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Topology

▶ Topology on set X is a set T of subsets of X , called open sets, such that:
▶ X and ∅ are open
▶ finite intersection of open sets is open
▶ uncountably infinite union of open sets is open

▶ Topological space: set X with topology T

▶ Hausdorff space: topological space X such that ∀x , y ∈ X with x ̸= y there
exists disjoint neighborhoods U of x and V of y

▶ Separable space: topological space X with a countable dense subset, i.e.,
there exists a sequence in X such that every non-empty open set contains at
least one element of the sequence

▶ Second-countable space: topological space X with a countable base, i.e.,
countable collection of open sets that can express any open set as a union
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Manifold

▶ Homeomorphism: continuous bijective function f : X → Y between two
topological spaces with continuous inverse f −1

▶ Topological n-manifold: Hausdorff second-countable topological space M
such that every p ∈ M has a neighborhood U homeomorphic to an open
subset of Rn

▶ Chart on M: pair (U , ϕ) such ϕ : U ⊆ M → V ⊆ Rn is a homeomorphism

▶ Atlas on M: set of charts {(Uα, ϕα)}α that cover M

▶ Coordinates of p ∈ M: elements ϕ(p) ∈ Rn of a chart (U , ϕ) containing p

▶ Smooth n-manifold: the change of coordinates function
ϕβ ◦ ϕ−1

α : Rn → Rn between any charts (Uα, ϕα) and (Uβ , ϕβ) with
Uα ∩ Uβ ̸= ∅ is infinitely differentiable

▶ An open subset of a smooth n-manifold is a smooth n-manifold

▶ The product of smooth n1 and n2 manifolds is a smooth (n1 + n2)-manifold
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Manifold
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Embedded Submanifold

▶ Directional derivative: of f : Rn → R at p ∈ Rn in direction v ∈ Rn:

Df (p)[v] = lim
t→0

f (p+ tv)− f (p)

t

▶ A nonempty subset M of d-dimensional Euclidean space E is a smooth
embedded submanifold of dimension n ≤ d such that either

1. n = d and M is an open set in E , called an open submanifold, or

2. n = d − k and, for each p ∈ M, there exists a neighborhood Up in E and a
smooth function h : Up → Rk such that

2.1 if y ∈ Up , then y ∈ M iff h(y) = 0
2.2 rank(Dh(p)) = k (rank is the range space dimension)

The function h is called a local defining function for M at p.

▶ Example:
▶ unit sphere Sd−1 :=

{
x ∈ Rd : x⊤x = 1

}
is an embedded submanifold of Rd

▶ Sd−1 has local defining function h(x) = x⊤x− 1
▶ the directional derivative of h is Dh(x)[v] = 2x⊤v and has rank k = 1
▶ the dimension of Sd−1 is n = d − 1
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Tangent Space

▶ How should directional derivative be defined for f : M → R?

▶ For p ∈ M, the operation p + tv may not be defined. Instead, use a curve
γ : R → M such that γ(0) = p.

▶ Let C∞(Up,R) be the set of smooth real-valued functions defined on a
neighborhood Up of a point p on a manifold M. A tangent vector vp to M
at p is a function from C∞(Up,R) to R such that there exists a curve
γ : R → M with γ(0) = p and:

vp[f ] =
df (γ(t))

dt

∣∣∣∣
t=0

▶ Tangent space to M at p: set TpM of all tangent vectors vp to M at p
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Tangent Space of Embedded Submanifold

▶ If M is an embedded submanifold, then v ∈ TpM if and only if there exists
a smooth curve γ on M passing through p with velocity v :

TpM =

{
dγ

dt
(0) | γ : I → M and γ(0) = p

}
where I is any open interval containing t = 0.

▶ Let M be an embedded submanifold of Euclidean space E .
▶ If M is an open submanifold of E , then TpM = E .
▶ Otherwise, TpM = ker(Dh(p)) for any local defining function h at p.
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Tangent Space
▶ Tangent space TpM: set of all tangent vectors to M at p

▶ The tangent space TpM is a vector space of the same dimension as M and
can be equipped with an inner product ⟨·, ·⟩p : TpM× TpM → R

▶ Tangent bundle of M: disjoint union of the tangent spaces of M:

TM = {(p, v) | p ∈ M, v ∈ TpM}
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Unit Sphere

▶ Sd−1 :=
{
x ∈ Rd : x⊤x = 1

}
▶ TxSd−1 =

{
v ∈ Rd : x⊤v = 0

}
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Lie Group

▶ A group is a set G with an associated composition operator ⊙ that satisfies:
▶ Closure: a⊙ b ∈ G, ∀a, b ∈ G
▶ Identity element: ∃e ∈ G (unique) such that e ⊙ a = a⊙ e = a

▶ Inverse element: for a ∈ G, ∃b ∈ G (unique) such that a⊙ b = b ⊙ a = e

▶ Associativity: (a⊙ b)⊙ c = a⊙ (b ⊙ c), ∀a, b, c,∈ G

▶ The notion of a group is weaker than a vector space because it does not
require commutativity and does not have scalar multiplication and its
associated axioms (compatibility, identity, inverse, distributivity)

▶ General linear group GL(n;C): the set of all invertible matrices in Cn×n

▶ A subgroup of group G is a subset that contains the identity of G and is
closed under group composition and inverse

▶ Lie group: set G that is both a smooth manifold and a group with smooth
composition ⊙ : G × G → G and inverse (·)−1 : G → G

▶ Matrix Lie group: subgroup of GL(n;C) and embedded submanifold of Cn×n
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Lie Algebra

▶ A Lie algebra is a vector space g over some field F with a binary operation,
[·, ·] : g× g → g, called a Lie bracket

▶ For all X ,Y ,Z ∈ g and a, b ∈ F , the Lie bracket [·, ·] : g× g → g satisfies:

bilinearity : [aX + bY ,Z ] = a[X ,Z ] + b[Y ,Z ]

[Z , aX + bY ] = a[Z ,X ] + b[Z ,Y ]

skew-symmetry : [X ,Y ] = −[Y ,X ]

Jacobi identity : [X , [Y ,Z ]] + [Y , [Z ,X ]] + [Z , [X ,Y ]] = 0

▶ The adjoint adX : g → g of a Lie algebra at X ∈ g is:

adX (Y ) = [X ,Y ]

▶ Example: R3 with [x, y] = x× y is a Lie algebra
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Lie Group and Lie Algebra
▶ Each matrix Lie group G has an associated Lie algebra g

▶ The Lie algebra g of a matrix Lie group G is the set of all matrices X whose
matrix exponential exp(tX ) is in G for all t ∈ R:

g = {X | exp(tX ) ∈ G, ∀t ∈ R}
▶ The Lie algebra g of a Lie group G is the tangent space at identity TIG

▶ For X ∈ g, let γ(t) = exp(tX ) such that γ(0) = I and γ′(0) = X

▶ The adjoint AdA : g → g of a Lie group G at A ∈ G is:

AdA(Y ) = AYA−1

▶ The algebra adjoint adX is the derivative of the group adjoint AdA at A = I :

Adexp(X ) = exp(adX ) adX =
d

dt
Adexp(tX )

∣∣∣∣
t=0

▶ Let G be a matrix Lie group with Lie algebra g. For X ,Y ∈ g:
▶ tX ∈ g for all t ∈ R
▶ X + Y ∈ g
▶ adX (Y ) = [X ,Y ] = XY − YX ∈ g
▶ AdA(X ) = AXA−1 ∈ g for all A ∈ G
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Lie Group and Lie Algebra
▶ The exponential and logarithm maps relate a matrix Lie group G with its

Lie algebra g:

exp(A) =
∞∑
n=0

1

n!
An log(A) =

∞∑
n=1

(−1)n−1

n
(A− I )n

▶ Theorem: Let Vϵ = {X ∈ Cn×n | ∥X∥ < ϵ} and Uϵ = exp(Vϵ). Suppose G is
a matrix Lie group with Lie algebra g. Then, there exists ϵ ∈ (0, log 2) such
that for all A ∈ Uϵ, A ∈ G if and only if log(A) ∈ g.

Figure: SE(3) and corresponding Lie algebra se(3) as tangent space at identity
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Special Orthogonal Lie Group SO(3)

▶ SO(3) :=
{
R ∈ R3×3 | R⊤R = I , det(R) = 1

}
▶ SO(3) is a group:

▶ Closure: R1R2 ∈ SO(3)
▶ Identity: I ∈ SO(3)
▶ Inverse: R−1 = R⊤ ∈ SO(3)
▶ Associativity: (R1R2)R3 = R1(R2R3) for all R1,R2,R3 ∈ SO(3)

▶ SO(3) is an embedded submanifold of R3×3 with local defining function:

h(R) = (R⊤R − I , det(R)− 1)

▶ The tangent space of SO(3) is:

TRSO(3) = ker(Dh(R)) =
{
V ∈ R3×3 | R⊤V + V⊤R = 0, tr(R⊤V ) = 0

}
▶ SO(3) is a matrix Lie group
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Special Orthogonal Lie Algebra so(3)

▶ The Lie algebra of SO(3) is the space of skew-symmetric matrices:

so(3) = TISO(3) = {θ̂ ∈ R3×3 | θ ∈ R3}

▶ The Lie bracket of so(3) is:

[θ̂1, θ̂2] = θ̂1θ̂2 − θ̂2θ̂1 =
(
θ̂1θ2

)∧
∈ so(3)

▶ The elements R ∈ SO(3) are related to the elements θ̂ ∈ so(3) through the
exponential and logarithm maps:

R = exp(θ̂) =
∞∑
n=0

1

n!
(θ̂)n = I +

(
sin ∥θ∥
∥θ∥

)
θ̂ +

(
1− cos ∥θ∥

∥θ∥2

)
θ̂
2

θ̂ = log(R) =
∞∑
n=1

(−1)n−1

n
(R − I )n =

∥θ∥
2 sin ∥θ∥

(R − R⊤)

∥θ∥ = arccos

(
tr(R)− 1

2

)
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Distance in SO(3)

▶ What is the distance between two rotations R1,R2 ∈ SO(3)?

▶ Inner product on so(3):

⟨θ̂1, θ̂2⟩ =
1

2
tr
(
θ̂
⊤
1 θ̂2

)
= θ⊤1 θ2

▶ Geodesic distance on SO(3): the length of the shortest path between R1

and R2 on the SO(3) manifold is equal to the rotation angle ∥θ12∥2 of the
axis-angle representation θ12 of the relative rotation R12 = R⊤

1 R2:

θ12 = log
(
R⊤
1 R2

)∨
dθ(R1,R2) =

√
⟨θ̂12, θ̂12⟩ = ∥θ12∥2 =

∣∣∣∣arccos( tr(R⊤
1 R2)− 1

2

)∣∣∣∣
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Distance in SO(3)

▶ Chordal distance on SO(3):

dc(R1,R2) = ∥R1 − R2∥F =
√

tr ((R1 − R2)⊤(R1 − R2))=2
√
2

∣∣∣∣sin(∥θ12∥
2

)∣∣∣∣

Figure: (a) Geodesic and (b) chordal distance in SO(2)
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Baker-Campbell-Hausdorff Formulas
▶ The left Jacobian of SO(3) is the matrix:

JL(θ) :=
∞∑
n=0

1

(n + 1)!

(
θ̂
)n

R = I + θ̂JL(θ)

▶ The right Jacobian of SO(3) is the matrix:

JR(θ) :=
∞∑
n=0

1

(n + 1)!

(
−θ̂
)n

JR(θ) = JL(−θ) = JL(θ)
⊤ = R⊤JL(θ)

▶ Baker-Campbell-Hausdorff Formulas: the SO(3) Jacobians relate small
perturbations δθ in so(3) to small perturbations in SO(3):

exp ((θ + δθ)∧) ≈ exp(θ̂) exp ((JR(θ)δθ)
∧)

≈ exp ((JL(θ)δθ)
∧) exp(θ̂)

log(exp(θ̂1) exp(θ̂2))
∨ ≈

{
JL(θ2)

−1θ1 + θ2 if θ1 is small

θ1 + JR(θ1)
−1θ2 if θ2 is small
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Closed-forms of the SO(3) Jacobians

JL(θ) = I +

(
1− cos ∥θ∥

∥θ∥2

)
θ̂ +

(
∥θ∥ − sin ∥θ∥

∥θ∥3

)
θ̂
2
≈ I +

1

2
θ̂

JL(θ)
−1 = I − 1

2
θ̂ +

(
1

∥θ∥2
− 1 + cos ∥θ∥

2∥θ∥ sin ∥θ∥

)
θ̂
2
≈ I − 1

2
θ̂

JR(θ) = I −
(
1− cos ∥θ∥

∥θ∥2

)
θ̂ +

(
∥θ∥ − sin ∥θ∥

∥θ∥3

)
θ̂
2
≈ I − 1

2
θ̂

JR(θ)
−1 = I +

1

2
θ̂ +

(
1

∥θ∥2
− 1 + cos ∥θ∥

2∥θ∥ sin ∥θ∥

)
θ̂
2
≈ I +

1

2
θ̂

JL(θ)JL(θ)
T = I +

(
1− 2

1− cos ∥θ∥
∥θ∥2

)
θ̂
2
≻ 0

(
JL(θ)JL(θ)

T
)−1

= I +

(
1− 2

∥θ∥2

1− cos ∥θ∥

)
θ̂
2
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Integration in SO(3)

▶ The geodesic distance between a rotation R = exp(θ̂) and a small
perturbation exp((θ + δθ)∧) can be approximated using the BCH formulas:

log
(
exp(θ̂)⊤ exp((θ + δθ)∧)

)∨
≈ log

(
R⊤R exp ((JR(θ)δθ)

∧)
)∨

= JR(θ)δθ

▶ This allows to define an infinitesimal volume element:

dR = | det(JR(θ))|dθ = 2

(
1− cos ∥θ∥

∥θ∥2

)
dθ det(JR(θ)) = det(JL(θ))

▶ Integrating functions of rotations can be carried out as follows:∫
SO(3)

f (R)dR =

∫
∥θ∥<π

f
(
exp(θ̂)

)
| det(JR(θ))|dθ
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Adjoint SO(3) Lie Group and Lie Algebra

▶ The adjoint operator AdA : g → g represents the elements A of a Lie group G
as linear transformations on the Lie algebra g

▶ The adjoint AdR at R ∈ SO(3) transforms ω̂ ∈ so(3) from one coordinate
frame (e.g., body frame) to another (e.g., world frame):

AdR(ω̂) = Rω̂R−1 = (Rω)∧

▶ The adjoint operator AdR(ω̂) is linear and can be represented as a matrix R
acting on ω ∈ R3

▶ The space of adjoint operators on SO(3) is a matrix Lie group
Ad(SO(3)) ∼= SO(3) with associated Lie algebra ad(so(3)) ∼= so(3)
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Special Euclidean Lie Group SE (3)

▶ SE (3) :=

{
T =

[
R p
0⊤ 1

]
∈ R4×4

∣∣∣∣ R ∈ SO(3),p ∈ R3

}
▶ SE (3) is a group:

▶ Closure: T1T2 =

[
R1 p1

0⊤ 1

] [
R2 p2

0⊤ 1

]
=

[
R1R2 R1p2 + p1

0⊤ 1

]
∈ SE(3)

▶ Identity: I ∈ SE(3)

▶ Inverse:

[
R p
0⊤ 1

]−1

=

[
R⊤ −R⊤p
0⊤ 1

]
∈ SE(3)

▶ Associativity: (T1T2)T3 = T1(T2T3) for all T1,T2,T3 ∈ SE(3)

▶ SE (3) is an embedded submanifold of R4×4

▶ SE (3) is a matrix Lie group
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Special Euclidean Lie Algebra se(3)

▶ The Lie algebra of SE (3) is the space of twist matrices:

se(3) := TISE (3) =

{
ξ̂ :=

[
θ̂ ρ
0 0

]
∈ R4×4

∣∣∣∣ ξ =

[
ρ
θ

]
∈ R6

}
▶ The Lie bracket of se(3) is:

[ξ̂1, ξ̂2] = ξ̂1ξ̂2 − ξ̂2ξ̂1 =
(

⋏
ξ1ξ2

)∧

∈ se(3)
⋏
ξ :=

[
θ̂ ρ̂

0 θ̂

]
∈ R6×6

▶ The elements T ∈ SE (3) are related to the elements ξ̂ ∈ se(3) through the
exponential and logarithm maps:

T = exp(ξ̂) =
∞∑
n=0

1

n!
(ξ̂)n

ξ̂ = log(T ) =
∞∑
n=1

(−1)n−1

n
(T − I )n
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Exponential Map from se(3) to SE (3)

▶ Exponential map exp : se(3) → SE (3): has closed-form expression obtained

using ξ̂
4
+ ∥θ∥2ξ̂

2
= 0:

T = exp(ξ̂) =

[
exp(θ̂) JL(θ)ρ
0T 1

]
=

∞∑
n=0

1

n!
ξ̂
n
=

= I + ξ̂ +

(
1− cos ∥θ∥

∥θ∥2

)
ξ̂
2
+

(
∥θ∥ − sin ∥θ∥

∥θ∥3

)
ξ̂
3

▶ The exponential map is surjective but not injective, i.e., every element of
SE (3) can be generated from multiple elements of se(3)

▶ Logarithm map log : SE (3) → se(3): for any T ∈ SE (3), there exists a
(non-unique) ξ ∈ R6 such that:

ξ =

[
ρ
θ

]
= log(T )∨ =

{
θ = log(R)∨, ρ = J−1

L (θ)p, if R ̸= I ,

θ = 0, ρ = p, if R = I .
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Distance in SE (3)

▶ Inner product on se(3):

⟨ξ̂1, ξ̂2⟩ = tr

(
ξ̂1

[
1
2 I 0
0⊤ 1

]
ξ̂
⊤
2

)
= ξ⊤1 ξ2

▶ Distance on SE (3): induced by the inner product on se(3) evaluated at the
vector representation ξ̂12 of the relative pose T12 = T−1

1 T2:

ξ12 = log(T−1
1 T2)

∨

d(T1,T2) =

√
⟨ξ̂12, ξ̂12⟩ = ∥ξ12∥2
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Baker-Campbell-Hausdorff Formulas

▶ Left Jacobian of SE (3): JL(ξ) =

[
JL(θ) QL(ξ)
0 JL(θ)

]

▶ Right Jacobian of SE (3): JR(ξ) =

[
JR(θ) QR(ξ)
0 JR(θ)

]
▶ Baker-Campbell-Hausdorff Formulas: the SE (3) Jacobians relate small

perturbations δξ in se(3) to small perturbations in SE (3):

exp ((ξ + δξ)∧) ≈ exp(ξ̂) exp ((JR(ξ)δξ)
∧)

≈ exp ((JL(ξ)δξ)
∧) exp(ξ̂)

log(exp(ξ̂1) exp(ξ̂2))
∨ ≈

{
JL(ξ2)

−1ξ1 + ξ2 if ξ1 is small

ξ1 + JR(ξ1)
−1ξ2 if ξ2 is small
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Closed-forms of the SE (3) Jacobians

JL(ξ) =
∞∑
n=0

1

(n + 1)!
(
⋏
ξ)n =

[
JL(θ) QL(ξ)
0 JL(θ)

]

= I +

(
4− ∥θ∥ sin ∥θ∥ − 4 cos ∥θ∥

2∥θ∥2

)
⋏
ξ +

(
4∥θ∥ − 5 sin ∥θ∥+ ∥θ∥ cos ∥θ∥

2∥θ∥3

)
⋏
ξ
2

+

(
2− ∥θ∥ sin ∥θ∥ − 2 cos ∥θ∥

2∥θ∥4

)
⋏
ξ
3

+

(
2∥θ∥ − 3 sin ∥θ∥+ ∥θ∥ cos ∥θ∥

2∥θ∥5

)
⋏
ξ
4

≈ I +
1

2

⋏
ξ

JL(ξ)
−1 =

[
JL(θ)

−1 −JL(θ)
−1QL(ξ)JL(θ)

−1

0 JL(θ)
−1

]
≈ I − 1

2

⋏
ξ

QL(ξ) =
∞∑
n=0

∞∑
m=0

1

(n +m + 2)!
θ̂
n
ρ̂θ̂

m

=
1

2
ρ̂+

(
∥θ∥ − sin ∥θ∥

∥θ∥3

)(
θ̂ρ̂+ ρ̂θ̂ + θ̂ρ̂θ̂

)
+

(
∥θ∥2 + 2 cos ∥θ∥ − 2

2∥θ∥4

)(
θ̂
2
ρ̂+ ρ̂θ̂

2
− 3θ̂ρ̂θ̂

)
+

(
2∥θ∥ − 3 sin ∥θ∥+ ∥θ∥ cos ∥θ∥

2∥θ∥5

)(
θ̂ρ̂θ̂

2
+ θ̂

2
ρ̂θ̂
)

QR(ξ) = QL(−ξ) = RQL(ξ) + (JL(θ)ρ)
∧RJL(θ)
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Integration in SE (3)

▶ The distance between a pose T = exp(ξ̂) and a small perturbation
exp((ξ + δξ)∧) can be approximated using the BCH formulas:

log
(
exp(ξ̂)−1 exp((ξ + δξ)∧)

)∨
≈ JR(ξ)δξ

▶ This allows to define an infinitesimal volume element:

dT = | det(JR(ξ))|dξ = | det(JR(θ))|2dξ = 4

(
1− cos ∥θ∥

∥θ∥2

)2

dξ

▶ Integrating functions of poses can then be carried out as follows:∫
SE(3)

f (T )dT =

∫
R3,∥θ∥<π

f
(
exp(ξ̂)

)
|det(JR(ξ))|dξ
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Adjoint SE (3) Lie Group and Lie Algebra

▶ The adjoint AdT at T ∈ SE (3) transforms ζ̂ ∈ se(3) from one coordinate
frame to another:

AdT (ζ̂) = T ζ̂T−1 = (T ζ)∧

▶ The adjoint operator AdT is linear and can be represented as a matrix T
acting on ζ ∈ R6:

T =

[
R p̂R
0 R

]
∈ R6×6

▶ The space of adjoint operators on SE (3) is a matrix Lie group:

Ad(SE (3)) =

{
T =

[
R p̂R
0 R

]
∈ R6×6

∣∣∣∣ T =

[
R p
0⊤ 1

]
∈ SE (3)

}
▶ The Lie algebra associated with Ad(SE (3)) is:

ad(se(3)) =

{
⋏
ξ =

[
θ̂ ρ̂

0 θ̂

]
∈ R6×6

∣∣∣∣ ξ =

[
ρ
θ

]
∈ R6

}
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Rodrigues Formula for the Adjoint of SE (3)

▶ Rodrigues Formula: using (
⋏
ξ)5 + 2∥θ∥2(

⋏
ξ)3 + ∥θ∥4

⋏
ξ = 0 we can obtain a

direct expression of T ∈ Ad(SE (3)) in terms of ξ =

[
ρ
θ

]
∈ R6:

T = Ad(T ) = exp

(
⋏
ξ

)
=

[
exp(θ̂) (JL(θ)ρ)

∧ exp(θ̂)

0 exp(θ̂)

]
=

∞∑
n=0

1

n!
(
⋏
ξ)n

= I +

(
3 sin ∥θ∥ − ∥θ∥ cos ∥θ∥

2∥θ∥

)
⋏
ξ +

(
4− ∥θ∥ sin ∥θ∥ − 4 cos ∥θ∥

2∥θ∥2

)
(
⋏
ξ)2

+

(
sin ∥θ∥ − ∥θ∥ cos ∥θ∥

2∥θ∥3

)
(
⋏
ξ)3 +

(
2− ∥θ∥ sin ∥θ∥ − 2 cos ∥θ∥

2∥θ∥4

)
(
⋏
ξ)4

▶ The exponential map is surjective but not injective, i.e., every element of
Ad(SE (3)) can be generated from multiple elements of ad(se(3))
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Distance in Ad(SE (3))

▶ Inner product on ad(se(3)):

⟨
⋏
ξ1,

⋏
ξ2⟩ = tr

(
⋏
ξ1

[
1
4 I 0
0 1

2 I

]
⋏
ξ
⊤

2

)
= ξ⊤1 ξ2

▶ Distance on Ad(SE (3)): induced by the inner product on ad(se(3))

evaluated at the vector representation
⋏
ξ12 of T12 = T −1

1 T2:

ξ12 = log
(
T −1
1 T2

)⋎
d(T1, T2) =

√
⟨
⋏
ξ12,

⋏
ξ12⟩ = ∥ξ12∥2
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Pose Lie Groups and Lie Algebras

T = Ad
(
exp(ξ̂)

)
︸ ︷︷ ︸

T

= exp
(
ad(ξ̂)

)
︸ ︷︷ ︸

⋏
ξ

ξ =

[
ρ
θ

]
∈ R6

= Ad

(
exp

([
θ̂ ρ
0T 0

]))
= exp

(
ad

([
θ̂ ρ
0T 0

]))
= Ad

([
exp(θ̂) JL(θ)ρ
0T 1

])
= exp

([
θ̂ ρ̂

0 θ̂

])
=

[
exp(θ̂) (JL(θ)ρ)

∧ exp(θ̂)

0 exp(θ̂)

]
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se(3) Identities

ξ̂ =
ˆ[ρ
θ

]
=

[
θ̂ ρ
0⊤ 0

]
∈ R4×4

⋏
ξ = ad(ξ̂) =

⋏[
ρ
θ

]
=

[
θ̂ ρ̂

0 θ̂

]
∈ R6×6

⋏
ζξ = −

⋏
ξζ ζ ∈ R6

⋏
ξξ = 0

ξ̂
4
+
(
s⊤s
)
ξ̂
2
= 0 s ∈ R3(

⋏
ξ

)5

+ 2
(
s⊤s
)(⋏
ξ

)3

+
(
s⊤s
)2 ⋏
ξ = 0

m⊙ :=

[
s
λ

]⊙
=

[
λI −ŝ
0⊤ 0⊤

]
∈ R4×6 m⊚ :=

[
s
λ

]⊚
=

[
0 s
−ŝ 0

]
∈ R6×4

ξ̂m = m⊙ξ m⊤ξ̂ = ξ⊤m⊚
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SE (3) Identities

T = exp
(
ξ̂
)
=

[
exp

(
θ̂
)

JL(θ)ρ

0T 1

]
det(T ) = 1
tr(T ) = 2 cos ∥θ∥+ 2

T = Ad(T ) = exp

(
⋏
ξ

)
=

exp(θ̂) (JL(θ)ρ)
∧ exp

(
θ̂
)

0 exp
(
θ̂
) 

T ξ̂ = ξ̂T

T ξ = ξ T
⋏
ξ =

⋏
ξT

(T ζ)∧ = T ζ̂T−1
⋏

(T ζ) = T
⋏
ζT −1 ζ ∈ R6

exp
(
(T ζ)∧

)
= T exp

(
ζ̂
)
T−1 exp

(
⋏

(T ζ)
)

= T exp

(
⋏
ζ

)
T −1

(Tm)⊙ = Tm⊙T −1
(
(Tm)⊙

)T
(Tm)⊙ = T −T

(
m⊙)T m⊙T −1

37



Outline

Manifolds and Matrix Lie Groups

SO(3) Geometry
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Manifold Optimization
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Riemannian Manifold

▶ Riemannian manifold: a smooth manifold M equipped with a
(Riemannian) metric ⟨·, ·⟩p : TpM× TpM → R that varies smoothly with p

▶ Riemannian manifolds allow generalizing the notion of Euclidean distance to
curved surfaces

▶ The shortest path between two points in Euclidean space is a straight line

▶ The shortest path between two points on a Riemannian manifold M is a
geodesic, i.e., the shortest continuous curve on M connecting the two points

▶ Smooth manifold function: Let N be a smooth n-manifold and M be a
smooth m-manifold. A function f : N → M is smooth at p ∈ N if, for any
charts (U , ϕ) around p and (V, ψ) around f (p) with f (U) ⊆ V, its coordinate
representation ψ ◦ f ◦ ϕ−1 : Rn → Rm is smooth at ϕ(p)
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Riemannian Gradient

▶ A vector field on a manifold M is a map V : M → TM such that
V (p) ∈ TpM for all p ∈ M

▶ Riemannian gradient: Let f : M → R be smooth on a Riemannian
manifold M. The Riemannian gradient of f is a vector field
grad f : M → TM uniquely defined by:

Df (p)[v ] = ⟨grad f (p), v⟩p, ∀(p, v) ∈ TM

▶ A retraction on a manifold M is a smooth map R : TM → M such that
each curve γ(t) = Rp(tv) satisfies γ(0) = p and γ′(0) = v for (p, v) ∈ TM

▶ Let f : M → R be a smooth function on a Riemannian manifold M
equipped with a retraction R. Then:

grad f (p) = ∇v f (Rp(v))|v=0
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Relationship Between Riemannian and Euclidean Gradient

▶ Let M be a Riemannian manifold with metric ⟨·, ·⟩p embedded in Euclidean
space E with metric ⟨·, ·⟩

▶ Orthogonal projection to TpM: linear map Πp : E → TpM that satisfies:
▶ Πp(Πp(u)) = Πp(u) for all u ∈ E
▶ ⟨u − Πp(u), v⟩ = 0 for all v ∈ TpM and u ∈ E

▶ Let f : E → R be a smooth function. Since its Euclidean gradient ∇f (p) is a
vector in E and TpM is a subspace of E , there is a unique decomposition:

∇f (p) = ∇f (p)∥ +∇f (p)⊥

where ∇f (p)∥ = Πp(∇f (p)) ∈ TpM and ⟨∇f (p)⊥, v⟩ = 0 for all v ∈ TpM

▶ Relationship between Riemannian and Euclidean gradient:

⟨grad f (p), v⟩p = Df (p)[v ] = ⟨∇f (p)∥, v⟩ = ⟨Πp(∇f (p)), v⟩
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Example: Riemannian Gradient in SO(n) using Projection
▶ SO(n) is a Riemannian manifold with metric ⟨X ,Y ⟩R = 1

2 tr
(
X⊤Y

)
for

X ,Y ∈ so(n)

▶ SO(n) is embedded in Euclidean space Rn×n with metric ⟨X ,Y ⟩ = tr(X⊤Y )
for X ,Y ∈ Rn×n

▶ The tangent space to SO(n) at R is: TRSO(n) = {Rω̂ | ω̂ ∈ so(n)}

▶ The orthogonal projection to TRSO(n) can be identified as:

ΠR(U) = R
1

2

(
R⊤U − U⊤R

)
▶ The Riemannian gradient of a smooth function f : Rn×n → R is related to its

Euclidean gradient as:

⟨grad f (R), ω̂⟩R = ⟨ΠR(∇f (R)), ω̂⟩
⇒ grad f (R) = 2ΠR(∇f (R))

= R(R⊤∇f (R)−∇f (R)⊤R)

= ∇f (R)− R∇f (R)⊤R

42



Riemannian Gradient Descent
▶ Consider an optimization problem with smooth objective function f : M → R

defined on a Riemannian manifold M:

min
x∈M

f (x)

▶ Riemannian gradient descent: given x0 ∈ M and retraction R on M:

xk+1 = Rxk (−αk grad f (xk))

where the step size αk is obtained via line search:

αk ∈ argmin
α>0

f (Rxk (−α grad f (xk)))

Riemannian Gradient Descent Convergence

Let f : M → R be smooth and bounded below, i.e., f (x) ≥ b for some b ∈ R and
all x ∈ M. Let the step size αk ensure sufficient cost decrease for constant c > 0:

f (xk)− f (xk+1) ≥ c∥ grad f (xk)∥22.

Then,
lim

k→∞
∥ grad f (xk)∥ = 0.
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Lie Group Gradient Descent

▶ Consider minx f (x)

▶ Gradient descent in Rd : xk+1 = xk − αk∇f (xk)

▶ The gradient of f can be identified from the first-order Taylor series:

f (x+ δx) ≈ f (x) +∇f (x)⊤δx

▶ Consider minp∈G f (p)

▶ On a matrix Lie group G with Lie algebra g, the exponential map
Rp(v) = p exp(v) is a retraction that can be used to define p + v for p ∈ G
and v ∈ g

▶ Gradient descent on G: pk+1 = pk exp(−αk grad f (pk))

▶ The Riemannian gradient of f : G → R can be identified from:

f (p exp(v)) ≈ f (p) + ⟨grad f (p), v⟩p (p, v) ∈ TG
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Example: Gradient Descent in SO(3)
▶ Consider f (R, x) = x⊤R⊤ARx

▶ Euclidean gradient with respect to x using Taylor series:

f (R, x+ δx) = (x+ δx)⊤R⊤AR(x+ δx)

= x⊤R⊤ARx+ x⊤R⊤ARδx+ δx⊤R⊤ARx+ o(∥δx∥22)
≈ f (R, x) + x⊤R⊤(A+ A⊤)R︸ ︷︷ ︸

∇xf ⊤

δx

⇒ ∇xf (R, x) = R⊤(A+ A⊤)Rx

▶ Verify using the product rule:

d

dx
f (R, x) = x⊤R⊤AR

dx

dx
+ x⊤R⊤A⊤R

dx

dx

= x⊤R⊤(A+ A⊤)R

⇒ ∇xf (R, x) =

[
d

dx
f (R, x)

]⊤
= R⊤(A+ A⊤)Rx

▶ Gradient descent: xk+1 = xk − αkR
⊤(A+ A⊤)Rxk
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Example: Gradient Descent in SO(3)

▶ Consider f (R, x) = x⊤R⊤ARx

▶ Riemannian gradient with respect to R using Taylor series:

f (R exp(ψ̂), x) = x⊤
(
R exp(ψ̂)

)⊤
AR exp(ψ̂)x

≈ x⊤(I + ψ̂
⊤
)R⊤AR(I + ψ̂)x

= f (R, x) + x⊤R⊤ARψ̂x+ x⊤ψ̂
⊤
R⊤ARx+ o(∥ψ∥22)

≈ f (R, x)− x⊤R⊤AR x̂ψ + (ψ̂x)⊤R⊤ARx

= f (R, x)− x⊤R⊤AR x̂ψ −ψ⊤x̂⊤R⊤ARx

= f (R, x)−x⊤R⊤(A+ A⊤)R x̂︸ ︷︷ ︸
(grad f ∨)⊤

ψ

⇒ grad f (R, x) =
(
x̂R⊤(A+ A⊤)Rx

)∧
▶ Riemannian gradient descent: Rk+1 = Rk exp

(
−αk

(
x̂R⊤

k (A+ A⊤)Rkx
)∧)
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Example: Gradient Descent in SO(3)
▶ Consider f (R, x) = x⊤R⊤ARx

▶ Euclidean gradient with respect to R:

∇R f (R, x) = (A+ A⊤)Rxx⊤

▶ Riemannian gradient with respect to R using projection:

grad f (R, x) = 2ΠR(∇R f (R, x)) = (A+ A⊤)Rxx⊤ − Rxx⊤R⊤(A+ A⊤)R

▶ Using properties of the hat map:

(x̂y)∧ = x̂ŷ − ŷx̂ x̂ŷ = yx⊤ − x⊤yI

we can show that grad f (R, x) is consistent with our previous result:(
x̂R⊤(A+ A⊤)Rx

)∧
= x̂

(
R⊤(A+ A⊤)Rx

)∧ −
(
R⊤(A+ A⊤)Rx

)∧
x̂

= R⊤(A+ A⊤)Rxx⊤ − xx⊤R⊤(A+ A⊤)R

= R⊤ grad f (R, x)

▶ If Ṙ = − grad f (R), the discrete-time rotation kinematics lead to the
following update:

Rk+1 = Rk exp
(
−αkR

⊤
k grad f (Rk)

)
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