
ECE276A: Sensing & Estimation in Robotics
Lecture 2: Unconstrained Optimization

Nikolay Atanasov

natanasov@ucsd.edu

1

mailto:natanasov@ucsd.edu

Outline

Linear Algebra Review

Unconstrained Optimization

Gradient Descent

Newton’s and Gauss-Newton’s Methods

Example

2

Field

▶ A field is a set F with two binary operations, + : F ×F → F (addition) and
· : F × F → F (multiplication), which satisfy the following axioms:

▶ Associativity: a+ (b + c) = (a+ b) + c and a(bc) = (ab)c, ∀a, b, c ∈ F
▶ Commutativity: a+ b = b + a and ab = ba, ∀a, b ∈ F
▶ Identity: ∃1, 0 ∈ F such that a+ 0 = a and a1 = a, ∀a ∈ F
▶ Inverse: ∀a ∈ F , ∃−a ∈ F such that a+ (−a) = 0

∀a ∈ F \ {0},∃a−1 ∈ F \ {0} such that aa−1 = 1

▶ Distributivity: a(b + c) = (ab) + (ac), ∀a, b, c ∈ F

▶ Examples: real numbers R, complex numbers C, rational numbers Q

3

Vector Space

▶ A vector space over a field F is a set V with two binary operations,
+ : V × V → V (addition) and · : F × V → V (scalar multiplication), which
satisfy the following axioms:

▶ Associativity: x+ (y + z) = (x+ y) + z, ∀x, y, z ∈ V
▶ Compatibility: a(bx) = (ab)x, ∀a, b ∈ F and ∀x ∈ V
▶ Commutativity: x+ y = x+ y, ∀x, y ∈ V
▶ Identity: ∃ 0 ∈ V and 1 ∈ F such that x+ 0 = x and 1x = x, ∀x ∈ V
▶ Inverse: ∀x ∈ V, ∃−x ∈ V such that x+ (−x) = 0

▶ Distributivity: a(x+ y) = ax+ by and (a+ b)x = ax+ bx, ∀a, b ∈ F and
∀x, y ∈ V

▶ Examples: real vectors Rd , complex vectors Cd , rational vectors Qd ,
functions Rd → R

4

Basis and Dimension

▶ A basis of a vector space V over a field F is a set B ⊆ V that satisfies:
▶ linear independence: for all finite {x1, . . . , xm} ⊆ B,

if a1x1 + · · ·+ amxm = 0 for some a1, . . . , am ∈ F , then a1 = · · · = am = 0

▶ B spans V: ∀x ∈ V, ∃ x1, . . . , xd ∈ B and unique a1, . . . , ad ∈ F such that
x = a1x1 + · · ·+ adxd

▶ The dimension d of a vector space V is the cardinality of its bases

5

Inner Product and Norm

▶ An inner product on a vector space V over a field F is a function
⟨·, ·⟩ : V × V → F such that for all a ∈ F and all x, y, z ∈ V:

▶ ⟨ax, y⟩ = a⟨x, y⟩ (homogeneity)

▶ ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩ (additivity)

▶ ⟨x, y⟩ = ⟨y, x⟩ (conjugate symmetry)

▶ ⟨x, x⟩ ≥ 0 (non-negativity)

▶ ⟨x, x⟩ = 0 iff x = 0 (definiteness)

▶ A norm on a vector space V over a field F is a function ∥ · ∥ : V → R such
that for all a ∈ F and all x, y ∈ V:

▶ ∥ax∥ = |a|∥x∥ (absolute homogeneity)

▶ ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality)

▶ ∥x∥ ≥ 0 (non-negativity)

▶ ∥x∥ = 0 iff x = 0 (definiteness)

6

Euclidean Vector Space

▶ A Euclidean vector space Rd is a vector space with finite dimension d over
the real numbers R

▶ A Euclidean vector x ∈ Rd is a collection of scalars xi ∈ R for i = 1, . . . , d
organized as a column:

x =

x1...
xd


▶ The transpose of x ∈ Rd is organized as a row: x⊤ =

[
x1 · · · xd

]
▶ The Euclidean inner product between two vectors x, y ∈ Rd is:

⟨x, y⟩ = x⊤y =
d∑

i=1

xiyi

▶ The Euclidean norm of a vector x ∈ Rd is ∥x∥2 :=
√
⟨x, x⟩ =

√
x⊤x

7

Matrices

▶ A real m × n matrix A is a rectangular array of scalars Aij ∈ R for
i = 1, . . . ,m and j = 1, . . . , n

▶ The set Rm×n of real m × n matrices is a vector space

▶ The entries of the transpose A⊤ ∈ Rn×m of a matrix A ∈ Rm×n are
A⊤
ij = Aji . The transpose satisfies: (AB)⊤ = B⊤A⊤

▶ The trace of a matrix A ∈ Rn×n is the sum of its diagonal entries:

tr(A) :=
n∑

i=1

Aii tr(ABC) = tr(BCA) = tr(CAB)

▶ The Frobenius inner product between two matrices X ,Y ∈ Rm×n is:

⟨X ,Y ⟩ = tr(X⊤Y)

▶ The Frobenius norm of a matrix X ∈ Rm×n is: ∥X∥F :=
√
tr(X⊤X)

8

Matrix Determinant and Inverse

▶ The determinant of a matrix A ∈ Rn×n is:

det(A) :=
n∑

j=1

Aijcofij(A) det(AB) = det(A) det(B) = det(BA)

where cofij(A) is the cofactor of the entry Aij and is equal to (−1)i+j times
the determinant of the (n − 1)× (n − 1) submatrix that results when the
i th-row and j th-col of A are removed. This recursive definition uses the fact
that the determinant of a scalar is the scalar itself.

▶ The adjugate is the transpose of the cofactor matrix:

adj(A) := cof(A)⊤

▶ The inverse A−1 of A exists iff det(A) ̸= 0 and satisfies:

A−1A = I A−1 =
adj(A)

det(A)
(AB)−1 = B−1A−1

9

Eigenvalues and Eigenvectors

▶ For any A ∈ Rn×n, if there exists q ∈ Cn \ {0} and λ ∈ C such that:

Aq = λq

then q is an eigenvector corresponding to the eigenvalue λ.

▶ The n eigenvalues of A ∈ Rn×n are the n roots of the characteristic
polynomial pA(s) of A:

pA(s) := det(sI − A)

▶ A real matrix can have complex eigenvalues and eigenvectors, which appear
in conjugate pairs.

▶ Eigenvectors are not unique since for any c ∈ C \ {0}, cq is an eigenvector
corresponding to the same eigenvalue.

10

Diagonalization

▶ Let λ be an eigenvalue of A ∈ Rn×n

▶ Let pA(s) be the characteristic polynomial of A

▶ The algebraic multiplicity of λ is the number of times (s − λ) occurs as a
factor of p(s)

▶ The geometric multiplicity of λ is the dimension of its eigenspace
ker(A− λI)

▶ The geometric multiplicity of λ is less than or equal to its algebraic
multiplicity

▶ A is diagonalizable if and only if the sum of its eigenspace dimensions equals n

▶ If the eigenvalues of A are distinct, then A is diagonalizable

11

Eigenvalue Decomposition
▶ Eigen decomposition: if A ∈ Rn×n is diagonalizable, then n linearly

independent eigenvectors qi can be found:

Aqi = λiqi , i = 1, . . . , n

The eigen decomposition of A is obtained by stacking the n equations:

A = QΛQ−1

▶ Jordan decomposition: A ∈ Rn×n can be decomposed using an invertible
matrix of generalized eigenvectors Q and an upper-triangular matrix J:

A = QJQ−1

▶ Jordan form of A: an upper-triangular block-diagonal matrix:

J = diag(B(λ1,m1), . . . ,B(λk ,mk))

where λ1, . . . , λk are the eigenval-
ues of A and m1+ · · ·+mk = n are
their algebraic multiplicites.

B(λ,m) =


λ 1 0 0

0
. . .

. . . 0
...

. . . λ 1
0 0 0 λ

 ∈ Rm×m

12

Singular Value Decomposition
▶ An eigen decomposition does not exist for A ∈ Rm×n

▶ A ∈ Rm×n with rank r ≤ min {m, n} can be diagonalized by two orthogonal
matrices U ∈ Rm×m and V ∈ Rn×n via singular value decomposition:

A = UΣV⊤ Σ =


σ1

. . .

σr

 ∈ Rm×n

▶ U contains the m orthogonal eigenvectors of the symmetric matrix
AA⊤ ∈ Rm×m and satisfies U⊤U = UU⊤ = I

▶ V contains the n orthogonal eigenvectors of the symmetric matrix
A⊤A ∈ Rn×n and satisfies V⊤V = VV⊤ = I

▶ Σ contains the singular values σi , equal to the square roots of the r non-zero
eigenvalues of AA⊤ or A⊤A, on its diagonal

▶ If A is normal (A⊤A = AA⊤), its singular values are related to its eigenvalues
via σi = |λi |

13

Matrix Pseudo Inverse

▶ The pseudo-inverse A† ∈ Rn×m of A ∈ Rm×n can be obtained from its SVD
A = UΣV⊤:

A† = VΣ†UT Σ† =


1/σ1

. . .

1/σr

 ∈ Rn×m

▶ The pseudo-inverse A† ∈ Rn×m satisfies the Moore-Penrose conditions:
▶ AA†A = A
▶ A†AA† = A†

▶
(
AA†)⊤ = AA†

▶
(
A†A

)⊤
= A†A

14

Linear System of Equations

▶ Consider the linear system of equations Ax = b for x ∈ Rn, b ∈ Rm, and
A ∈ Rm×n with SVD A = UΣV⊤ and rank r

▶ The column space or image of A is im(A) ⊆ Rm and is spanned by the r
columns of U corresponding to non-zero singular values

▶ The null space or kernel of A is ker(A) ⊆ Rn and is spanned by the n − r
columns of V corresponding to zero singular values

▶ The row space or co-image of A is im(A⊤) ⊆ Rn and is spanned by the r
columns of V corresponding to non-zero singular values

▶ The left null space or co-kernel of A is ker(A⊤) ⊆ Rm and is spanned by
the m − r columns of U corresponding to zero singular values

▶ The domain of A is Rn = ker(A)⊕ im(A⊤)

▶ The co-domain of A is Rm = ker(A⊤)⊕ im(A)

15

Solution of Linear System of Equations

▶ Consider the linear system of equations Ax = b for x ∈ Rn, b ∈ Rm, and
A ∈ Rm×n with SVD A = UΣV⊤ and rank r

▶ If b ∈ im(A), i.e., b⊤v = 0 for all v ∈ ker(A⊤), then Ax = b has one or
infinitely many solutions x = A†b+ (I − A†A)y for any y ∈ Rn

▶ If b /∈ im(A), then no solution exists and x = A†b is an approximate
solution with minimum ∥x∥ and ∥Ax− b∥ norms

▶ If m = n = r , then Ax = b has a unique solution x = A†b = A−1b

16

Positive Semidefinite Matrices

▶ The product x⊤Ax with A ∈ Rn×n and x ∈ Rn is called quadratic form and
A can usually be assumed symmetric, A = A⊤, because:

1

2
x⊤(A+ A⊤)x = x⊤Ax, ∀x ∈ Rn

▶ A symmetric matrix A ∈ Rn×n is positive semidefinite if x⊤Ax ≥ 0 for all
x ∈ Rn

▶ A symmetric matrix A ∈ Rn×n is positive definite if it is positive
semidefinite and if x⊤Ax = 0 implies x = 0

▶ All eigenvalues of a symmetric positive semidefinite matrix are non-negative

▶ All eigenvalues of a symmetric positive definite matrix are positive

17

Matrix Derivatives (Numerator Layout)
▶ Derivatives of y ∈ Rm and Y ∈ Rm×n by scalar x ∈ R:

dy

dx
=


dy1
dx
...

dym
dx

 ∈ Rm×1 dY

dx
=


dY11

dx · · · dY1n

dx
...

. . .
...

dYm1

dx · · · dYmn

dx

 ∈ Rm×n

▶ Derivatives of y ∈ R and y ∈ Rm by vector x ∈ Rp:

dy

dx
=
[

dy
dx1

· · · dy
dxp

]
︸ ︷︷ ︸

[∇xy]
⊤ (gradient transpose)

∈ R1×p dy

dx
=


dy1
dx1

· · · dy1
dxp

...
. . .

...
dym
dx1

· · · dym
dxp


︸ ︷︷ ︸

Jacobian

∈ Rm×p

▶ Derivative of y ∈ R by matrix X ∈ Rp×q:

dy

dX
=


dy
dX11

· · · dy
dXp1

...
. . .

...
dy
dX1q

· · · dy
dXpq

 ∈ Rq×p

18

Matrix Derivative Examples

▶ d
dXij

X = eie⊤j

▶ d
dxAx = A

▶ d
dxu

⊤v = u⊤ dv
dx + v⊤ du

dx (product rule)

▶ d
dxx

⊤Ax = x⊤(A+ A⊤)

▶ d
dxM

−1(x) = −M−1(x) dM(x)
dx M−1(x)

▶ d
dX tr(AX−1B) = −X−1BAX−1

▶ d
dX log detX = X−1

19

Matrix Derivative Examples

▶ d
dxAx =


d
dx1

∑n
j=1 A1jxj · · · d

dxn

∑n
j=1 A1jxj

...
. . .

...
d
dx1

∑n
j=1 Amjxj · · · d

dxn

∑n
j=1 Amjxj

 =

A11 · · · A1n

...
. . .

...
Am1 · · · Amn


▶ d

dxx
⊤Ax = x⊤ dAx

dx + x⊤A⊤ dx
dx = x⊤(A+ A⊤)

▶ M(x)M−1(x) = I ⇒ 0 =
[

d
dxM(x)

]
M−1(x) +M(x)

[
d
dxM

−1(x)
]

▶

d

dXij
tr(AX−1B) = tr(A

d

dXij
X−1B) = − tr(AX−1eie

⊤
j X

−1B)

= −e⊤j X
−1BAX−1ei = −e⊤i

(
X−1BAX−1

)⊤
ej

▶

d

dXij
log detX =

1

det(X)

d

dXij

n∑
k=1

Xikcof ik(X)

=
1

det(X)
cof ij(X) =

1

det(X)
adjji (X) = e⊤j X

−1ei

20

Outline

Linear Algebra Review

Unconstrained Optimization

Gradient Descent

Newton’s and Gauss-Newton’s Methods

Example

21

Unconstrained Optimization

▶ Unconstrained optimization problem over Euclidean vector space Rd :

min
x∈Rd

f (x)

▶ A global minimizer x∗ ∈ Rd satisfies f (x∗) ≤ f (x) for all x ∈ Rd . The value
f (x∗) is called global minimum.

▶ A local minimizer x∗ ∈ Rd satisfies f (x∗) ≤ f (x) for all x ∈ N (x∗), where
N (x∗) ⊂ Rd is a neighborhood of x∗ (e.g., an open ball with small radius
centered at x∗). The value f (x∗) is called local minimum.

▶ The function f : Rd → R is differentiable at x ∈ Rd if its gradient exists:

∇f (x) :=
[
∂f (x)
∂x1

· · · ∂f (x)
∂xd

]⊤
∈ Rd

▶ A critical point x̄ ∈ Rd satisfies ∇f (x̄) = 0 or ∇f (x̄) = undefined

▶ All minimizers are critical points but not all critical points are minimizers. A
critical point is a local maximizer, a local minimizer, or neither (saddle point).

22

Descent Direction

▶ Consider an unconstrained optimization problem:

min
x∈Rd

f (x)

Descent Direction Theorem

Suppose f is differentiable at x̄. If ∃ δx ∈ Rd such that ∇f (x̄)⊤δx < 0, then
∃ ϵ > 0 such that f (x̄+ αδx) < f (x̄) for all α ∈ (0, ϵ).

▶ The vector δx is called a descent direction

▶ The theorem states that if a descent direction exists at x̄, then it is possible
to move to a new point that has a lower f value

▶ Steepest descent direction: δx = − ∇f (x̄)
∥∇f (x̄)∥

▶ Based on this theorem, we derive conditions for optimality of x̄

23

Optimality Conditions

First-Order Necessary Condition

Suppose f is differentiable at x̄. If x̄ is a local minimizer, then ∇f (x̄) = 0.

Second-Order Necessary Condition

Suppose f is twice-differentiable at x̄. If x̄ is a local minimizer, then ∇f (x̄) = 0
and ∇2f (x̄) ⪰ 0.

Second-Order Sufficient Condition

Suppose f is twice-differentiable at x̄. If ∇f (x̄) = 0 and ∇2f (x̄) ≻ 0, then x̄ is a
local minimizer.

Necessary and Sufficient Condition

Suppose f is differentiable at x̄. If f is convex, then x̄ is a global minimizer if
and only if ∇f (x̄) = 0.

24

Convexity
▶ A set D ⊆ Rd is convex if λx+ (1− λ)y ∈ D for all x, y ∈ D, λ ∈ [0, 1]

▶ A convex set contains the line segment between any two points in it

▶ A function f : D → R with D ⊆ Rd is convex if:
▶ D is a convex set
▶ f (λx+ (1− λ)y) ≤ λf (x) + (1− λ)f (y) for all x, y ∈ D, λ ∈ [0, 1]

▶ First-order convexity condition: a differentiable f : D → R with convex D
is convex iff f (y) ≥ f (x) +∇f (x)⊤(y − x) for all x, y ∈ D

▶ Second-order convexity condition: a twice-differentiable f : D → R with
convex D is convex iff ∇2f (x) ⪰ 0 for all x ∈ D

25

Descent Optimization Methods

▶ A critical point of f can be obtained by solving ∇f (x) = 0 but an explicit
solution may be difficult to obtain

▶ Descent method: iterative method to obtain a solution of ∇f (x) = 0

▶ Given initial guess xk , take step of size αk > 0 along descent direction δxk :

xk+1 = xk + αkδxk

▶ Different descent methods differ in the way δxk and αk are chosen

▶ δxk needs to be a descent direction: ∇f (xk)⊤δxk < 0, ∀xk ̸= x∗

▶ αk needs to ensure sufficient decrease in f to guarantee convergence:
▶ The best step size choice is αk ∈ argmin

α>0
f (xk + αδxk)

▶ In practice, αk is obtained via approximate line search methods

26

Outline

Linear Algebra Review

Unconstrained Optimization

Gradient Descent

Newton’s and Gauss-Newton’s Methods

Example

27

Gradient Descent (First-Order Method)

▶ Idea: −∇f (xk) points in the direction of steepest descent

▶ Gradient descent: let δxk := −∇f (xk) and iterate:

xk+1 = xk − αk∇f (xk)

▶ Step size: a good choice for αk is 1
L , where L > 0 is the Lipschitz constant

of ∇f (x):
∥∇f (x)−∇f (x′)∥ ≤ L∥x− x′∥ ∀x, x′ ∈ Rd

Gradient Descent Convergence

Suppose f is twice continuously differentiable with

mI ⪯ ∇2f (x) ⪯ LI , ∀x ∈ Rn.

The iterates xk of gradient descent with step size αk = 1
L satisfy:

∥∇f (xk)∥ → 0 and ∥xk − x∗∥ → 0 as k → ∞.

28

Proof: Gradient Descent Convergence

▶ By the Mean Value Theorem for some ck between xk and xk+1:

∇f (xk+1) = ∇f (xk) +∇2f (ck)(xk+1 − xk) = ∇f (xk)− αk∇2f (ck)∇f (xk)

▶ Let λi be the eigenvalues of ∇2f (ck) so that:

0 ≤ 1− αkL ≤ 1− αkλi ≤ 1− αkm

▶ This is sufficient to show that ∥∇f (xk)∥ → 0 linearly:

∥∇f (xk+1)∥ ≤ (1−m/L)∥∇f (xk)∥ ≤ (1−m/L)k+1∥∇f (x0)∥

▶ By the Mean Value Theorem for some c̃k between xk and x∗:

xk+1−x∗ = (xk−x∗)−αk(∇f (xk)−∇f (x∗)) = (xk−x∗)−αk∇2f (c̃k)(xk−x∗)

▶ Since mI ⪯ ∇2f (c̃k) ⪯ LI :

∥xk+1 − x∗∥ ≤ (1−m/L)∥xk − x∗∥ ≤ (1−m/L)k+1∥x0 − x∗∥

29

Projected Gradient Descent

▶ Constrained optimization problem over a closed convex set C ⊆ Rn:

min
x∈C

f (x)

▶ Constrained optimality condition: for differentiable convex function f :

x∗ ∈ argmin
x∈C

f (x) ⇔ ⟨∇f (x∗), y − x∗⟩ ≥ 0, ∀y ∈ C

▶ Euclidean projection onto C:

ΠC(x) := argmin
y∈C

∥y − x∥

▶ Projected gradient descent:

xk+1 = ΠC(xk − α∇f (xk)), α > 0

30

Projected Gradient Descent

Projected Gradient Descent Convergence

Suppose f is twice continuously differentiable with

mI ⪯ ∇2f (x) ⪯ LI , ∀x ∈ Rn.

The iterates xk of projected gradient descent with step size α = 1
L satisfy:

∥xk+1 − x∗∥ ≤ (1−m/L)k+1∥x0 − x∗∥.

▶ The proof is based on:
▶ Euclidean projection is non-expansive:

∥ΠC(x)− ΠC(y)∥ ≤ ∥x− y∥, ∀x, y ∈ Rn

▶ Constrained optimizers are fixed points of the projected gradient descent
operator with α > 0:

x∗ ∈ argmin
x∈C

f (x) ⇔ x∗ = ΠC(x∗ − α∇f (x∗))

31

Outline

Linear Algebra Review

Unconstrained Optimization

Gradient Descent

Newton’s and Gauss-Newton’s Methods

Example

32

Newton’s Method (Second-Order Method)

▶ Consider an unconstrained optimization problem:

min
x∈Rd

f (x)

▶ Newton’s method iteratively approximates f by a quadratic function

▶ For a small change δx to xk , we can approximate f using Taylor series:

f (xk + δx) ≈ f (xk) +

(
∂f (x)

∂x

∣∣∣∣
x=xk

)
︸ ︷︷ ︸
gradient transpose

δx+
1

2
δx⊤

(
∂2f (x)

∂x∂x⊤

∣∣∣∣
x=xk

)
︸ ︷︷ ︸

Hessian

δx

=: q(δx, xk)︸ ︷︷ ︸
quadratic function in δx

▶ The symmetric Hessian matrix ∇2f (xk) needs to be positive-definite for this
method to work

33

Newton’s Method (Second-Order Method)

34

Newton’s Method (Second-Order Method)

▶ Find δx that minimizes the quadratic approximation to f (xk + δx):

min
δx∈Rd

q(δx, xk)

▶ Since this is an unconstrained optimization problem, δx can be determined by
setting the derivative of q with respect to δx to zero:

0 =
∂q(δx, xk)

∂δx
= ∇f (xk)

⊤ + δx⊤∇2f (xk)

▶ This is a linear system of equations in δx and can be solved uniquely when
the Hessian is invertible, i.e., ∇2f (xk) ≻ 0:

δx = −
[
∇2f (xk)

]−1 ∇f (xk)

▶ Newton’s method:

xk+1 = xk − αk

[
∇2f (xk)

]−1 ∇f (xk), αk > 0

35

Newton’s Method (Second-Order Method)

▶ Like other descent methods, Newton’s method converges to a local minimum

▶ Damped Newton phase: when the iterates are “far away” from the
optimum, the function value is decreased sublinearly, i.e., the step sizes αk

are small

▶ Quadratic convergence phase: when the iterates are “sufficiently close” to
the optimum, full Newton steps are taken, i.e., αk = 1, and the function
value converges quadratically to the optimum

▶ A disadvantage of Newton’s method is the need to form the Hessian
∇2f (xk), which can be numerically ill-conditioned or computationally
expensive in high-dimensional problems

36

Gauss-Newton’s Method

▶ Gauss-Newton is an approximation to Newton’s method that avoids
computing the Hessian. It is applicable when the objective function has the
following quadratic form:

f (x) =
1

2
e(x)⊤e(x) e(x) ∈ Rm

▶ Derivative and Hessian:

Jacobian:
∂f (x)

∂x

∣∣∣∣
x=xk

= e(xk)
⊤

(
∂e(x)

∂x

∣∣∣∣
x=xk

)

Hessian:
∂2f (x)

∂x∂x⊤

∣∣∣∣
x=xk

=

(
∂e(x)

∂x

∣∣∣∣
x=xk

)⊤(
∂e(x)

∂x

∣∣∣∣
x=xk

)

+
m∑
i=1

ei (xk)

(
∂2ei (x)

∂x∂x⊤

∣∣∣∣
x=xk

)

37

Gauss-Newton’s Method
▶ Near the minimum of f , the second term in the Hessian is small relative to

the first. The Hessian can be approximated without second derivatives:

∂2f (x)

∂x∂x⊤

∣∣∣∣
x=xk

≈

(
∂e(x)

∂x

∣∣∣∣
x=xk

)⊤(
∂e(x)

∂x

∣∣∣∣
x=xk

)
▶ Approximation of f (xk + δxk):

f (xk + δxk) ≈ f (xk) + e(xk)
⊤

(
∂e(x)

∂x

∣∣∣∣
x=xk

)
δxk +

1

2
δx⊤k

(
∂e(x)

∂x

∣∣∣∣
x=xk

)⊤(
∂e(x)

∂x

∣∣∣∣
x=xk

)
δxk

▶ Setting the gradient of this new quadratic approximation of f with respect to
δxk to zero, leads to the system:(

∂e(x)

∂x

∣∣∣∣
x=xk

)⊤(
∂e(x)

∂x

∣∣∣∣
x=xk

)
δxk = −

(
∂e(x)

∂x

∣∣∣∣
x=xk

)⊤

e(xk)

▶ Gauss-Newton’s method:

xk+1 = xk + αkδxk , αk > 0

38

Gauss-Newton’s Method (Alternative Derivation)

▶ Another way to think about the Gauss-Newton method is to start with a
Taylor expansion of e(x) instead of f (x):

e(xk + δxk) ≈ e(xk) +

(
∂e(x)

∂x

∣∣∣∣
x=xk

)
δxk

▶ Substituting into f leads to:

f (xk + δxk) ≈
1

2

(
e(xk) +

(
∂e(x)

∂x

∣∣∣∣
x=xk

)
δxk

)⊤(
e(xk) +

(
∂e(x)

∂x

∣∣∣∣
x=xk

)
δxk

)

▶ Minimizing this with respect to δxk leads to the same system as before:(
∂e(x)

∂x

∣∣∣∣
x=xk

)⊤(
∂e(x)

∂x

∣∣∣∣
x=xk

)
δxk = −

(
∂e(x)

∂x

∣∣∣∣
x=xk

)⊤

e(xk)

39

Levenberg-Marquardt’s Method

▶ The Levenberg-Marquardt modification to the Gauss-Newton method uses
a positive diagonal matrix D to condition the Hessian approximation:(∂e(x)

∂x

∣∣∣∣
x=xk

)⊤(
∂e(x)

∂x

∣∣∣∣
x=xk

)
+ λD

 δxk = −

(
∂e(x)

∂x

∣∣∣∣
x=xk

)⊤

e(xk)

▶ λD compensates for the missing Hessian term
m∑
i=1

ei (xk)

(
∂2ei (x)

∂x∂x⊤

∣∣∣∣
x=xk

)

▶ When λ ≥ 0 is large, the descent direction δxk corresponds to a small step in
the direction of steepest descent. This helps when the Hessian approximation
is poor or poorly conditioned by providing a meaningful direction.

40

Gauss-Newton’s Method (Summary)

▶ An iterative optimization approach for the unconstrained problem:

min
x

f (x) :=
1

2

∑
j

ej(x)
⊤ej(x) ej(x) ∈ Rmj , x ∈ Rn

▶ Given an initial guess xk , determine a descent direction δxk by solving:∑
j

Jj(xk)
⊤Jj(xk) + λD

 δxk = −

∑
j

Jj(xk)
⊤ej(xk)


where Jj(x) :=

∂ej (x)
∂x ∈ Rmj×n, λ ≥ 0, D ∈ Rn×n is a positive diagonal

matrix, e.g., D = diag
(∑

j Jj(xk)
⊤Jj(xk)

)
▶ Obtain an updated estimate according to:

xk+1 = xk + αkδxk , αk > 0

41

Outline

Linear Algebra Review

Unconstrained Optimization

Gradient Descent

Newton’s and Gauss-Newton’s Methods

Example

42

Unconstrained Optimization Example

▶ Let f (x) := 1
2

∑n
j=1 ∥Ajx+ bj∥22 for x ∈ Rd and assume

∑n
j=1 A

⊤
j Aj ≻ 0

▶ Solve the unconstrained optimization problem minx f (x) using:
▶ The necessary and sufficient optimality condition for convex function f
▶ Gradient descent
▶ Newton’s method
▶ Gauss-Newton’s method

▶ We will need ∇f (x) and ∇2f (x):

df (x)

dx
=

1

2

n∑
j=1

d

dx
∥Ajx+ bj∥22 =

n∑
j=1

(Ajx+ bj)
⊤ Aj

∇f (x) =
df (x)

dx

⊤
=

 n∑
j=1

A⊤
j Aj

 x+

 n∑
j=1

A⊤
j bj


∇2f (x) =

d

dx
∇f (x) =

n∑
j=1

A⊤
j Aj ≻ 0

43

Necessary and Sufficient Optimality Condition

▶ Solve ∇f (x) = 0 for x:

0 = ∇f (x) =

 n∑
j=1

A⊤
j Aj

 x+

 n∑
j=1

A⊤
j bj


x = −

 n∑
j=1

A⊤
j Aj

−1 n∑
j=1

A⊤
j bj


▶ The solution above is unique since we assumed that

∑n
j=1 A

⊤
j Aj ≻ 0

44

Gradient Descent

▶ Start with an initial guess x0 = 0

▶ At iteration k , gradient descent uses the descent direction δxk = −∇f (xk)

▶ Determine the Lipschitz constant of ∇f (x):

∥∇f (x1)−∇f (x2)∥ =

∥∥∥∥(n∑
j=1

A⊤
j Aj

)
(x1 − x2)

∥∥∥∥ ≤
∥∥∥∥ n∑
j=1

A⊤
j Aj

∥∥∥∥︸ ︷︷ ︸
L

∥x1 − x2∥

▶ Choose step size αk = 1
L and iterate:

xk+1 = xk + αkδxk

= xk −
1

L

 n∑
j=1

A⊤
j Aj

 xk −
1

L

 n∑
j=1

A⊤
j bj



45

Newton’s Method

▶ Start with an initial guess x0 = 0

▶ At iteration k , Newton’s method uses the descent direction:

δxk = −
[
∇2f (xk)

]−1 ∇f (xk)

= −xk −

 n∑
j=1

A⊤
j Aj

−1 n∑
j=1

A⊤
j bj


▶ With αk = 1, Newton’s method converges in one iteration:

xk+1 = xk + δxk = −

 n∑
j=1

A⊤
j Aj

−1 n∑
j=1

A⊤
j bj



46

Gauss-Newton’s Method
▶ f (x) is of the form 1

2

∑n
j=1 ej(x)

⊤ej(x) for ej(x) := Ajx+ bj

▶ The Jacobian of ej(x) is Jj(x) = Aj

▶ Start with an initial guess x0 = 0

▶ At iteration k , Gauss-Newton’s method uses the descent direction:

δxk = −

 n∑
j=1

Jj(xk)
⊤Jj(xk)

−1 n∑
j=1

Jj(xk)
⊤ej(xk)


= −

 n∑
j=1

A⊤
j Aj

−1 n∑
j=1

A⊤
j (Ajxk + bj)


= −xk −

 n∑
j=1

A⊤
j Aj

−1 n∑
j=1

A⊤
j bj


▶ With αk = 1, in this problem, Gauss-Newton’s method behaves like Newton’s

method and converges in one iteration

47

	Linear Algebra Review
	Unconstrained Optimization
	Gradient Descent
	Newton's and Gauss-Newton's Methods
	Example

