ECE276A: Sensing & Estimation in Robotics Lecture 12: Visual-Inertial SLAM

Nikolay Atanasov

natanasov@ucsd.edu

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

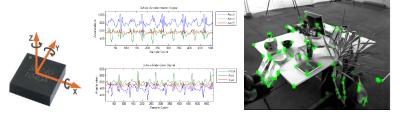
Outline

Visual-Inertial SLAM

Visual Mapping

Visual-Inertial Simultaneous Localization and Mapping

- Input:
 - ▶ IMU: linear acceleration $\mathbf{a}_t \in \mathbb{R}^3$ and rotational velocity $\boldsymbol{\omega}_t \in \mathbb{R}^3$
 - ightharpoonup Camera: features $\mathbf{z}_{t,i} \in \mathbb{R}^4$ (left and right image pixels) for $i = 1, \ldots, N_t$



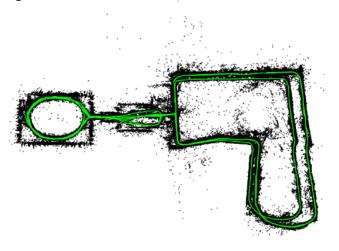
Assumption: The transformation ${}_{O}T_{I} \in SE(3)$ from the IMU to the camera optical frame (extrinsic parameters) and the stereo camera calibration matrix K_s (intrinsic parameters) are known.

$$\mathcal{K}_s := egin{bmatrix} f_{s_u} & 0 & c_u & 0 \ 0 & f_{s_v} & c_v & 0 \ f_{s_u} & 0 & c_u & -f_{s_u}b \ 0 & f_{s_v} & c_v & 0 \end{bmatrix}$$

$$K_s := \begin{bmatrix} fs_u & 0 & c_u & 0 \\ 0 & fs_v & c_v & 0 \\ fs_u & 0 & c_u & -fs_ub \\ 0 & fs_v & c_v & 0 \end{bmatrix} \qquad \begin{aligned} f &= \text{focal length }[m] \\ s_u, s_v &= \text{pixel scaling }[pixels/m] \\ c_u, c_v &= \text{principal point }[pixels] \\ b &= \text{stereo baseline }[m] \end{aligned}$$

Visual-Inertial Simultaneous Localization and Mapping

- Output:
 - ▶ World-frame IMU pose $_W T_I \in SE(3)$ over time (green)
 - ▶ World-frame coordinates $\mathbf{m}_j \in \mathbb{R}^3$ of the j = 1, ..., M point landmarks (black) that generated the visual features $\mathbf{z}_{t,i} \in \mathbb{R}^4$



Extended Kalman Filter

Outline

Visual-Inertial SLAN

Visual Mapping

Visual Mapping

- Consider the mapping-only problem first
- ▶ **Assumption**: the IMU pose $T_t := {}_W T_{I,t} \in SE(3)$ is known
- ▶ **Objective**: given the observations $\mathbf{z}_t := \begin{bmatrix} \mathbf{z}_{t,1}^\top & \cdots & \mathbf{z}_{t,N_t}^\top \end{bmatrix}^\top \in \mathbb{R}^{4N_t}$ for $t = 0, \dots, T$, estimate the coordinates $\mathbf{m} := \begin{bmatrix} \mathbf{m}_1^\top & \cdots & \mathbf{m}_M^\top \end{bmatrix}^\top \in \mathbb{R}^{3M}$ of the landmarks that generated them
- ▶ **Assumption**: the data association Δ_t : $\{1, \ldots, M\} \rightarrow \{1, \ldots, N_t\}$ stipulating that landmark j corresponds to observation $\mathbf{z}_{t,i} \in \mathbb{R}^4$ with $i = \Delta_t(j)$ at time t is known or provided by an external algorithm
- ► **Assumption**: the landmarks **m** are static, i.e., it is not necessary to consider a motion model or a prediction step for **m**

Visual Mapping via the EKF

Observation model: with measurement noise $\mathbf{v}_{t,i} \sim \mathcal{N}(0, V)$

$$\mathbf{z}_{t,i} = h(T_t, \mathbf{m}_j) + \mathbf{v}_{t,i} := K_s \pi \left({}_O T_I T_t^{-1} \underline{\mathbf{m}}_j \right) + \mathbf{v}_{t,i}$$

- ▶ Homogeneous coordinates: $\underline{\mathbf{m}}_j := \begin{bmatrix} \mathbf{m}_j \\ 1 \end{bmatrix}$
- Projection function and its derivative:

$$\pi(\mathbf{q}) := rac{1}{q_3} \mathbf{q} \in \mathbb{R}^4 \qquad \qquad rac{d\pi}{d\mathbf{q}}(\mathbf{q}) = rac{1}{q_3} egin{bmatrix} 1 & 0 & -rac{q_1}{q_3} & 0 \ 0 & 1 & -rac{q_2}{q_3} & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & -rac{q_4}{q_3} & 1 \end{bmatrix} \in \mathbb{R}^{4 imes 4}$$

 \triangleright All observations, stacked as a $4N_t$ vector, at time t with notation abuse:

$$\mathbf{z}_{t} = \mathcal{K}_{s}\pi\left({}_{O}\mathcal{T}_{I}\mathcal{T}_{t}^{-1}\underline{\mathbf{m}}\right) + \mathbf{v}_{t} \quad \mathbf{v}_{t} \sim \mathcal{N}\left(\mathbf{0}, I \otimes V\right) \quad I \otimes V := \begin{bmatrix} V & & & \\ & \ddots & & \\ & & V \end{bmatrix}$$

Visual Mapping via the EKF

- ▶ Prior: $\mathbf{m} \mid \mathbf{z}_{0:t} \sim \mathcal{N}(\mu_t, \Sigma_t)$ with $\mu_t \in \mathbb{R}^{3M}$ and $\Sigma_t \in \mathbb{R}^{3M \times 3M}$
- **EKF update step**: given a new observation $\mathbf{z}_{t+1} \in \mathbb{R}^{4N_{t+1}}$:

$$K_{t+1} = \Sigma_t H_{t+1}^{\top} \left(H_{t+1} \Sigma_t H_{t+1}^{\top} + I \otimes V \right)^{-1}$$

$$\mu_{t+1} = \mu_t + K_{t+1} \left(\mathbf{z}_{t+1} - \underbrace{K_s \pi \left({}_{O} T_t T_{t+1}^{-1} \underline{\mu}_t \right)}_{\widetilde{\mathbf{z}}_{t+1}} \right)$$

$$\Sigma_{t+1} = (I - K_{t+1} H_{t+1}) \Sigma_t$$

- $ilde{\mathbf{z}}_{t+1} \in \mathbb{R}^{4N_{t+1}}$ is the predicted observation based on the landmark position estimates $m{\mu}_t$ at time t
- ▶ We need the observation model Jacobian $H_{t+1} \in \mathbb{R}^{4N_t \times 3M}$ evaluated at μ_t with block elements $H_{t+1,i,j} \in \mathbb{R}^{4 \times 3}$:

$$H_{t+1,i,j} = egin{cases} rac{\partial}{\partial \mathbf{m}_j} h(T_{t+1},\mathbf{m}_j) \Big|_{\mathbf{m}_j = \mu_{t,j}}, & ext{if } \Delta_t(j) = i, \\ \mathbf{0}, & ext{otherwise}. \end{cases}$$

Stereo Camera Jacobian (by Chain Rule)

- ▶ Observation model: $h(T_{t+1}, \mathbf{m}_j) = K_s \pi \left({}_{O}T_I T_{t+1}^{-1} \underline{\mathbf{m}}_j \right)$
- ► How do we obtain $\frac{\partial}{\partial \mathbf{m}_j} h(T_{t+1}, \mathbf{m}_j) \Big|_{\mathbf{m}_j = \boldsymbol{\mu}_{t,j}}$?
- Let $P = \begin{bmatrix} I & 0 \end{bmatrix} \in \mathbb{R}^{3 \times 4}$ and apply the chain rule:

$$\frac{\partial}{\partial \mathbf{m}_{j}} h(T_{t+1}, \mathbf{m}_{j}) = K_{s} \frac{\partial \pi}{\partial \mathbf{q}} (_{O}T_{I}T_{t+1}^{-1}\underline{\mathbf{m}}_{j}) \frac{\partial}{\partial \mathbf{m}_{j}} (_{O}T_{I}T_{t+1}^{-1}\underline{\mathbf{m}}_{j})
= K_{s} \frac{\partial \pi}{\partial \mathbf{q}} (_{O}T_{I}T_{t+1}^{-1}\underline{\mathbf{m}}_{j}) {_{O}T_{I}T_{t+1}^{-1}} \frac{\partial \underline{\mathbf{m}}_{j}}{\partial \mathbf{m}_{j}}
= K_{s} \frac{\partial \pi}{\partial \mathbf{q}} (_{O}T_{I}T_{t+1}^{-1}\underline{\mathbf{m}}_{j}) {_{O}T_{I}T_{t+1}^{-1}} P^{\top}$$

Stereo Camera Jacobian (by Perturbation)

► The Jacobian of a function $f(\mathbf{x})$ can also be obtained using first-order Taylor series with perturbation $\delta \mathbf{x}$:

$$f(\mathbf{x} + \delta \mathbf{x}) \approx f(\mathbf{x}) + \left[\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x})\right] \delta \mathbf{x}$$

- ▶ The Jacobian of $f(\mathbf{x})$ is the part that is linear in $\delta \mathbf{x}$ in the first-order Taylor series expansion
- ▶ Consider a perturbation $\delta \mu_{t,j} \in \mathbb{R}^3$ for the position of landmark j:

$$\mathbf{m}_j = \boldsymbol{\mu}_{t,j} + \delta \boldsymbol{\mu}_{t,j}$$

► First-order Taylor series approximation of the observation model:

$$\begin{split} & \mathcal{K}_{s}\pi\left({}_{\mathcal{O}}\mathcal{T}_{I}\mathcal{T}_{t+1}^{-1}\underline{\left(\mu_{t,j}+\delta\mu_{t,j}\right)}\right) = \mathcal{K}_{s}\pi\left({}_{\mathcal{O}}\mathcal{T}_{I}\mathcal{T}_{t+1}^{-1}\underline{\left(\underline{\mu}_{t,j}+P^{\top}\delta\mu_{t,j}\right)}\right) \\ & \approx \underbrace{\mathcal{K}_{s}\pi\left({}_{\mathcal{O}}\mathcal{T}_{I}\mathcal{T}_{t+1}^{-1}\underline{\mu}_{t,j}\right)}_{\widetilde{\mathbf{z}}_{t+1,i}} + \underbrace{\mathcal{K}_{s}\frac{d\pi}{d\mathbf{q}}\left({}_{\mathcal{O}}\mathcal{T}_{I}\mathcal{T}_{t+1}^{-1}\underline{\mu}_{t,j}\right){}_{\mathcal{O}}\mathcal{T}_{I}\mathcal{T}_{t+1}^{-1}P^{\top}}_{H_{t+1,i,j}}\delta\mu_{t,j} \end{split}$$

Visual Mapping via the EKF (Summary)

- ▶ Prior: Gaussian with mean $\mu_t \in \mathbb{R}^{3M}$ and covariance $\Sigma_t \in \mathbb{R}^{3M \times 3M}$
- ▶ Known: stereo calibration matrix K_s , extrinsics $_OT_I \in SE(3)$, IMU pose $T_{t+1} \in SE(3)$, new observation $\mathbf{z}_{t+1} \in \mathbb{R}^{4N_{t+1}}$
- lacktriangle Predicted observation based on μ_t and known correspondences Δ_{t+1} :

$$ilde{\mathbf{z}}_{t+1,i} = extsf{K}_{\mathsf{s}} \pi \left({}_{\mathcal{O}} extsf{T}_{l} extsf{T}_{t+1}^{-1} \underline{\mu}_{t,j}
ight) \in \mathbb{R}^{4} \qquad ext{for } i=1,\ldots, extsf{N}_{t+1}$$

lacktriangle Jacobian of $ilde{\mathbf{z}}_{t+1,i}$ with respect to \mathbf{m}_j evaluated at $\mu_{t,j}$:

$$H_{t+1,i,j} = \begin{cases} K_s \frac{d\pi}{d\mathbf{q}} \left({}_O T_I T_{t+1}^{-1} \underline{\boldsymbol{\mu}}_{t,j}\right) {}_O T_I T_{t+1}^{-1} P^\top, & \text{if } \Delta_t(j) = i, \\ \mathbf{0}, & \text{otherwise} \end{cases}$$

EKF update:

$$K_{t+1} = \Sigma_t H_{t+1}^{\top} (H_{t+1} \Sigma_t H_{t+1}^{\top} + I \otimes V)^{-1}$$
 $\mu_{t+1} = \mu_t + K_{t+1} (\mathbf{z}_{t+1} - \tilde{\mathbf{z}}_{t+1})$
 $I \otimes V := \begin{bmatrix} V & & \\ & \ddots & \\ & & V \end{bmatrix}$
 $V = \begin{bmatrix} V & & \\ & & V \end{bmatrix}$

Outline

Visual-Inertial SLAN

Visual Mapping

- Now, consider the localization-only problem
- ► We will simplify the prediction step by using kinematic rather than dynamic equations of motion for the IMU pose
- ▶ **Assumption**: linear velocity $\mathbf{v}_t \in \mathbb{R}^3$ instead of linear acceleration $\mathbf{a}_t \in \mathbb{R}^3$ measurements are available
- **Assumption**: known world-frame landmark coordinates $\mathbf{m} \in \mathbb{R}^{3M}$
- ▶ **Assumption**: the data association Δ_t : $\{1, \ldots, M\} \rightarrow \{1, \ldots, N_t\}$ stipulating that landmark j corresponds to observation $\mathbf{z}_{t,i} \in \mathbb{R}^4$ with $i = \Delta_t(j)$ at time t is known or provided by an external algorithm
- **Objective**: given IMU measurements $\mathbf{u}_{0:T}$ with $\mathbf{u}_t := [\mathbf{v}_t^\top, \ \boldsymbol{\omega}_t^\top]^\top \in \mathbb{R}^6$ and feature observations $\mathbf{z}_{0:T}$, estimate the IMU poses $T_t := {}_W T_{I,t} \in SE(3)$

How to Deal with an SE(3) State in the EKF?

▶ Goal: estimate $T_t \in SE(3)$ using an extended Kalman filter

- \triangleright Since T_t is not a vector, we face multiple questions:
 - ▶ How do we specify a "Gaussian" distribution over T_t ?
 - ▶ What is the motion model for T_t ?
 - ▶ How do we find derivatives with respect to T_t ?

How Do We Specify a Gaussian Distribution in SE(3)?

▶ In \mathbb{R}^6 , we can define a Gaussian distribution of a vector **x** as follows:

$$\mathbf{x} = \boldsymbol{\mu} + \boldsymbol{\epsilon} \qquad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$$

where $\mu\in\mathbb{R}^6$ is the deterministic mean and $\epsilon\in\mathbb{R}^6$ is a zero-mean Gaussian random vector

▶ In SE(3), we can define a Gaussian distribution of a pose matrix T using a perturbation ϵ on the Lie algebra:

$$T = \mu \exp(\hat{\epsilon})$$
 $\epsilon \sim \mathcal{N}(\mathbf{0}, \Sigma)$

where $\mu \in SE(3)$ is the deterministic mean and $\epsilon \in \mathbb{R}^6$ is a zero-mean Gaussian random vector corresponding to the 6 degrees of freedom of T

- Example:
 - Let $T \in SE(3)$ be a random pose with mean $\mu \in SE(3)$ and covariance $\Sigma \in \mathbb{R}^{6 \times 6}$
 - For $Q\in SE(3)$, the random variable $Y=QT=Q\mu\exp(\hat\epsilon)$ has mean $Q\mu\in SE(3)$ and covariance $\Sigma\in\mathbb{R}^{6 imes 6}$

What Is the Motion Model for a Pose Matrix T?

Continuous-time kinematics of pose $T(t) \in SE(3)$ under generalized velocity $\zeta(t) = \begin{bmatrix} \mathbf{v}(t) \\ \omega(t) \end{bmatrix} \in \mathbb{R}^6$, expressed in body-frame coordinates:

$$\dot{T}(t) = T(t)\hat{\zeta}(t)$$

▶ Discrete-time pose kinematics with **constant** $\zeta(t)$ for $t \in [t_k, t_{k+1})$:

$$T_{k+1} = T_k \exp(\tau_k \hat{\boldsymbol{\zeta}}_k)$$

where
$$T_k = T(t_k)$$
, $\tau_k = t_{k+1} - t_k$, $\zeta_k = \zeta(t_k)$

How Do We Find Derivatives With Respect to a Pose T?

▶ In \mathbb{R}^6 , the derivative of a function $f(\mathbf{x})$ can be obtained using first-order Taylor series with perturbation $\delta \mathbf{x} \in \mathbb{R}^6$:

$$f(\mathbf{x} + \delta \mathbf{x}) \approx f(\mathbf{x}) + \left[\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x})\right] \delta \mathbf{x}$$

- ▶ In \mathbb{R}^6 , the derivative is $\left. \frac{\partial}{\partial \delta \mathbf{x}} f(\mathbf{x} + \delta \mathbf{x}) \right|_{\delta \mathbf{x} = 0}$
- ▶ In SE(3), the derivative of a function f(T) can be obtained using first-order Taylor series with perturbation $\delta \psi \in \mathbb{R}^6$:

$$f(T \exp(\hat{\delta \psi})) \approx f(T) + \left[\frac{\partial f}{\partial T}(T)\right] \delta \psi$$

▶ In SE(3), the derivative is $\frac{\partial}{\partial \delta \psi} f(T \exp(\delta \hat{\psi})))\Big|_{\delta \psi = 0}$

- Now, consider the localization-only problem
- ► We will simplify the prediction step by using kinematic rather than dynamic equations of motion for the IMU pose
- ▶ **Assumption**: linear velocity $\mathbf{v}_t \in \mathbb{R}^3$ instead of linear acceleration $\mathbf{a}_t \in \mathbb{R}^3$ measurements are available
- **Assumption**: known world-frame landmark coordinates $\mathbf{m} \in \mathbb{R}^{3M}$
- ▶ **Assumption**: the data association $\Delta_t: \{1,\ldots,M\} \to \{1,\ldots,N_t\}$ stipulating that landmark j corresponds to observation $\mathbf{z}_{t,i} \in \mathbb{R}^4$ with $i = \Delta_t(j)$ at time t is known or provided by an external algorithm
- **Objective**: given IMU measurements $\mathbf{u}_{0:T}$ with $\mathbf{u}_t := [\mathbf{v}_t^\top, \ \boldsymbol{\omega}_t^\top]^\top \in \mathbb{R}^6$ and feature observations $\mathbf{z}_{0:T}$, estimate the IMU poses $T_t := {}_W T_{I,t} \in SE(3)$

Pose Kinematics with Perturbation

▶ **Motion model** for the continuous-time IMU pose T(t) with noise $\mathbf{w}(t)$:

$$\dot{\mathcal{T}} = \mathcal{T}\left(\hat{\mathbf{u}} + \hat{\mathbf{w}}
ight) \qquad \qquad \mathbf{u}(t) := egin{bmatrix} \mathbf{v}(t) \ \omega(t) \end{bmatrix} \in \mathbb{R}^6$$

▶ To consider a Gaussian distribution over T, express it as a nominal pose $\mu \in SE(3)$ with small perturbation $\delta \hat{\mu} \in \mathfrak{se}(3)$:

$$\mathcal{T} = \boldsymbol{\mu} \exp(\hat{\delta \boldsymbol{\mu}}) pprox \boldsymbol{\mu} \left(\mathbf{I} + \hat{\delta \boldsymbol{\mu}}
ight)$$

▶ Substitute the nominal + perturbed pose in the kinematic equations:

$$\begin{split} \dot{\mu} \left(\mathbf{I} + \delta \hat{\boldsymbol{\mu}} \right) + \mu \left(\delta \hat{\boldsymbol{\mu}} \right) &= \mu \left(\mathbf{I} + \delta \hat{\boldsymbol{\mu}} \right) (\hat{\mathbf{u}} + \hat{\mathbf{w}}) \\ \dot{\mu} + \dot{\mu} \delta \hat{\boldsymbol{\mu}} + \mu \delta \hat{\boldsymbol{\mu}} &= \mu \hat{\mathbf{u}} + \mu \hat{\mathbf{w}} + \mu \delta \hat{\boldsymbol{\mu}} \hat{\mathbf{u}} + \mu \delta \hat{\boldsymbol{\mu}} \hat{\hat{\mathbf{w}}} \\ \dot{\mu} &= \mu \hat{\mathbf{u}} \qquad \mu \hat{\mathbf{u}} \delta \hat{\boldsymbol{\mu}} + \mu \delta \hat{\boldsymbol{\mu}} &= \mu \hat{\mathbf{w}} + \mu \delta \hat{\boldsymbol{\mu}} \hat{\mathbf{u}} \\ \dot{\mu} &= \mu \hat{\mathbf{u}} \qquad \delta \hat{\boldsymbol{\mu}} &= \delta \hat{\boldsymbol{\mu}} \hat{\mathbf{u}} - \hat{\mathbf{u}} \delta \hat{\boldsymbol{\mu}} + \hat{\mathbf{w}} &= \left(-\hat{\mathbf{u}} \delta \boldsymbol{\mu} \right)^{\wedge} + \hat{\mathbf{w}} \end{split}$$

Pose Kinematics with Perturbation

Using $T = \mu \exp(\hat{\delta \mu}) \approx \mu \left(I + \hat{\delta \mu}\right)$, the pose kinematics $\dot{T} = T(\hat{\mathbf{u}} + \hat{\mathbf{w}})$ can be split into nominal and perturbation kinematics:

$$\begin{array}{ll} \text{nominal}: & \dot{\boldsymbol{\mu}} = \boldsymbol{\mu} \hat{\mathbf{u}} \\ \text{perturbation}: & \dot{\delta \boldsymbol{\mu}} = - \dot{\mathbf{u}} \delta \boldsymbol{\mu} + \mathbf{w} \end{array} \qquad \dot{\hat{\mathbf{u}}} := \begin{bmatrix} \hat{\boldsymbol{\omega}} & \hat{\mathbf{v}} \\ 0 & \hat{\boldsymbol{\omega}} \end{bmatrix} \in \mathbb{R}^{6 \times 6}$$

▶ In discrete time with discretization τ_t , the above becomes:

$$\begin{aligned} & \text{nominal}: & & \boldsymbol{\mu}_{t+1} = \boldsymbol{\mu}_t \exp\left(\tau_t \hat{\mathbf{u}}_t\right) \\ & \text{perturbation}: & & \delta \boldsymbol{\mu}_{t+1} = \exp\left(-\tau_t \dot{\hat{\mathbf{u}}}_t\right) \delta \boldsymbol{\mu}_t + \sqrt{\tau_t} \mathbf{w}_t \end{aligned}$$

▶ This is useful to separate the effect of the noise \mathbf{w}_t from the motion of the deterministic part of T_t . See Barfoot Ch. 7.2 for details.

EKF Prediction Step

- ▶ Prior: $T_t | \mathbf{z}_{0:t}, \mathbf{u}_{0:t-1} \sim \mathcal{N}(\boldsymbol{\mu}_{t|t}, \boldsymbol{\Sigma}_{t|t})$ with $\boldsymbol{\mu}_{t|t} \in SE(3)$ and $\boldsymbol{\Sigma}_{t|t} \in \mathbb{R}^{6 \times 6}$
- ▶ This means that $T_t = \mu_{t|t} \exp(\hat{\delta \mu}_{t|t})$ with $\delta \mu_{t|t} \sim \mathcal{N}(0, \Sigma_{t|t})$
- ▶ Motion model: nominal kinematics of $\mu_{t|t}$ and perturbation kinematics of $\delta \mu_{t|t}$ with time discretization τ_t :

$$\begin{split} & \boldsymbol{\mu}_{t+1|t} = \boldsymbol{\mu}_{t|t} \exp \left(\tau_t \hat{\mathbf{u}}_t \right) \\ & \delta \boldsymbol{\mu}_{t+1|t} = \exp \left(-\tau_t \overset{\wedge}{\mathbf{u}}_t \right) \delta \boldsymbol{\mu}_{t|t} + \sqrt{\tau_t} \mathbf{w}_t \end{split}$$

EKF prediction step with $\mathbf{w}_t \sim \mathcal{N}(0, W)$:

$$oldsymbol{\mu}_{t+1|t} = oldsymbol{\mu}_{t|t} \exp\left(au_t \hat{f u}_t
ight)$$

$$\Sigma_{t+1|t} = \mathbb{E}[\delta \boldsymbol{\mu}_{t+1|t} \delta \boldsymbol{\mu}_{t+1|t}^{\top}] = \exp\left(-\tau_t \dot{\hat{\mathbf{u}}}_t\right) \Sigma_{t|t} \exp\left(-\tau_t \dot{\hat{\mathbf{u}}}_t\right)^{\top} + \tau_t W$$

where

$$\mathbf{u}_t = egin{bmatrix} \mathbf{v}_t \ \mathbf{\omega}_t \end{bmatrix} \in \mathbb{R}^6 \quad \hat{\mathbf{u}}_t = egin{bmatrix} \hat{oldsymbol{\omega}}_t & \mathbf{v}_t \ \mathbf{0}^ op & 0 \end{bmatrix} \in \mathbb{R}^{4 imes 4} \quad \hat{oldsymbol{u}}_t = egin{bmatrix} \hat{oldsymbol{\omega}}_t & \hat{oldsymbol{v}}_t \ 0 & \hat{oldsymbol{\omega}}_t \end{bmatrix} \in \mathbb{R}^{6 imes 6}$$

EKF Update Step

- ▶ **Prior**: $T_{t+1}|\mathbf{z}_{0:t}, \mathbf{u}_{0:t} \sim \mathcal{N}(\boldsymbol{\mu}_{t+1|t}, \boldsymbol{\Sigma}_{t+1|t})$ with $\boldsymbol{\mu}_{t+1|t} \in SE(3)$ and $\boldsymbol{\Sigma}_{t+1|t} \in \mathbb{R}^{6 \times 6}$
- ▶ **Observation model**: with measurement noise $\mathbf{v}_t \sim \mathcal{N}(0, V)$

$$\mathbf{z}_{t+1,i} = h(T_{t+1}, \mathbf{m}_j) + \mathbf{v}_{t+1,i} := K_s \pi \left({}_{O}T_I T_{t+1}^{-1} \underline{\mathbf{m}}_j \right) + \mathbf{v}_{t+1,i}$$

- ▶ The observation model is the same as in the visual mapping problem but this time the variable of interest is the IMU pose $T_{t+1} \in SE(3)$ instead of the landmark positions $\mathbf{m} \in \mathbb{R}^{3M}$
- We need the observation model Jacobian $H_{t+1} \in \mathbb{R}^{4N_{t+1} \times 6}$ with respect to the IMU pose T_{t+1} , evaluated at the IMU pose mean $\mu_{t+1|t}$

EKF Update Step

- Let the elements of $H_{t+1} \in \mathbb{R}^{4N_{t+1} \times 6}$ corresponding to different observations i be $H_{t+1,j} \in \mathbb{R}^{4 \times 6}$
- The first-order Taylor series approximation of observation i at time t+1 using an IMU pose perturbation $\delta \mu$ is:

$$\mathbf{z}_{t+1,i} = K_{s}\pi \left({}_{O}T_{I} \left(\boldsymbol{\mu}_{t+1|t} \exp \left(\hat{\delta \boldsymbol{\mu}} \right) \right)^{-1} \underline{\mathbf{m}}_{j} \right) + \mathbf{v}_{t+1,i}$$

$$\approx K_{s}\pi \left({}_{O}T_{I} \left(I - \hat{\delta \boldsymbol{\mu}} \right) \boldsymbol{\mu}_{t+1|t}^{-1} \underline{\mathbf{m}}_{j} \right) + \mathbf{v}_{t+1,i}$$

$$= K_{s}\pi \left({}_{O}T_{I} \boldsymbol{\mu}_{t+1|t}^{-1} \underline{\mathbf{m}}_{j} - {}_{O}T_{I} \left(\boldsymbol{\mu}_{t+1|t}^{-1} \underline{\mathbf{m}}_{j} \right)^{\odot} \delta \boldsymbol{\mu} \right) + \mathbf{v}_{t+1,i}$$

$$\approx \underbrace{K_{s}\pi \left({}_{O}T_{I} \boldsymbol{\mu}_{t+1|t}^{-1} \underline{\mathbf{m}}_{j} \right)}_{\tilde{\mathbf{z}}_{t+1,i}} \underbrace{-K_{s} \frac{d\pi}{d\mathbf{q}} \left({}_{O}T_{I} \boldsymbol{\mu}_{t+1|t}^{-1} \underline{\mathbf{m}}_{j} \right) {}_{O}T_{I} \left(\boldsymbol{\mu}_{t+1|t}^{-1} \underline{\mathbf{m}}_{j} \right)^{\odot}}_{H_{t+1,i}} \delta \boldsymbol{\mu} + \mathbf{v}_{t+1,i}$$

where for homogeneous coordinates $\underline{\mathbf{s}} \in \mathbb{R}^4$ and $\hat{\boldsymbol{\xi}} \in \mathfrak{se}(3)$:

$$\hat{\boldsymbol{\xi}}\underline{\mathbf{s}} = \underline{\mathbf{s}}^{\odot}\boldsymbol{\xi} \qquad \begin{bmatrix} \mathbf{s} \\ 1 \end{bmatrix}^{\odot} := \begin{bmatrix} I & -\hat{\mathbf{s}} \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{4 \times 6}$$

EKF Update Step

- ▶ **Prior**: Gaussian with mean $\mu_{t+1|t} \in SE(3)$ and covariance $\Sigma_{t+1|t} \in \mathbb{R}^{6 \times 6}$
- ▶ Known: stereo calibration matrix K_s , extrinsics ${}_{O}T_I \in SE(3)$, landmark positions $\mathbf{m} \in \mathbb{R}^{3M}$, new observations $\mathbf{z}_{t+1} \in \mathbb{R}^{4N_{t+1}}$
- lacktriangle Predicted observation based on $\mu_{t+1|t}$ and known correspondences Δ_t :

$$\tilde{\mathbf{z}}_{t+1,i} := K_s \pi \left({}_O T_I \boldsymbol{\mu}_{t+1|t}^{-1} \underline{\mathbf{m}}_j \right) \qquad ext{for } i = 1, \dots, N_{t+1}$$

▶ Jacobian of $\tilde{\mathbf{z}}_{t+1,i}$ with respect to T_{t+1} evaluated at $\mu_{t+1|t}$:

$$H_{t+1,i} = -K_{s} \frac{d\pi}{d\mathbf{q}} \left({}_{O}T_{I}\boldsymbol{\mu}_{t+1|t}^{-1}\underline{\mathbf{m}}_{j} \right) {}_{O}T_{I} \left(\boldsymbol{\mu}_{t+1|t}^{-1}\underline{\mathbf{m}}_{j} \right)^{\odot} \in \mathbb{R}^{4 \times 6}$$

EKF update step:

$$K_{t+1} = \sum_{t+1|t} H_{t+1}^{\top} \left(H_{t+1} \sum_{t+1|t} H_{t+1}^{\top} + I \otimes V \right)^{-1}$$

$$\mu_{t+1|t+1} = \mu_{t+1|t} \exp\left(\left(K_{t+1} (\mathbf{z}_{t+1} - \tilde{\mathbf{z}}_{t+1}) \right)^{\wedge} \right) \qquad H_{t+1} = \begin{bmatrix} H_{t+1,1} \\ \vdots \\ H_{t+1,N_{t+1}} \end{bmatrix}$$

$$\sum_{t+1|t+1} = \left(I - K_{t+1} H_{t+1} \right) \sum_{t+1|t}$$