**: set \mathcal{X} with topology \mathcal{T}
- ▶ **Hausdorff space**: topological space \mathcal{X} such that $\forall x, y \in \mathcal{X}$ with $x \neq y$ there exists disjoint neighborhoods \mathcal{U} of x and x of y
- ▶ Separable space: topological space $\mathcal X$ with a countable dense subset, i.e., there exists a sequence in $\mathcal X$ such that every non-empty open set contains at least one element of the sequence
- **Second-countable space**: topological space \mathcal{X} with a countable base, i.e., countable collection of open sets that can express any open set as a union

Manifold

- ▶ Homeomorphism: continuous bijective function $f: \mathcal{X} \to \mathcal{Y}$ between two topological spaces with continuous inverse f^{-1}
- ▶ **Topological** *n*-**manifold**: Hausdorff second-countable topological space \mathcal{M} such that every $p \in \mathcal{M}$ has a neighborhood \mathcal{U} homeomorphic to an open subset of \mathbb{R}^n
- ▶ Chart on \mathcal{M} : pair (\mathcal{U}, ϕ) such $\phi : \mathcal{U} \subseteq \mathcal{M} \to \mathcal{V} \subseteq \mathbb{R}^n$ is a homeomorphism
- **Atlas** on \mathcal{M} : set of charts $\{(\mathcal{U}_{\alpha},\phi_{\alpha})\}_{\alpha}$ that cover \mathcal{M}
- ▶ Coordinates of $p \in \mathcal{M}$: elements $\phi(p) \in \mathbb{R}^n$ of a chart (\mathcal{U}, ϕ) containing p
- ▶ **Smooth** *n*-manifold: the change of coordinates function $\phi_{\beta} \circ \phi_{\alpha}^{-1} : \mathbb{R}^{n} \to \mathbb{R}^{n}$ between any charts $(\mathcal{U}_{\alpha}, \phi_{\alpha})$ and $(\mathcal{U}_{\beta}, \phi_{\beta})$ with $\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta} \neq \emptyset$ is infinitely differentiable
- An open subset of a smooth n-manifold is a smooth n-manifold
- ▶ The product of smooth n_1 and n_2 manifolds is a smooth $(n_1 + n_2)$ -manifold

Manifold



Embedded Submanifold

▶ Directional derivative: of $f : \mathbb{R}^n \to \mathbb{R}$ at $\mathbf{p} \in \mathbb{R}^n$ in direction $\mathbf{v} \in \mathbb{R}^n$:

$$Df(\mathbf{p})[\mathbf{v}] = \lim_{t \to 0} \frac{f(\mathbf{p} + t\mathbf{v}) - f(\mathbf{p})}{t}$$

- ▶ A nonempty subset \mathcal{M} of d-dimensional Euclidean space \mathcal{E} is a smooth **embedded submanifold** of dimension n < d such that either
 - 1. n = d and \mathcal{M} is an open set in \mathcal{E} , called an **open submanifold**, or
 - 2. n = d k and, for each $p \in \mathcal{M}$, there exists a neighborhood \mathcal{U}_p in \mathcal{E} and a smooth function $h: \mathcal{U}_p \to \mathbb{R}^k$ such that
 - 2.1 if $y \in \mathcal{U}_p$, then $y \in \mathcal{M}$ iff h(y) = 0
 - 2.2 rank(Dh(p)) = k (rank is the range space dimension)

The function h is called a **local defining function** for \mathcal{M} at p.

- Example:
 - lacksquare unit sphere $\mathcal{S}^{d-1}:=\left\{\mathbf{x}\in\mathbb{R}^d:\mathbf{x}^{ op}\mathbf{x}=1
 ight\}$ is an embedded submanifold of \mathbb{R}^d
 - \triangleright S^{d-1} has local defining function $h(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{x} 1$
 - the directional derivative of h is $Dh(\mathbf{x})[\mathbf{v}] = 2\mathbf{x}^{\top}\mathbf{v}$ and has rank k = 1
 - ▶ the dimension of S^{d-1} is n = d-1

Tangent Space

- ▶ How should directional derivative be defined for $f: \mathcal{M} \to \mathbb{R}$?
- For $p \in \mathcal{M}$, the operation p + tv may not be defined. Instead, use a curve $\gamma : \mathbb{R} \to \mathcal{M}$ such that $\gamma(0) = p$.
- Let $C^{\infty}(\mathcal{U}_p, \mathbb{R})$ be the set of smooth real-valued functions defined on a neighborhood \mathcal{U}_p of a point p on a manifold \mathcal{M} . A **tangent vector** v_p to \mathcal{M} at p is a function from $C^{\infty}(\mathcal{U}_p, \mathbb{R})$ to \mathbb{R} such that there exists a curve $\gamma: \mathbb{R} \to \mathcal{M}$ with $\gamma(0) = p$ and:

$$v_p[f] = \frac{df(\gamma(t))}{dt}\bigg|_{t=0}$$

▶ Tangent space to \mathcal{M} at p: set $T_p\mathcal{M}$ of all tangent vectors v_p to \mathcal{M} at p

Tangent Space of Embedded Submanifold

▶ If \mathcal{M} is an embedded submanifold, then $v \in T_p \mathcal{M}$ if and only if there exists a smooth curve γ on \mathcal{M} passing through p with velocity v:

$$\mathcal{T}_{
ho}\mathcal{M} = \left\{ rac{d\gamma}{dt}(0) \mid \gamma: \mathcal{I}
ightarrow \mathcal{M} \quad ext{and} \quad \gamma(0) =
ho
ight\}$$

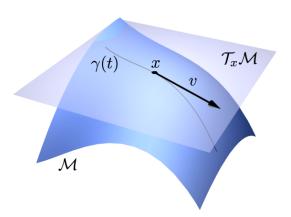
where \mathcal{I} is any open interval containing t = 0.

- \blacktriangleright Let $\mathcal M$ be an embedded submanifold of Euclidean space $\mathcal E$.
 - ▶ If \mathcal{M} is an open submanifold of \mathcal{E} , then $T_p\mathcal{M} = \mathcal{E}$.
 - ▶ Otherwise, $T_p\mathcal{M} = \ker(Dh(p))$ for any local defining function h at p.

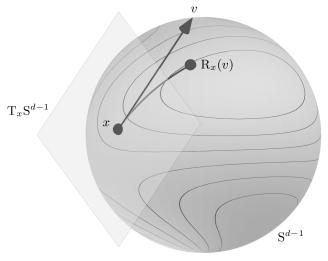
Tangent Space

- ▶ **Tangent space** $T_p\mathcal{M}$: set of all tangent vectors to \mathcal{M} at p
- ▶ The tangent space $T_p\mathcal{M}$ is a **vector space** of the same dimension as \mathcal{M} and can be equipped with an inner product $\langle \cdot, \cdot \rangle_p : T_p\mathcal{M} \times T_p\mathcal{M} \to \mathbb{R}$
- **Tangent bundle of** \mathcal{M} : disjoint union of the tangent spaces of \mathcal{M} :

$$T\mathcal{M} = \{(p, v) \mid p \in \mathcal{M}, v \in T_p \mathcal{M}\}$$



Unit Sphere



- $ightharpoonup \mathcal{S}^{d-1} := \left\{ \mathbf{x} \in \mathbb{R}^d : \mathbf{x}^ op \mathbf{x} = 1
 ight\}$
- $\blacktriangleright \ T_{\mathbf{x}}\mathcal{S}^{d-1} = \left\{ \mathbf{v} \in \mathbb{R}^d : \mathbf{x}^\top \mathbf{v} = 0 \right\}$

Lie Group

- \blacktriangleright A group is a set ${\cal G}$ with an associated composition operator \odot that satisfies:
 - ▶ Closure: $a \odot b \in \mathcal{G}$, $\forall a, b \in \mathcal{G}$
 - ▶ **Identity element**: $\exists e \in \mathcal{G}$ (unique) such that $e \odot a = a \odot e = a$
 - ▶ Inverse element: for $a \in \mathcal{G}$, $\exists b \in G$ (unique) such that $a \odot b = b \odot a = e$
 - ▶ Associativity: $(a \odot b) \odot c = a \odot (b \odot c)$, $\forall a, b, c, \in \mathcal{G}$
- ► The notion of a group is weaker than a vector space because it does not require commutativity and does not have scalar multiplication and its associated axioms (compatibility, identity, inverse, distributivity)
- ▶ **General linear group** $GL(n; \mathbb{C})$: the set of all invertible matrices in $\mathbb{C}^{n \times n}$
- ▶ A **subgroup** of group \mathcal{G} is a subset that contains the identity of \mathcal{G} and is closed under group composition and inverse
- ▶ Lie group: set $\mathcal G$ that is both a smooth manifold and a group with smooth composition $\odot: \mathcal G \times \mathcal G \to \mathcal G$ and inverse $(\cdot)^{-1}: \mathcal G \to \mathcal G$
- ▶ Matrix Lie group: subgroup of $GL(n; \mathbb{C})$ and embedded submanifold of $\mathbb{C}^{n \times n}$

Lie Algebra

- ▶ A **Lie algebra** is a vector space $\mathfrak g$ over some field $\mathcal F$ with a binary operation, $[\cdot,\cdot]:\mathfrak g\times\mathfrak g\to\mathfrak g$, called a **Lie bracket**
- ▶ For all $X, Y, Z \in \mathfrak{g}$ and $a, b \in \mathcal{F}$, the Lie bracket $[\cdot, \cdot]$: $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ satisfies:

bilinearity :
$$[aX + bY, Z] = a[X, Z] + b[Y, Z]$$

$$[Z, aX + bY] = a[Z, X] + b[Z, Y]$$

skew-symmetry :
$$[X, Y] = -[Y, X]$$

Jacobi identity:
$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0$$

▶ The **adjoint** $ad_X : \mathfrak{g} \to \mathfrak{g}$ of a Lie algebra at $X \in \mathfrak{g}$ is:

$$ad_X(Y) = [X, Y]$$

ightharpoonup Example: \mathbb{R}^3 with $[\mathbf{x},\mathbf{y}]=\mathbf{x}\times\mathbf{y}$ is a Lie algebra

Lie Group and Lie Algebra

- ightharpoonup Each matrix Lie group ${\cal G}$ has an associated Lie algebra ${\mathfrak g}$
- ▶ The Lie algebra $\mathfrak g$ of a matrix Lie group $\mathcal G$ is the set of all matrices X whose matrix exponential $\exp(tX)$ is in $\mathcal G$ for all $t \in \mathbb R$:

$$\mathfrak{g} = \{X \mid \exp(tX) \in \mathcal{G}, \ \forall t \in \mathbb{R}\}$$

- \triangleright The Lie algebra g of a Lie group \mathcal{G} is the tangent space at identity $T_I \mathcal{G}$
 - For $X \in \mathfrak{g}$, let $\gamma(t) = \exp(tX)$ such that $\gamma(0) = I$ and $\gamma'(0) = X$
- ▶ The **adjoint** $Ad_A : \mathfrak{g} \to \mathfrak{g}$ of a Lie group \mathcal{G} at $A \in \mathcal{G}$ is:

$$Ad_A(Y) = AYA^{-1}$$

▶ The algebra adjoint ad_X is the derivative of the group adjoint Ad_A at A = I:

$$Ad_{\exp(X)} = \exp(ad_X)$$
 $ad_X = \frac{d}{dt}Ad_{\exp(tX)}\Big|_{t=0}$

- ▶ Let \mathcal{G} be a matrix Lie group with Lie algebra \mathfrak{g} . For $X, Y \in \mathfrak{g}$:
 - \blacktriangleright $tX \in \mathfrak{g}$ for all $t \in \mathbb{R}$
 - $X + Y \in \mathfrak{g}$
 - ightharpoonup $ad_X(Y) = [X, Y] = XY YX \in \mathfrak{g}$
 - $ightharpoonup Ad_A(X) = AXA^{-1} \in \mathfrak{g} \text{ for all } A \in \mathcal{G}$

Lie Group and Lie Algebra

▶ The **exponential** and **logarithm** maps relate a matrix Lie group $\mathcal G$ with its Lie algebra $\mathfrak g$:

$$\exp(A) = \sum_{n=0}^{\infty} \frac{1}{n!} A^n$$
 $\log(A) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (A - I)^n$

▶ **Theorem**: Let $\mathcal{V}_{\epsilon} = \{X \in \mathbb{C}^{n \times n} \mid \|X\| < \epsilon\}$ and $\mathcal{U}_{\epsilon} = \exp(\mathcal{V}_{\epsilon})$. Suppose \mathcal{G} is a matrix Lie group with Lie algebra \mathfrak{g} . Then, there exists $\epsilon \in (0, \log 2)$ such that for all $A \in \mathcal{U}_{\epsilon}$, $A \in \mathcal{G}$ if and only if $\log(A) \in \mathfrak{g}$.

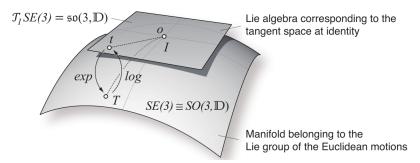


Figure: SE(3) and corresponding Lie algebra $\mathfrak{se}(3)$ as tangent space at identity

Outline

Manifolds and Matrix Lie Groups

SO(3) Geometry

SE(3) Geometry

Manifold Optimization

Special Orthogonal Lie Group SO(3)

- \triangleright $SO(3) := \{ R \in \mathbb{R}^{3 \times 3} \mid R^{\top}R = I, \det(R) = 1 \}$
- \triangleright SO(3) is a group:
 - ▶ Closure: $R_1R_2 \in SO(3)$

 - ► Identity: $I \in SO(3)$ ► Inverse: $R^{-1} = R^{\top} \in SO(3)$
 - ▶ **Associativity**: $(R_1R_2)R_3 = R_1(R_2R_3)$ for all $R_1, R_2, R_3 \in SO(3)$
- \triangleright SO(3) is an embedded submanifold of $\mathbb{R}^{3\times3}$ with local defining function:

$$h(R) = (R^{\top}R - I, \det(R) - 1)$$

 \triangleright The tangent space of SO(3) is:

$$T_RSO(3) = \ker(Dh(R)) = \left\{ V \in \mathbb{R}^{3 \times 3} \mid R^\top V + V^\top R = 0, \ \operatorname{tr}(R^\top V) = 0 \right\}$$

► SO(3) is a matrix Lie group

Special Orthogonal Lie Algebra $\mathfrak{so}(3)$

▶ The **Lie algebra** of SO(3) is the space of skew-symmetric matrices:

$$\mathfrak{so}(3) = T_I SO(3) = \{\hat{\boldsymbol{\theta}} \in \mathbb{R}^{3 \times 3} \mid \boldsymbol{\theta} \in \mathbb{R}^3\}$$

▶ The **Lie bracket** of $\mathfrak{so}(3)$ is:

$$[\hat{oldsymbol{ heta}}_1,\hat{oldsymbol{ heta}}_2]=\hat{oldsymbol{ heta}}_1\hat{oldsymbol{ heta}}_2-\hat{oldsymbol{ heta}}_2\hat{oldsymbol{ heta}}_1=\left(\hat{oldsymbol{ heta}}_1oldsymbol{ heta}_2
ight)^\wedge\in\mathfrak{so}(3)$$

▶ The elements $R \in SO(3)$ are related to the elements $\hat{\theta} \in \mathfrak{so}(3)$ through the exponential and logarithm maps:

$$R = \exp(\hat{\theta}) = \sum_{n=0}^{\infty} \frac{1}{n!} (\hat{\theta})^n = I + \left(\frac{\sin \|\theta\|}{\|\theta\|}\right) \hat{\theta} + \left(\frac{1 - \cos \|\theta\|}{\|\theta\|^2}\right) \hat{\theta}^2$$
$$\hat{\theta} = \log(R) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (R - I)^n = \frac{\|\theta\|}{2 \sin \|\theta\|} (R - R^\top)$$
$$\|\theta\| = \arccos\left(\frac{\operatorname{tr}(R) - 1}{2}\right)$$

Distance in SO(3)

- ▶ What is the distance between two rotations $R_1, R_2 \in SO(3)$?
- ▶ Inner product on so(3):

$$\langle \hat{\pmb{\theta}}_1, \hat{\pmb{\theta}}_2 \rangle = \frac{1}{2} \operatorname{tr} \left(\hat{\pmb{\theta}}_1^\top \hat{\pmb{\theta}}_2 \right) = \pmb{\theta}_1^\top \pmb{\theta}_2$$

▶ **Geodesic distance on** SO(3): the length of the shortest path between R_1 and R_2 on the SO(3) manifold is equal to the rotation angle $\|\theta_{12}\|_2$ of the axis-angle representation θ_{12} of the relative rotation $R_{12} = R_1^\top R_2$:

$$\begin{aligned} \boldsymbol{\theta}_{12} &= \log \left(R_1^\top R_2 \right)^\vee \\ d_{\boldsymbol{\theta}}(R_1, R_2) &= \sqrt{\langle \hat{\boldsymbol{\theta}}_{12}, \hat{\boldsymbol{\theta}}_{12} \rangle} = \left\| \boldsymbol{\theta}_{12} \right\|_2 = \left| \operatorname{\mathsf{arccos}} \left(\frac{\operatorname{\mathsf{tr}}(R_1^\top R_2) - 1}{2} \right) \right| \end{aligned}$$

Distance in SO(3)

► Chordal distance on SO(3):

$$d_c(R_1,R_2) = \|R_1 - R_2\|_F = \sqrt{\operatorname{tr}\left((R_1 - R_2)^\top (R_1 - R_2)\right)} = 2\sqrt{2} \left| \sin\left(\frac{\|\theta_{12}\|}{2}\right) \right|$$

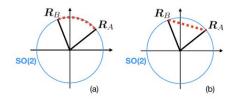


Figure: (a) Geodesic and (b) chordal distance in SO(2)

Baker-Campbell-Hausdorff Formulas

▶ The **left Jacobian** of *SO*(3) is the matrix:

$$J_L(\theta) := \sum_{n=0}^{\infty} \frac{1}{(n+1)!} \left(\hat{\theta}\right)^n \qquad \qquad R = I + \hat{\theta} J_L(\theta)$$

▶ The **right Jacobian** of SO(3) is the matrix:

$$J_R(\boldsymbol{\theta}) := \sum_{n=0}^{\infty} \frac{1}{(n+1)!} \left(-\hat{\boldsymbol{\theta}}\right)^n \qquad J_R(\boldsymbol{\theta}) = J_L(-\boldsymbol{\theta}) = J_L(\boldsymbol{\theta})^{\top} = R^{\top} J_L(\boldsymbol{\theta})$$

Baker-Campbell-Hausdorff Formulas: the SO(3) Jacobians relate small perturbations $\delta\theta$ in $\mathfrak{so}(3)$ to small perturbations in SO(3):

$$\begin{split} \exp\left((\boldsymbol{\theta} + \delta\boldsymbol{\theta})^{\wedge}\right) &\approx \exp(\hat{\boldsymbol{\theta}}) \exp\left((J_{R}(\boldsymbol{\theta})\delta\boldsymbol{\theta})^{\wedge}\right) \\ &\approx \exp\left((J_{L}(\boldsymbol{\theta})\delta\boldsymbol{\theta})^{\wedge}\right) \exp(\hat{\boldsymbol{\theta}}) \end{split}$$

$$\log(\exp(\hat{m{ heta}}_1)\exp(\hat{m{ heta}}_2))^ee pprox egin{cases} J_L(m{ heta}_2)^{-1}m{ heta}_1 + m{ heta}_2 & ext{if } m{ heta}_1 ext{ is small} \ m{ heta}_1 + J_R(m{ heta}_1)^{-1}m{ heta}_2 & ext{if } m{ heta}_2 ext{ is small} \end{cases}$$

Closed-forms of the SO(3) Jacobians

$$J_{L}(\theta) = I + \left(\frac{1 - \cos\|\theta\|}{\|\theta\|^{2}}\right)\hat{\theta} + \left(\frac{\|\theta\| - \sin\|\theta\|}{\|\theta\|^{3}}\right)\hat{\theta}^{2} \approx I + \frac{1}{2}\hat{\theta}$$
$$J_{L}(\theta)^{-1} = I - \frac{1}{2}\hat{\theta} + \left(\frac{1}{\|\theta\|^{2}} - \frac{1 + \cos\|\theta\|}{2\|\theta\|\sin\|\theta\|}\right)\hat{\theta}^{2} \approx I - \frac{1}{2}\hat{\theta}$$

$$J_R(\theta) = I - \left(\frac{1 - \cos\|\theta\|}{\|\theta\|^2}\right)\hat{\theta} + \left(\frac{\|\theta\| - \sin\|\theta\|}{\|\theta\|^3}\right)\hat{\theta}^2 \approx I - \frac{1}{2}\hat{\theta}$$
$$J_R(\theta)^{-1} = I + \frac{1}{2}\hat{\theta} + \left(\frac{1}{\|\theta\|^2} - \frac{1 + \cos\|\theta\|}{2\|\theta\|\sin\|\theta\|}\right)\hat{\theta}^2 \approx I + \frac{1}{2}\hat{\theta}$$

$$J_L(\boldsymbol{\theta})J_L(\boldsymbol{\theta})^T = I + \left(1 - 2\frac{1 - \cos\|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^2}\right)\hat{\boldsymbol{\theta}}^2 \succ 0$$
$$\left(J_L(\boldsymbol{\theta})J_L(\boldsymbol{\theta})^T\right)^{-1} = I + \left(1 - 2\frac{\|\boldsymbol{\theta}\|^2}{1 - \cos\|\boldsymbol{\theta}\|}\right)\hat{\boldsymbol{\theta}}^2$$

Integration in SO(3)

The geodesic distance between a rotation $R = \exp(\hat{\theta})$ and a small perturbation $\exp((\theta + \delta \theta)^{\wedge})$ can be approximated using the BCH formulas:

$$\log\left(\exp(\hat{\boldsymbol{\theta}})^{\top}\exp((\boldsymbol{\theta}+\delta\boldsymbol{\theta})^{\wedge})\right)^{\vee}\approx\log\left(R^{\top}R\exp\left((J_{R}(\boldsymbol{\theta})\delta\boldsymbol{\theta})^{\wedge}\right)\right)^{\vee}=J_{R}(\boldsymbol{\theta})\delta\boldsymbol{\theta}$$

▶ This allows to define an infinitesimal volume element:

$$dR = |\det(J_R(\theta))|d\theta = 2\left(\frac{1-\cos\|\theta\|}{\|\theta\|^2}\right)d\theta \qquad \det(J_R(\theta)) = \det(J_L(\theta))$$

Integrating functions of rotations can be carried out as follows:

$$\int_{SO(3)} f(R) dR = \int_{\|\boldsymbol{\theta}\| < \pi} f\left(\exp(\hat{\boldsymbol{\theta}})\right) |\det(J_R(\boldsymbol{\theta}))| d\boldsymbol{\theta}$$

Adjoint SO(3) Lie Group and Lie Algebra

- ▶ The adjoint operator $Ad_A : \mathfrak{g} \to \mathfrak{g}$ represents the elements A of a Lie group \mathcal{G} as linear transformations on the Lie algebra \mathfrak{g}
- ▶ The adjoint Ad_R at $R \in SO(3)$ transforms $\hat{\omega} \in \mathfrak{so}(3)$ from one coordinate frame (e.g., body frame) to another (e.g., world frame):

$$Ad_R(\hat{\boldsymbol{\omega}}) = R\hat{\boldsymbol{\omega}}R^{-1} = (R\boldsymbol{\omega})^{\wedge}$$

- ▶ The adjoint operator $Ad_R(\hat{\omega})$ is linear and can be represented as a matrix R acting on $\omega \in \mathbb{R}^3$
- ▶ The space of adjoint operators on SO(3) is a matrix Lie group $Ad(SO(3)) \cong SO(3)$ with associated Lie algebra $ad(\mathfrak{so}(3)) \cong \mathfrak{so}(3)$

Outline

Manifolds and Matrix Lie Groups

SO(3) Geometry

SE(3) Geometry

Manifold Optimization

Special Euclidean Lie Group SE(3)

- \triangleright SE(3) is a group:
 - $\qquad \qquad \textbf{Closure:} \ \ T_1T_2 = \begin{bmatrix} R_1 & \textbf{p}_1 \\ \textbf{0}^\top & 1 \end{bmatrix} \begin{bmatrix} R_2 & \textbf{p}_2 \\ \textbf{0}^\top & 1 \end{bmatrix} = \begin{bmatrix} R_1R_2 & R_1\textbf{p}_2 + \textbf{p}_1 \\ \textbf{0}^\top & 1 \end{bmatrix} \in SE(3)$
 - ▶ **Identity**: $I \in SE(3)$
 - ▶ Inverse: $\begin{bmatrix} R & \mathbf{p} \\ \mathbf{0}^\top & 1 \end{bmatrix}^{-1} = \begin{bmatrix} R^\top & -R^\top \mathbf{p} \\ \mathbf{0}^\top & 1 \end{bmatrix} \in SE(3)$
 - ▶ **Associativity**: $(T_1T_2)T_3 = T_1(T_2T_3)$ for all $T_1, T_2, T_3 \in SE(3)$
- ▶ SE(3) is an embedded submanifold of $\mathbb{R}^{4\times4}$
- ► SE(3) is a matrix Lie group

Special Euclidean Lie Algebra $\mathfrak{se}(3)$

▶ The **Lie algebra** of SE(3) is the space of twist matrices:

$$\mathfrak{se}(3) := T_I SE(3) = \left\{ \hat{\boldsymbol{\xi}} := \begin{bmatrix} \hat{\boldsymbol{\theta}} & \boldsymbol{\rho} \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{4 \times 4} \middle| \; \boldsymbol{\xi} = \begin{bmatrix} \boldsymbol{\rho} \\ \boldsymbol{\theta} \end{bmatrix} \in \mathbb{R}^6 \right\}$$

► The **Lie bracket** of se(3) is:

$$[\hat{\boldsymbol{\xi}}_1,\hat{\boldsymbol{\xi}}_2] = \hat{\boldsymbol{\xi}}_1\hat{\boldsymbol{\xi}}_2 - \hat{\boldsymbol{\xi}}_2\hat{\boldsymbol{\xi}}_1 = \begin{pmatrix} \hat{\boldsymbol{\xi}}_1 \boldsymbol{\xi}_2 \end{pmatrix}^{\wedge} \in \mathfrak{se}(3) \qquad \hat{\boldsymbol{\xi}} := \begin{bmatrix} \hat{\boldsymbol{\theta}} & \hat{\boldsymbol{\rho}} \\ 0 & \hat{\boldsymbol{\theta}} \end{bmatrix} \in \mathbb{R}^{6 \times 6}$$

▶ The elements $T \in SE(3)$ are related to the elements $\hat{\xi} \in \mathfrak{se}(3)$ through the exponential and logarithm maps:

$$T = \exp(\hat{\xi}) = \sum_{n=0}^{\infty} \frac{1}{n!} (\hat{\xi})^n$$
$$\hat{\xi} = \log(T) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (T - I)^n$$

Exponential Map from $\mathfrak{se}(3)$ **to** SE(3)

Exponential map exp : $\mathfrak{se}(3) \to SE(3)$: has closed-form expression obtained using $\hat{\boldsymbol{\xi}}^4 + \|\boldsymbol{\theta}\|^2 \hat{\boldsymbol{\xi}}^2 = 0$:

$$\begin{split} T &= \exp(\hat{\boldsymbol{\xi}}) = \begin{bmatrix} \exp(\hat{\boldsymbol{\theta}}) & J_L(\boldsymbol{\theta}) \boldsymbol{\rho} \\ \boldsymbol{0}^T & 1 \end{bmatrix} = \sum_{n=0}^{\infty} \frac{1}{n!} \hat{\boldsymbol{\xi}}^n = \\ &= I + \hat{\boldsymbol{\xi}} + \left(\frac{1 - \cos \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^2} \right) \hat{\boldsymbol{\xi}}^2 + \left(\frac{\|\boldsymbol{\theta}\| - \sin \|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^3} \right) \hat{\boldsymbol{\xi}}^3 \end{split}$$

- The exponential map is **surjective** but **not injective**, i.e., every element of SE(3) can be generated from multiple elements of $\mathfrak{se}(3)$
- **Logarithm map** log : SE(3) → $\mathfrak{se}(3)$: for any $T \in SE(3)$, there exists a (non-unique) $\xi \in \mathbb{R}^6$ such that:

$$\boldsymbol{\xi} = \begin{bmatrix} \boldsymbol{\rho} \\ \boldsymbol{\theta} \end{bmatrix} = \log(T)^{\vee} = \begin{cases} \boldsymbol{\theta} = \log(R)^{\vee}, \ \boldsymbol{\rho} = J_{L}^{-1}(\boldsymbol{\theta})\mathbf{p}, & \text{if } R \neq I, \\ \boldsymbol{\theta} = 0, \ \boldsymbol{\rho} = \mathbf{p}, & \text{if } R = I. \end{cases}$$

Distance in SE(3)

▶ Inner product on se(3):

$$\langle \hat{\boldsymbol{\xi}}_1, \hat{\boldsymbol{\xi}}_2 \rangle = \operatorname{tr} \left(\hat{\boldsymbol{\xi}}_1 \begin{bmatrix} \frac{1}{2} \boldsymbol{I} & \mathbf{0} \\ \mathbf{0}^\top & 1 \end{bmatrix} \hat{\boldsymbol{\xi}}_2^\top \right) = \boldsymbol{\xi}_1^\top \boldsymbol{\xi}_2$$

▶ **Distance on** SE(3): induced by the inner product on $\mathfrak{se}(3)$ evaluated at the vector representation $\hat{\boldsymbol{\xi}}_{12}$ of the relative pose $T_{12} = T_1^{-1}T_2$:

$$egin{aligned} m{\xi}_{12} &= \log(\,T_1^{-1}\,T_2)^ee \ d(\,T_1,\,T_2) &= \sqrt{\langle\hat{m{\xi}}_{12},\hat{m{\xi}}_{12}
angle} = \|m{\xi}_{12}\|_2 \end{aligned}$$

Baker-Campbell-Hausdorff Formulas

- ▶ Left Jacobian of SE(3): $\mathcal{J}_L(\xi) = \begin{bmatrix} J_L(\theta) & Q_L(\xi) \\ 0 & J_L(\theta) \end{bmatrix}$
- ▶ Right Jacobian of SE(3): $\mathcal{J}_R(\xi) = \begin{bmatrix} J_R(\theta) & Q_R(\xi) \\ 0 & J_R(\theta) \end{bmatrix}$
- **Baker-Campbell-Hausdorff Formulas**: the SE(3) Jacobians relate small perturbations $\delta \xi$ in $\mathfrak{se}(3)$ to small perturbations in SE(3):

$$\begin{split} \exp\left((\boldsymbol{\xi} + \delta \boldsymbol{\xi})^{\wedge}\right) &\approx \exp(\hat{\boldsymbol{\xi}}) \exp\left((\mathcal{J}_{R}(\boldsymbol{\xi})\delta \boldsymbol{\xi})^{\wedge}\right) \\ &\approx \exp\left((\mathcal{J}_{L}(\boldsymbol{\xi})\delta \boldsymbol{\xi})^{\wedge}\right) \exp(\hat{\boldsymbol{\xi}}) \end{split}$$

$$\log(\exp(\hat{\boldsymbol{\xi}}_1)\exp(\hat{\boldsymbol{\xi}}_2))^\vee \approx \begin{cases} \mathcal{J}_L(\boldsymbol{\xi}_2)^{-1}\boldsymbol{\xi}_1 + \boldsymbol{\xi}_2 & \text{if } \boldsymbol{\xi}_1 \text{ is small} \\ \boldsymbol{\xi}_1 + \mathcal{J}_R(\boldsymbol{\xi}_1)^{-1}\boldsymbol{\xi}_2 & \text{if } \boldsymbol{\xi}_2 \text{ is small} \end{cases}$$

Closed-forms of the SE(3) Jacobians

$$\begin{split} \mathcal{J}_{L}(\xi) &= \sum_{n=0}^{\infty} \frac{1}{(n+1)!} (\hat{\xi})^{n} = \begin{bmatrix} J_{L}(\theta) & Q_{L}(\xi) \\ 0 & J_{L}(\theta) \end{bmatrix} \\ &= I + \left(\frac{4 - \|\theta\| \sin \|\theta\| - 4 \cos \|\theta\|}{2\|\theta\|^{2}} \right) \hat{\xi} + \left(\frac{4\|\theta\| - 5 \sin \|\theta\| + \|\theta\| \cos \|\theta\|}{2\|\theta\|^{3}} \right) \hat{\xi}^{2} \\ &+ \left(\frac{2 - \|\theta\| \sin \|\theta\| - 2 \cos \|\theta\|}{2\|\theta\|^{4}} \right) \hat{\xi}^{3} + \left(\frac{2\|\theta\| - 3 \sin \|\theta\| + \|\theta\| \cos \|\theta\|}{2\|\theta\|^{5}} \right) \hat{\xi}^{4} \\ &\approx I + \frac{1}{2} \hat{\xi} \\ \\ \mathcal{J}_{L}(\xi)^{-1} &= \begin{bmatrix} J_{L}(\theta)^{-1} & -J_{L}(\theta)^{-1}Q_{L}(\xi)J_{L}(\theta)^{-1} \\ 0 & J_{L}(\theta)^{-1} \end{bmatrix} \approx I - \frac{1}{2} \hat{\xi} \\ \\ Q_{L}(\xi) &= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{1}{(n+m+2)!} \hat{\theta}^{n} \hat{\rho} \hat{\theta}^{m} \\ &= \frac{1}{2} \hat{\rho} + \left(\frac{\|\theta\| - \sin \|\theta\|}{\|\theta\|^{3}} \right) \left(\hat{\theta} \hat{\rho} + \hat{\rho} \hat{\theta} + \hat{\theta} \hat{\rho} \hat{\theta} \right) + \left(\frac{\|\theta\|^{2} + 2 \cos \|\theta\| - 2}{2\|\theta\|^{4}} \right) \left(\hat{\theta}^{2} \hat{\rho} + \hat{\rho} \hat{\theta}^{2} - 3 \hat{\theta} \hat{\rho} \hat{\theta} \right) \\ &+ \left(\frac{2\|\theta\| - 3 \sin \|\theta\| + \|\theta\| \cos \|\theta\|}{2\|\theta\|^{5}} \right) \left(\hat{\theta} \hat{\rho} \hat{\theta}^{2} + \hat{\theta}^{2} \hat{\rho} \hat{\theta} \right) \\ Q_{R}(\xi) &= Q_{L}(-\xi) = RQ_{L}(\xi) + (J_{L}(\theta)\rho)^{\wedge} RJ_{L}(\theta) \end{split}$$

Integration in SE(3)

The distance between a pose $T = \exp(\hat{\xi})$ and a small perturbation $\exp((\xi + \delta \xi)^{\wedge})$ can be approximated using the BCH formulas:

$$\log \left(\exp(\hat{\pmb{\xi}})^{-1} \exp((\pmb{\xi} + \delta \pmb{\xi})^\wedge) \right)^\vee \approx \mathcal{J}_{\mathcal{R}}(\pmb{\xi}) \delta \pmb{\xi}$$

This allows to define an infinitesimal volume element:

$$dT = |\det(\mathcal{J}_R(\boldsymbol{\xi}))| d\boldsymbol{\xi} = |\det(J_R(\boldsymbol{\theta}))|^2 d\boldsymbol{\xi} = 4\left(\frac{1-\cos\|\boldsymbol{\theta}\|}{\|\boldsymbol{\theta}\|^2}\right)^2 d\boldsymbol{\xi}$$

Integrating functions of poses can then be carried out as follows:

$$\int_{SE(3)} f(T)dT = \int_{\mathbb{R}^3, \|\boldsymbol{\theta}\| < \pi} f\left(\exp(\hat{\boldsymbol{\xi}})\right) |det(\mathcal{J}_R(\boldsymbol{\xi}))| d\boldsymbol{\xi}$$

Adjoint SE(3) Lie Group and Lie Algebra

▶ The adjoint Ad_T at $T \in SE(3)$ transforms $\hat{\zeta} \in \mathfrak{se}(3)$ from one coordinate frame to another:

$$Ad_{\mathcal{T}}(\hat{\zeta}) = \mathcal{T}\hat{\zeta}\mathcal{T}^{-1} = (\mathcal{T}\zeta)^{\wedge}$$

▶ The adjoint operator Ad_T is linear and can be represented as a matrix \mathcal{T} acting on $\boldsymbol{\zeta} \in \mathbb{R}^6$:

$$\mathcal{T} = \begin{bmatrix} R & \hat{\mathbf{p}}R \\ \mathbf{0} & R \end{bmatrix} \in \mathbb{R}^{6 \times 6}$$

▶ The space of adjoint operators on SE(3) is a matrix Lie group:

$$\textit{Ad}(\textit{SE}(3)) = \left\{ \mathcal{T} = \begin{bmatrix} R & \hat{\textbf{p}}R \\ \textbf{0} & R \end{bmatrix} \in \mathbb{R}^{6\times6} \;\middle|\; \mathcal{T} = \begin{bmatrix} R & \textbf{p} \\ \textbf{0}^\top & 1 \end{bmatrix} \in \textit{SE}(3) \right\}$$

▶ The Lie algebra associated with Ad(SE(3)) is:

$$ad(\mathfrak{se}(3)) = \left\{ \begin{matrix} \dot{\boldsymbol{\xi}} = \begin{bmatrix} \hat{\boldsymbol{\theta}} & \hat{\boldsymbol{\rho}} \\ \mathbf{0} & \hat{\boldsymbol{\theta}} \end{bmatrix} \in \mathbb{R}^{6 \times 6} \;\middle|\; \boldsymbol{\xi} = \begin{bmatrix} \boldsymbol{\rho} \\ \boldsymbol{\theta} \end{bmatrix} \in \mathbb{R}^6 \right\}$$

Rodrigues Formula for the Adjoint of SE(3)

Rodrigues Formula: using $(\mathring{\boldsymbol{\xi}})^5 + 2\|\boldsymbol{\theta}\|^2 (\mathring{\boldsymbol{\xi}})^3 + \|\boldsymbol{\theta}\|^4 \mathring{\boldsymbol{\xi}} = 0$ we can obtain a direct expression of $\mathcal{T} \in Ad(SE(3))$ in terms of $\boldsymbol{\xi} = \begin{bmatrix} \boldsymbol{\rho} \\ \boldsymbol{\theta} \end{bmatrix} \in \mathbb{R}^6$:

$$\mathcal{T} = Ad(T) = \exp\left(\frac{\dot{\xi}}{\xi}\right) = \begin{bmatrix} \exp(\hat{\theta}) & (J_L(\theta)\rho)^{\wedge} \exp(\hat{\theta}) \\ \mathbf{0} & \exp(\hat{\theta}) \end{bmatrix} = \sum_{n=0}^{\infty} \frac{1}{n!} (\hat{\xi})^n$$

$$= I + \left(\frac{3\sin\|\theta\| - \|\theta\|\cos\|\theta\|}{2\|\theta\|}\right) \dot{\xi} + \left(\frac{4 - \|\theta\|\sin\|\theta\| - 4\cos\|\theta\|}{2\|\theta\|^2}\right) (\dot{\xi})^2$$

$$+ \left(\frac{\sin\|\theta\| - \|\theta\|\cos\|\theta\|}{2\|\theta\|^3}\right) (\dot{\xi})^3 + \left(\frac{2 - \|\theta\|\sin\|\theta\| - 2\cos\|\theta\|}{2\|\theta\|^4}\right) (\dot{\xi})^4$$

The exponential map is **surjective** but **not injective**, i.e., every element of Ad(SE(3)) can be generated from multiple elements of $ad(\mathfrak{se}(3))$

Distance in Ad(SE(3))

▶ Inner product on ad(se(3)):

$$\langle \overset{\boldsymbol{\wedge}}{\boldsymbol{\xi}}_1,\overset{\boldsymbol{\wedge}}{\boldsymbol{\xi}}_2 \rangle = \operatorname{tr} \left(\overset{\boldsymbol{\wedge}}{\boldsymbol{\xi}}_1 \begin{bmatrix} \frac{1}{4}\boldsymbol{I} & \mathbf{0} \\ \mathbf{0} & \frac{1}{2}\boldsymbol{I} \end{bmatrix} \overset{\boldsymbol{\wedge}}{\boldsymbol{\xi}}_2^\top \right) = \boldsymbol{\xi}_1^\top \boldsymbol{\xi}_2$$

▶ **Distance on** Ad(SE(3)): induced by the inner product on $ad(\mathfrak{se}(3))$ evaluated at the vector representation $\overset{\wedge}{\boldsymbol{\xi}}_{12}$ of $\mathcal{T}_{12} = \mathcal{T}_1^{-1}\mathcal{T}_2$:

$$\begin{aligned} \boldsymbol{\xi}_{12} &= \log \left(\mathcal{T}_1^{-1} \mathcal{T}_2 \right)^{\curlyvee} \\ d(\mathcal{T}_1, \mathcal{T}_2) &= \sqrt{\langle \dot{\hat{\boldsymbol{\xi}}}_{12}, \dot{\hat{\boldsymbol{\xi}}}_{12} \rangle} = \|\boldsymbol{\xi}_{12}\|_2 \end{aligned}$$

Pose Lie Groups and Lie Algebras

Lie algebra Lie group
$$4 \times 4 \qquad \boldsymbol{\xi}^{\wedge} \in \mathfrak{se}(3) \xrightarrow{\exp} \quad \mathbf{T} \in SE(3)$$

$$\downarrow \mathrm{ad} \qquad \qquad \downarrow \mathrm{Ad}$$

$$6 \times 6 \qquad \boldsymbol{\xi}^{\wedge} \in \mathrm{ad}(\mathfrak{se}(3)) \xrightarrow{\exp} \quad \boldsymbol{\mathcal{T}} \in \mathrm{Ad}(SE(3))$$

$$\mathcal{T} = Ad \underbrace{\left(\exp(\hat{\xi})\right)}_{\mathcal{T}} = \exp \underbrace{\left(ad(\hat{\xi})\right)}_{\hat{\xi}} \qquad \xi = \begin{bmatrix} \rho \\ \theta \end{bmatrix} \in \mathbb{R}^{6}$$

$$= Ad \left(\exp \left(\begin{bmatrix} \hat{\theta} & \rho \\ \mathbf{0}^{T} & 0 \end{bmatrix}\right)\right) = \exp \left(ad \left(\begin{bmatrix} \hat{\theta} & \rho \\ \mathbf{0}^{T} & 0 \end{bmatrix}\right)\right)$$

$$= Ad \left(\begin{bmatrix} \exp(\hat{\theta}) & J_{L}(\theta)\rho \\ \mathbf{0}^{T} & 1 \end{bmatrix}\right) = \exp \left(\begin{bmatrix} \hat{\theta} & \hat{\rho} \\ \mathbf{0} & \hat{\theta} \end{bmatrix}\right)$$

$$= \begin{bmatrix} \exp(\hat{\theta}) & (J_{L}(\theta)\rho)^{\wedge} \exp(\hat{\theta}) \\ \mathbf{0} & \exp(\hat{\theta}) \end{bmatrix}$$

$\mathfrak{se}(3)$ Identities

$$\hat{\boldsymbol{\xi}} = \begin{bmatrix} \hat{\boldsymbol{\rho}} \\ \boldsymbol{\theta} \end{bmatrix} = \begin{bmatrix} \hat{\boldsymbol{\theta}} & \boldsymbol{\rho} \\ \mathbf{0}^{\top} & 0 \end{bmatrix} \in \mathbb{R}^{4 \times 4} \qquad \hat{\boldsymbol{\xi}} = ad(\hat{\boldsymbol{\xi}}) = \begin{bmatrix} \hat{\boldsymbol{\rho}} \\ \boldsymbol{\theta} \end{bmatrix} = \begin{bmatrix} \hat{\boldsymbol{\theta}} & \hat{\boldsymbol{\rho}} \\ \mathbf{0} & \hat{\boldsymbol{\theta}} \end{bmatrix} \in \mathbb{R}^{6 \times 6}$$

$$\hat{\boldsymbol{\zeta}} \boldsymbol{\xi} = -\hat{\boldsymbol{\xi}} \boldsymbol{\zeta} \qquad \qquad \boldsymbol{\zeta} \in \mathbb{R}^{6}$$

$$\hat{\boldsymbol{\xi}} \boldsymbol{\xi} = 0$$

$$\hat{\boldsymbol{\xi}}^{4} + (\mathbf{s}^{\top}\mathbf{s}) \hat{\boldsymbol{\xi}}^{2} = 0 \qquad \qquad \mathbf{s} \in \mathbb{R}^{3}$$

$$\left(\hat{\boldsymbol{\xi}} \right)^{5} + 2 (\mathbf{s}^{\top}\mathbf{s}) \left(\hat{\boldsymbol{\xi}} \right)^{3} + (\mathbf{s}^{\top}\mathbf{s})^{2} \hat{\boldsymbol{\xi}} = 0$$

$$\mathbf{m}^{\odot} := \begin{bmatrix} \mathbf{s} \\ \boldsymbol{\lambda} \end{bmatrix}^{\odot} = \begin{bmatrix} \boldsymbol{\lambda}I & -\hat{\mathbf{s}} \\ \mathbf{0}^{\top} & \mathbf{0}^{\top} \end{bmatrix} \in \mathbb{R}^{4 \times 6} \qquad \mathbf{m}^{\odot} := \begin{bmatrix} \mathbf{s} \\ \boldsymbol{\lambda} \end{bmatrix}^{\odot} = \begin{bmatrix} \mathbf{0} & \mathbf{s} \\ -\hat{\mathbf{s}} & \mathbf{0} \end{bmatrix} \in \mathbb{R}^{6 \times 4}$$

$$\hat{\boldsymbol{\xi}} \mathbf{m} = \mathbf{m}^{\odot} \boldsymbol{\xi} \qquad \qquad \mathbf{m}^{\top} \hat{\boldsymbol{\xi}} = \boldsymbol{\xi}^{\top} \mathbf{m}^{\odot}$$

SE(3) Identities

$$T = \exp\left(\hat{\boldsymbol{\xi}}\right) = \begin{bmatrix} \exp\left(\hat{\boldsymbol{\theta}}\right) & J_{L}(\boldsymbol{\theta})\boldsymbol{\rho} \\ \mathbf{0}^{T} & 1 \end{bmatrix} \qquad \det(T) = 1 \\ \operatorname{tr}(T) = 2\cos\|\boldsymbol{\theta}\| + 2$$

$$T = Ad(T) = \exp\left(\hat{\boldsymbol{\xi}}\right) = \begin{bmatrix} \exp\left(\hat{\boldsymbol{\theta}}\right) & (J_{L}(\boldsymbol{\theta})\boldsymbol{\rho})^{\wedge} \exp\left(\hat{\boldsymbol{\theta}}\right) \\ \mathbf{0} & \exp\left(\hat{\boldsymbol{\theta}}\right) \end{bmatrix}$$

$$T\hat{\boldsymbol{\xi}} = \hat{\boldsymbol{\xi}}T$$

$$T\boldsymbol{\xi} = \boldsymbol{\xi} \qquad \qquad T\hat{\boldsymbol{\xi}} = \hat{\boldsymbol{\xi}}T$$

$$(T\boldsymbol{\zeta})^{\wedge} = T\hat{\boldsymbol{\zeta}}T^{-1} \qquad (\hat{T}\boldsymbol{\zeta}) = \hat{T}\hat{\boldsymbol{\zeta}}T^{-1} \qquad \boldsymbol{\zeta} \in \mathbb{R}^{6}$$

$$\exp\left((T\boldsymbol{\zeta})^{\wedge}\right) = T\exp\left(\hat{\boldsymbol{\zeta}}\right)T^{-1} \qquad \exp\left((\hat{T}\boldsymbol{\zeta})\right) = T\exp\left(\hat{\boldsymbol{\zeta}}\right)T^{-1}$$

$$(T\mathbf{m})^{\odot} = T\mathbf{m}^{\odot}T^{-1} \qquad ((T\mathbf{m})^{\odot})^{T}(T\mathbf{m})^{\odot} = T^{-T}(\mathbf{m}^{\odot})^{T}\mathbf{m}^{\odot}T^{-1}$$

Outline

Manifolds and Matrix Lie Groups

SO(3) Geometry

SE(3) Geometry

Manifold Optimization

Riemannian Manifold

- **Riemannian manifold**: a smooth manifold \mathcal{M} equipped with a (Riemannian) metric $\langle \cdot, \cdot \rangle_p$: $T_p \mathcal{M} \times T_p \mathcal{M} \to \mathbb{R}$ that varies smoothly with p
- Riemannian manifolds allow generalizing the notion of Euclidean distance to curved surfaces
- ▶ The shortest path between two points in Euclidean space is a straight line
- The shortest path between two points on a Riemannian manifold $\mathcal M$ is a **geodesic**, i.e., the shortest continuous curve on $\mathcal M$ connecting the two points
- ▶ Smooth manifold function: Let $\mathcal N$ be a smooth n-manifold and $\mathcal M$ be a smooth m-manifold. A function $f:\mathcal N\to\mathcal M$ is smooth at $p\in\mathcal N$ if, for any charts $(\mathcal U,\phi)$ around p and $(\mathcal V,\psi)$ around f(p) with $f(\mathcal U)\subseteq\mathcal V$, its coordinate representation $\psi\circ f\circ\phi^{-1}:\mathbb R^n\to\mathbb R^m$ is smooth at $\phi(p)$

Riemannian Gradient

- ▶ A **vector field** on a manifold \mathcal{M} is a map $V : \mathcal{M} \to T\mathcal{M}$ such that $V(p) \in T_p\mathcal{M}$ for all $p \in \mathcal{M}$
- ▶ Riemannian gradient: Let $f: \mathcal{M} \to \mathbb{R}$ be smooth on a Riemannian manifold \mathcal{M} . The Riemannian gradient of f is a vector field grad $f: \mathcal{M} \to T\mathcal{M}$ uniquely defined by:

$$Df(p)[v] = \langle \operatorname{grad} f(p), v \rangle_p, \qquad \forall (p, v) \in TM$$

- ▶ A **retraction** on a manifold \mathcal{M} is a smooth map $R: T\mathcal{M} \to \mathcal{M}$ such that each curve $\gamma(t) = R_p(tv)$ satisfies $\gamma(0) = p$ and $\gamma'(0) = v$ for $(p, v) \in T\mathcal{M}$
- Let $f: \mathcal{M} \to \mathbb{R}$ be a smooth function on a Riemannian manifold \mathcal{M} equipped with a retraction R. Then:

$$\operatorname{grad} f(p) = \nabla_{v} f(R_{p}(v))|_{v=0}$$

Relationship Between Riemannian and Euclidean Gradient

- Let $\mathcal M$ be a Riemannian manifold with metric $\langle\cdot,\cdot\rangle_p$ embedded in Euclidean space $\mathcal E$ with metric $\langle\cdot,\cdot\rangle$
- ▶ Orthogonal projection to $T_p\mathcal{M}$: linear map $\Pi_p: \mathcal{E} \to T_p\mathcal{M}$ that satisfies:
- ▶ Let $f: \mathcal{E} \to \mathbb{R}$ be a smooth function. Since its Euclidean gradient $\nabla f(p)$ is a vector in \mathcal{E} and $T_p\mathcal{M}$ is a subspace of \mathcal{E} , there is a unique decomposition:

$$\nabla f(p) = \nabla f(p)_{\parallel} + \nabla f(p)_{\perp}$$

where
$$\nabla f(p)_{\parallel} = \Pi_p(\nabla f(p)) \in T_p\mathcal{M}$$
 and $\langle \nabla f(p)_{\perp}, v \rangle = 0$ for all $v \in T_p\mathcal{M}$

► Relationship between Riemannian and Euclidean gradient:

$$\langle \mathsf{grad}\, f(p), v \rangle_p = \mathsf{D} f(p)[v] = \langle \nabla f(p)_\parallel, v \rangle = \langle \Pi_p(\nabla f(p)), v \rangle$$

Example: Riemannian Gradient in SO(n) using Projection

- ▶ SO(n) is a Riemannian manifold with metric $\langle X, Y \rangle_R = \frac{1}{2} \operatorname{tr} (X^\top Y)$ for $X, Y \in \mathfrak{so}(n)$
- ▶ SO(n) is embedded in Euclidean space $\mathbb{R}^{n \times n}$ with metric $\langle X, Y \rangle = \operatorname{tr}(X^\top Y)$ for $X, Y \in \mathbb{R}^{n \times n}$
- ▶ The tangent space to SO(n) at R is: $T_RSO(n) = \{R\hat{\omega} \mid \hat{\omega} \in \mathfrak{so}(n)\}$
- ▶ The orthogonal projection to $T_RSO(n)$ can be identified as:

$$\Pi_R(U) = R\frac{1}{2} \left(R^\top U - U^\top R \right)$$

▶ The Riemannian gradient of a smooth function $f : \mathbb{R}^{n \times n} \to \mathbb{R}$ is related to its Euclidean gradient as:

$$\langle \operatorname{grad} f(R), \hat{\omega} \rangle_{R} = \langle \Pi_{R}(\nabla f(R)), \hat{\omega} \rangle$$

$$\Rightarrow \operatorname{grad} f(R) = 2\Pi_{R}(\nabla f(R))$$

$$= R(R^{\top} \nabla f(R) - \nabla f(R)^{\top} R)$$

$$= \nabla f(R) - R \nabla f(R)^{\top} R$$

Riemannian Gradient Descent

Consider an optimization problem with smooth objective function $f: \mathcal{M} \to \mathbb{R}$ defined on a Riemannian manifold \mathcal{M} :

$$\min_{x \in \mathcal{M}} f(x)$$

▶ Riemannian gradient descent: given $x_0 \in \mathcal{M}$ and retraction R on \mathcal{M} :

$$x_{k+1} = R_{x_k} \left(-\alpha_k \operatorname{grad} f(x_k) \right)$$

where the step size α_k is obtained via line search:

$$\alpha_k \in \operatorname*{arg\,min}_{\alpha>0} f(R_{\mathbf{x}_k}(-\alpha \operatorname{grad} f(\mathbf{x}_k)))$$

Riemannian Gradient Descent Convergence

Let $f: \mathcal{M} \to \mathbb{R}$ be smooth and bounded below, i.e., $f(x) \ge b$ for some $b \in \mathbb{R}$ and all $x \in \mathcal{M}$. Let the step size α_k ensure sufficient cost decrease for constant c > 0:

$$f(x_k) - f(x_{k+1}) \ge c \|\operatorname{grad} f(x_k)\|_2^2$$
.

Then,

$$\lim_{k\to\infty}\|\operatorname{grad} f(x_k)\|=0.$$

Lie Group Gradient Descent

- ightharpoonup Consider min_x f(x)
- ▶ Gradient descent in \mathbb{R}^d : $\mathbf{x}_{k+1} = \mathbf{x}_k \alpha_k \nabla f(\mathbf{x}_k)$
- ▶ The gradient of *f* can be identified from the first-order Taylor series:

$$f(\mathbf{x} + \delta \mathbf{x}) \approx f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} \delta \mathbf{x}$$

- ▶ Consider $\min_{p \in \mathcal{G}} f(p)$
- ▶ On a matrix Lie group $\mathcal G$ with Lie algebra $\mathfrak g$, the exponential map $R_p(v) = p \exp(v)$ is a retraction that can be used to define p + v for $p \in \mathcal G$ and $v \in \mathfrak g$
- ▶ Gradient descent on \mathcal{G} : $p_{k+1} = p_k \exp(-\alpha_k \operatorname{grad} f(p_k))$
- ▶ The Riemannian gradient of $f: \mathcal{G} \to \mathbb{R}$ can be identified from:

$$f(p \exp(v)) \approx f(p) + \langle \operatorname{grad} f(p), v \rangle_p \qquad (p, v) \in T\mathcal{G}$$

Example: Gradient Descent in *SO*(3)

- ► Consider $f(R, \mathbf{x}) = \mathbf{x}^{\top} R^{\top} A R \mathbf{x}$
- ► Euclidean gradient with respect to **x** using Taylor series:

$$f(R, \mathbf{x} + \delta \mathbf{x}) = (\mathbf{x} + \delta \mathbf{x})^{\top} R^{\top} A R (\mathbf{x} + \delta \mathbf{x})$$

$$= \mathbf{x}^{\top} R^{\top} A R \mathbf{x} + \mathbf{x}^{\top} R^{\top} A R \delta \mathbf{x} + \delta \mathbf{x}^{\top} R^{\top} A R \mathbf{x} + o(\|\delta \mathbf{x}\|_{2}^{2})$$

$$\approx f(R, \mathbf{x}) + \underbrace{\mathbf{x}^{\top} R^{\top} (A + A^{\top}) R}_{\nabla_{\mathbf{x}} f^{\top}} \delta \mathbf{x}$$

$$\Rightarrow \nabla_{\mathbf{x}} f(R, \mathbf{x}) = R^{\top} (A + A^{\top}) R \mathbf{x}$$

Verify using the product rule:

$$\frac{d}{d\mathbf{x}}f(R,\mathbf{x}) = \mathbf{x}^{\top}R^{\top}AR\frac{d\mathbf{x}}{d\mathbf{x}} + \mathbf{x}^{\top}R^{\top}A^{\top}R\frac{d\mathbf{x}}{d\mathbf{x}}
= \mathbf{x}^{\top}R^{\top}(A+A^{\top})R
\Rightarrow \nabla_{\mathbf{x}}f(R,\mathbf{x}) = \left[\frac{d}{d\mathbf{x}}f(R,\mathbf{x})\right]^{\top} = R^{\top}(A+A^{\top})R\mathbf{x}$$

• Gradient descent: $\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k R^{\top} (A + A^{\top}) R \mathbf{x}_k$

Example: Gradient Descent in SO(3)

- ► Consider $f(R, \mathbf{x}) = \mathbf{x}^{\top} R^{\top} A R \mathbf{x}$
- ▶ Riemannian gradient with respect to *R* using Taylor series:

$$f(R \exp(\hat{\psi}), \mathbf{x}) = \mathbf{x}^{\top} \left(R \exp(\hat{\psi}) \right)^{\top} AR \exp(\hat{\psi}) \mathbf{x}$$

$$\approx \mathbf{x}^{\top} (I + \hat{\psi}^{\top}) R^{\top} AR (I + \hat{\psi}) \mathbf{x}$$

$$= f(R, \mathbf{x}) + \mathbf{x}^{\top} R^{\top} AR \hat{\psi} \mathbf{x} + \mathbf{x}^{\top} \hat{\psi}^{\top} R^{\top} AR \mathbf{x} + o(\|\psi\|_{2}^{2})$$

$$\approx f(R, \mathbf{x}) - \mathbf{x}^{\top} R^{\top} AR \hat{\mathbf{x}} \psi + (\hat{\psi} \mathbf{x})^{\top} R^{\top} AR \mathbf{x}$$

$$= f(R, \mathbf{x}) - \mathbf{x}^{\top} R^{\top} AR \hat{\mathbf{x}} \psi - \psi^{\top} \hat{\mathbf{x}}^{\top} R^{\top} AR \mathbf{x}$$

$$= f(R, \mathbf{x}) \underbrace{-\mathbf{x}^{\top} R^{\top} (A + A^{\top}) R \hat{\mathbf{x}}}_{(\text{grad } f^{\vee})^{\top}} \psi$$

$$\Rightarrow \text{grad } f(R, \mathbf{x}) = (\hat{\mathbf{x}} R^{\top} (A + A^{\top}) R \mathbf{x})^{\wedge}$$

▶ Riemannian gradient descent: $R_{k+1} = R_k \exp\left(-\alpha_k \left(\hat{\mathbf{x}} R_k^\top (A + A^\top) R_k \mathbf{x}\right)^{\wedge}\right)$

Example: Gradient Descent in *SO*(3)

- ► Consider $f(R, \mathbf{x}) = \mathbf{x}^{\top} R^{\top} A R \mathbf{x}$
- ► Euclidean gradient with respect to *R*:

$$abla_R f(R, \mathbf{x}) = (A + A^{ op}) R \mathbf{x} \mathbf{x}^{ op}$$

Riemannian gradient with respect to R using projection: $\operatorname{grad} f(R, \mathbf{x}) = 2\Pi_R(\nabla_R f(R, \mathbf{x})) = (A + A^\top)R\mathbf{x}\mathbf{x}^\top - R\mathbf{x}\mathbf{x}^\top R^\top(A + A^\top)R$

Using properties of the hat map:

$$(\hat{\mathbf{x}}\mathbf{y})^{\wedge} = \hat{\mathbf{x}}\hat{\mathbf{y}} - \hat{\mathbf{y}}\hat{\mathbf{x}}$$
 $\hat{\mathbf{x}}\hat{\mathbf{y}} = \mathbf{y}\mathbf{x}^{\top} - \mathbf{x}^{\top}\mathbf{y}\mathbf{z}$

we can show that grad $f(R, \mathbf{x})$ is consistent with our previous result:

$$(\hat{\mathbf{x}}R^{\top}(A+A^{\top})R\mathbf{x})^{\wedge} = \hat{\mathbf{x}} (R^{\top}(A+A^{\top})R\mathbf{x})^{\wedge} - (R^{\top}(A+A^{\top})R\mathbf{x})^{\wedge} \hat{\mathbf{x}}$$

$$= R^{\top}(A+A^{\top})R\mathbf{x}\mathbf{x}^{\top} - \mathbf{x}\mathbf{x}^{\top}R^{\top}(A+A^{\top})R$$

$$= R^{\top} \operatorname{grad} f(R,\mathbf{x})$$

▶ If $R = -\operatorname{grad} f(R)$, the discrete-time rotation kinematics lead to the following update:

$$R_{k+1} = R_k \exp\left(-\alpha_k R_k^{\mathsf{T}} \operatorname{grad} f(R_k)\right)$$