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Visual-Inertial Simultaneous Localization and Mapping
▶ Input:

▶ IMU: linear acceleration at ∈ R3 and rotational velocity ωt ∈ R3

▶ Camera: features zt,i ∈ R4 (left and right image pixels) for i = 1, . . . ,Nt

▶ Assumption: The transformation OTI ∈ SE (3) from the IMU to the camera
optical frame (extrinsic parameters) and the stereo camera calibration matrix
Ks (intrinsic parameters) are known.

Ks :=


fsu 0 cu 0
0 fsv cv 0
fsu 0 cu −fsub
0 fsv cv 0


f = focal length [m]

su, sv = pixel scaling [pixels/m]

cu, cv = principal point [pixels]

b = stereo baseline [m]
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Visual-Inertial Simultaneous Localization and Mapping
▶ Output:

▶ World-frame IMU pose WTI ∈ SE(3) over time (green)

▶ World-frame coordinates mj ∈ R3 of the j = 1, . . . ,M point landmarks (black)
that generated the visual features zt,i ∈ R4
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Extended Kalman Filter

Prior: xt | z0:t ,u0:t−1 ∼ N (µt|t ,Σt|t)

Motion model:
xt+1 = f (xt ,ut ,wt), wt ∼ N (0,W )

Ft :=
df

dx
(µt|t ,ut , 0), Qt :=

df

dw
(µt|t ,ut , 0)

Observation model:
zt = h(xt , vt), vt ∼ N (0,V )

Ht :=
dh

dx
(µt|t−1, 0), Rt :=

dh

dv
(µt|t−1, 0)

Prediction:
µt+1|t = f (µt|t ,ut , 0)

Σt+1|t = FtΣt|tF
⊤
t + QtWQ⊤

t

Update:
µt+1|t+1 = µt+1|t + Kt+1|t(zt+1 − h(µt+1|t , 0))

Σt+1|t+1 = (I − Kt+1|tHt+1)Σt+1|t

Kalman gain: Kt+1|t := Σt+1|tH
⊤
t+1

(
Ht+1Σt+1|tH

⊤
t+1 + Rt+1VR

⊤
t+1

)−1
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Visual Mapping

▶ Consider the mapping-only problem first

▶ Assumption: the IMU pose Tt := WTI ,t ∈ SE (3) is known

▶ Objective: given the observations zt :=
[
z⊤t,1 · · · z⊤t,Nt

]⊤ ∈ R4Nt for

t = 0, . . . ,T , estimate the coordinates m :=
[
m⊤

1 · · · m⊤
M

]⊤ ∈ R3M of
the landmarks that generated them

▶ Assumption: the data association ∆t : {1, . . . ,M} → {1, . . . ,Nt}
stipulating that landmark j corresponds to observation zt,i ∈ R4 with
i = ∆t(j) at time t is known or provided by an external algorithm

▶ Assumption: the landmarks m are static, i.e., it is not necessary to consider
a motion model or a prediction step for m
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Visual Mapping via the EKF
▶ Observation model: with measurement noise vt,i ∼ N (0,V )

zt,i = h(Tt ,mj) + vt,i := Ksπ
(
OTIT

−1
t mj

)
+ vt,i

▶ Homogeneous coordinates: mj :=

[
mj

1

]
▶ Projection function and its derivative:

π(q) :=
1

q3
q ∈ R4 dπ

dq
(q) =

1

q3


1 0 − q1

q3
0

0 1 − q2
q3

0

0 0 0 0
0 0 − q4

q3
1

 ∈ R4×4

▶ All observations, stacked as a 4Nt vector, at time t with notation abuse:

zt = Ksπ
(
OTIT

−1
t m

)
+ vt vt ∼ N (0, I ⊗ V ) I ⊗ V :=

V . . .

V


8



Visual Mapping via the EKF
▶ Prior: m | z0:t ∼ N (µt ,Σt) with µt ∈ R3M and Σt ∈ R3M×3M

▶ EKF update step: given a new observation zt+1 ∈ R4Nt+1 :

Kt+1 = ΣtH
⊤
t+1

(
Ht+1ΣtH

⊤
t+1 + I ⊗ V

)−1

µt+1 = µt + Kt+1

(
zt+1 − Ksπ

(
OTIT

−1
t+1µt

)
︸ ︷︷ ︸

z̃t+1

)

Σt+1 = (I − Kt+1Ht+1)Σt

▶ z̃t+1 ∈ R4Nt+1 is the predicted observation based on the landmark position
estimates µt at time t

▶ We need the observation model Jacobian Ht+1 ∈ R4Nt×3M evaluated at µt

with block elements Ht+1,i,j ∈ R4×3:

Ht+1,i,j =


∂

∂mj
h(Tt+1,mj)

∣∣∣
mj=µt,j

, if ∆t(j) = i ,

0, otherwise.

9



Stereo Camera Jacobian (by Chain Rule)

▶ Observation model: h(Tt+1,mj) = Ksπ
(
OTIT

−1
t+1mj

)
▶ How do we obtain ∂

∂mj
h(Tt+1,mj)

∣∣∣
mj=µt,j

?

▶ Let P =
[
I 0

]
∈ R3×4 and apply the chain rule:

∂

∂mj
h(Tt+1,mj) = Ks

∂π

∂q
(OTIT

−1
t+1mj)

∂

∂mj

(
OTIT

−1
t+1mj

)
= Ks

∂π

∂q

(
OTIT

−1
t+1mj

)
OTIT

−1
t+1

∂mj

∂mj

= Ks
∂π

∂q

(
OTIT

−1
t+1mj

)
OTIT

−1
t+1P

⊤
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Stereo Camera Jacobian (by Perturbation)
▶ The Jacobian of a function f (x) can also be obtained using first-order Taylor

series with perturbation δx:

f (x+ δx) ≈ f (x) +

[
∂f

∂x
(x)

]
δx

▶ The Jacobian of f (x) is the part that is linear in δx in the first-order Taylor
series expansion

▶ Consider a perturbation δµt,j ∈ R3 for the position of landmark j :

mj = µt,j + δµt,j

▶ First-order Taylor series approximation of the observation model:

Ksπ
(
OTIT

−1
t+1

(
µt,j + δµt,j

))
= Ksπ

(
OTIT

−1
t+1

(
µ

t,j
+ P⊤δµt,j

))
≈ Ksπ

(
OTIT

−1
t+1µt,j

)
︸ ︷︷ ︸

z̃t+1,i

+Ks
dπ

dq

(
OTIT

−1
t+1µt,j

)
OTIT

−1
t+1P

⊤︸ ︷︷ ︸
Ht+1,i,j

δµt,j
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Visual Mapping via the EKF (Summary)
▶ Prior: Gaussian with mean µt ∈ R3M and covariance Σt ∈ R3M×3M

▶ Known: stereo calibration matrix Ks , extrinsics OTI ∈ SE (3), IMU pose
Tt+1 ∈ SE (3), new observation zt+1 ∈ R4Nt+1

▶ Predicted observation based on µt and known correspondences ∆t+1:

z̃t+1,i = Ksπ
(
OTIT

−1
t+1µt,j

)
∈ R4 for i = 1, . . . ,Nt+1

▶ Jacobian of z̃t+1,i with respect to mj evaluated at µt,j :

Ht+1,i,j =

{
Ks

dπ
dq

(
OTIT

−1
t+1µt,j

)
OTIT

−1
t+1P

⊤, if ∆t(j) = i ,

0, otherwise

▶ EKF update:

Kt+1 = ΣtH
⊤
t+1

(
Ht+1ΣtH

⊤
t+1 + I ⊗ V

)−1

µt+1 = µt + Kt+1 (zt+1 − z̃t+1)

Σt+1 = (I − Kt+1Ht+1)Σt

I ⊗ V :=

V . . .

V


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Visual-Inertial Odometry

▶ Now, consider the localization-only problem

▶ We will simplify the prediction step by using kinematic rather than dynamic
equations of motion for the IMU pose

▶ Assumption: linear velocity vt ∈ R3 instead of linear acceleration at ∈ R3

measurements are available

▶ Assumption: known world-frame landmark coordinates m ∈ R3M

▶ Assumption: the data association ∆t : {1, . . . ,M} → {1, . . . ,Nt}
stipulating that landmark j corresponds to observation zt,i ∈ R4 with
i = ∆t(j) at time t is known or provided by an external algorithm

▶ Objective: given IMU measurements u0:T with ut := [v⊤t , ω
⊤
t ]

⊤ ∈ R6 and
feature observations z0:T , estimate the IMU poses Tt := WTI ,t ∈ SE (3)
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How to Deal with an SE (3) State in the EKF?

▶ Goal: estimate Tt ∈ SE (3) using an extended Kalman filter

▶ SE (3) :=

{
T =

[
R p
0⊤ 1

]
∈ R4×4

∣∣∣∣ R ∈ SO(3),p ∈ R3

}
▶ Since Tt is not a vector, we face multiple questions:

▶ How do we specify a “Gaussian” distribution over Tt?

▶ What is the motion model for Tt?

▶ How do we find derivatives with respect to Tt?
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How Do We Specify a Gaussian Distribution in SE (3)?

▶ In R6, we can define a Gaussian distribution of a vector x as follows:

x = µ+ ϵ ϵ ∼ N (0,Σ)

where µ ∈ R6 is the deterministic mean and ϵ ∈ R6 is a zero-mean Gaussian
random vector

▶ In SE (3), we can define a Gaussian distribution of a pose matrix T using a
perturbation ϵ on the Lie algebra:

T = µ exp(ϵ̂) ϵ ∼ N (0,Σ)

where µ ∈ SE (3) is the deterministic mean and ϵ ∈ R6 is a zero-mean
Gaussian random vector corresponding to the 6 degrees of freedom of T

▶ Example:
▶ Let T ∈ SE(3) be a random pose with mean µ ∈ SE(3) and covariance

Σ ∈ R6×6

▶ For Q ∈ SE(3), the random variable Y = QT = Qµ exp(ϵ̂) has mean
Qµ ∈ SE(3) and covariance Σ ∈ R6×6
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What Is the Motion Model for a Pose Matrix T?

▶ Continuous-time kinematics of pose T (t) ∈ SE (3) under generalized velocity

ζ(t) =

[
v(t)
ω(t)

]
∈ R6, expressed in body-frame coordinates:

Ṫ (t) = T (t)ζ̂(t)

▶ Discrete-time pose kinematics with constant ζ(t) for t ∈ [tk , tk+1):

Tk+1 = Tk exp(τk ζ̂k)

where Tk = T (tk), τk = tk+1 − tk , ζk = ζ(tk)
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How Do We Find Derivatives With Respect to a Pose T?

▶ In R6, the derivative of a function f (x) can be obtained using first-order
Taylor series with perturbation δx ∈ R6:

f (x+ δx) ≈ f (x) +

[
∂f

∂x
(x)

]
δx

▶ In R6, the derivative is
∂

∂δx
f (x+ δx)

∣∣∣∣
δx=0

▶ In SE (3), the derivative of a function f (T ) can be obtained using first-order
Taylor series with perturbation δψ ∈ R6:

f (T exp( ˆδψ)) ≈ f (T ) +

[
∂f

∂T
(T )

]
δψ

▶ In SE (3), the derivative is
∂

∂δψ
f (T exp( ˆδψ)))

∣∣∣∣
δψ=0
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Visual-Inertial Odometry

▶ Now, consider the localization-only problem

▶ We will simplify the prediction step by using kinematic rather than dynamic
equations of motion for the IMU pose

▶ Assumption: linear velocity vt ∈ R3 instead of linear acceleration at ∈ R3

measurements are available

▶ Assumption: known world-frame landmark coordinates m ∈ R3M

▶ Assumption: the data association ∆t : {1, . . . ,M} → {1, . . . ,Nt}
stipulating that landmark j corresponds to observation zt,i ∈ R4 with
i = ∆t(j) at time t is known or provided by an external algorithm

▶ Objective: given IMU measurements u0:T with ut := [v⊤t , ω
⊤
t ]

⊤ ∈ R6 and
feature observations z0:T , estimate the IMU poses Tt := WTI ,t ∈ SE (3)
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Pose Kinematics with Perturbation
▶ Motion model for the continuous-time IMU pose T (t) with noise w(t):

Ṫ = T (û+ ŵ) u(t) :=

[
v(t)
ω(t)

]
∈ R6

▶ To consider a Gaussian distribution over T , express it as a nominal pose
µ ∈ SE (3) with small perturbation δ̂µ ∈ se(3):

T = µ exp(δ̂µ) ≈ µ
(
I + δ̂µ

)
▶ Substitute the nominal + perturbed pose in the kinematic equations:

µ̇
(
I + δ̂µ

)
+ µ

(
ˆ̇δµ
)
= µ

(
I + δ̂µ

)
(û+ ŵ)

µ̇+ µ̇δ̂µ+ µ ˆ̇δµ = µû+ µŵ + µδ̂µû+����*
0

µδ̂µŵ

µ̇ = µû µûδ̂µ+ µ ˆ̇δµ = µŵ + µδ̂µû

µ̇ = µû ˆ̇δµ = δ̂µû− ûδ̂µ+ ŵ =
(
−⋏
uδµ

)∧
+ ŵ

20



Pose Kinematics with Perturbation

▶ Using T = µ exp(δ̂µ) ≈ µ
(
I + δ̂µ

)
, the pose kinematics Ṫ = T (û+ ŵ)

can be split into nominal and perturbation kinematics:

nominal : µ̇ = µû

perturbation : ˙δµ = −⋏
uδµ+w

⋏
u :=

[
ω̂ v̂
0 ω̂

]
∈ R6×6

▶ In discrete time with discretization τt , the above becomes:

nominal : µt+1 = µt exp (τt ût)

perturbation : δµt+1 = exp
(
−τt

⋏
ut

)
δµt +

√
τtwt

▶ This is useful to separate the effect of the noise wt from the motion of the
deterministic part of Tt . See Barfoot Ch. 7.2 for details.
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EKF Prediction Step
▶ Prior: Tt |z0:t ,u0:t−1 ∼ N (µt|t ,Σt|t) with µt|t ∈SE (3) and Σt|t ∈ R6×6

▶ This means that Tt = µt|t exp(δ̂µt|t) with δµt|t ∼ N (0,Σt|t)

▶ Motion model: nominal kinematics of µt|t and perturbation kinematics of
δµt|t with time discretization τt :

µt+1|t = µt|t exp (τt ût)

δµt+1|t = exp
(
−τt

⋏
ut

)
δµt|t +

√
τtwt

▶ EKF prediction step with wt ∼ N (0,W ):

µt+1|t = µt|t exp (τt ût)

Σt+1|t = E[δµt+1|tδµ
⊤
t+1|t ] = exp

(
−τt

⋏
ut

)
Σt|t exp

(
−τt

⋏
ut

)⊤
+ τtW

where

ut =

[
vt
ωt

]
∈ R6 ût =

[
ω̂t vt
0⊤ 0

]
∈ R4×4 ⋏

ut =

[
ω̂t v̂t
0 ω̂t

]
∈ R6×6
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EKF Update Step

▶ Prior: Tt+1|z0:t ,u0:t ∼ N (µt+1|t ,Σt+1|t) with µt+1|t ∈ SE (3) and

Σt+1|t ∈ R6×6

▶ Observation model: with measurement noise vt ∼ N (0,V )

zt+1,i = h(Tt+1,mj) + vt+1,i := Ksπ
(
OTIT

−1
t+1mj

)
+ vt+1,i

▶ The observation model is the same as in the visual mapping problem but this
time the variable of interest is the IMU pose Tt+1 ∈ SE (3) instead of the
landmark positions m ∈ R3M

▶ We need the observation model Jacobian Ht+1 ∈ R4Nt+1×6 with respect to
the IMU pose Tt+1, evaluated at the IMU pose mean µt+1|t
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EKF Update Step
▶ Let the elements of Ht+1 ∈ R4Nt+1×6 corresponding to different observations i

be Ht+1,i ∈ R4×6

▶ The first-order Taylor series approximation of observation i at time t + 1
using an IMU pose perturbation δµ is:

zt+1,i = Ksπ

(
OTI

(
µt+1|t exp

(
δ̂µ

))−1

mj

)
+ vt+1,i

≈ Ksπ
(
OTI

(
I − δ̂µ

)
µ−1

t+1|tmj

)
+ vt+1,i

= Ksπ

(
OTIµ

−1
t+1|tmj − OTI

(
µ−1

t+1|tmj

)⊙
δµ

)
+ vt+1,i

≈ Ksπ
(
OTIµ

−1
t+1|tmj

)
︸ ︷︷ ︸

z̃t+1,i

−Ks
dπ

dq

(
OTIµ

−1
t+1|tmj

)
OTI

(
µ−1

t+1|tmj

)⊙

︸ ︷︷ ︸
Ht+1,i

δµ+ vt+1,i

where for homogeneous coordinates s ∈ R4 and ξ̂ ∈ se(3):

ξ̂s = s⊙ξ

[
s
1

]⊙
:=

[
I −ŝ
0 0

]
∈ R4×6
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EKF Update Step

▶ Prior: Gaussian with mean µt+1|t ∈ SE (3) and covariance Σt+1|t ∈ R6×6

▶ Known: stereo calibration matrix Ks , extrinsics OTI ∈ SE (3), landmark
positions m ∈ R3M , new observations zt+1 ∈ R4Nt+1

▶ Predicted observation based on µt+1|t and known correspondences ∆t :

z̃t+1,i := Ksπ
(
OTIµ

−1
t+1|tmj

)
for i = 1, . . . ,Nt+1

▶ Jacobian of z̃t+1,i with respect to Tt+1 evaluated at µt+1|t :

Ht+1,i = −Ks
dπ

dq

(
OTIµ

−1
t+1|tmj

)
OTI

(
µ−1

t+1|tmj

)⊙
∈ R4×6

▶ EKF update step:

Kt+1 = Σt+1|tH
⊤
t+1

(
Ht+1Σt+1|tH

⊤
t+1 + I ⊗ V

)−1

µt+1|t+1 = µt+1|t exp
(
(Kt+1(zt+1 − z̃t+1))

∧)
Σt+1|t+1 = (I − Kt+1Ht+1)Σt+1|t

Ht+1 =

 Ht+1,1

...
Ht+1,Nt+1


25


	Visual-Inertial SLAM
	Visual Mapping
	Visual-Inertial Odometry

