# **ECE276A: Sensing & Estimation in Robotics Lecture 4: Robot Motion and Observation Models**

Nikolay Atanasov natanasov@ucsd.edu



# **Outline**

Rigid-Body Kinematics and Dynamics

Motion Models

**Observation Models** 

#### **Rotation Kinematics**

▶ The trajectory R(t) of continuous rotation motion satisfies:

$$R^{\top}(t)R(t) = I \quad \Rightarrow \quad \dot{R}^{\top}(t)R(t) + R^{\top}(t)\dot{R}(t) = 0.$$

▶ Since  $R^{\top}(t)\dot{R}(t)$  is **skew-symmetric**, there exists  $\omega(t) \in \mathbb{R}^3$  such that:

$$R^{\top}(t)\dot{R}(t)=\hat{\omega}(t)$$

▶ Rotation kinematics: the orientation of a rigid body  $R(t) \in SO(3)$  rotating with angular velocity  $\omega(t) \in \mathbb{R}^3$  (in body-frame coordinates) satisfies:

$$\dot{R}(t) = R(t)\hat{\omega}(t)$$

**Discrete-time rotation kinematics**: if  $\omega(t) \equiv \omega_k$  is constant for  $t \in [t_k, t_{k+1})$  and  $R_k := R(t_k), \ \tau_k := t_{k+1} - t_k$ :

$$R_{k+1} = R_k \exp(\tau_k \hat{\boldsymbol{\omega}}_k)$$

where  $\exp(X) = \sum_{n=0}^{\infty} \frac{1}{n!} X^n$  is the matrix exponential function.

# **Quaternion Kinematics**

**Quaternion kinematics**: the orientation of a rigid body  $\mathbf{q}(t) \in \mathbb{H}_*$  rotating with angular velocity  $\omega(t) \in \mathbb{R}^3$  (in body-frame coordinates) satisfies:

$$\dot{\mathbf{q}}(t) = \mathbf{q}(t) \circ [0, \boldsymbol{\omega}(t)/2]$$

▶ Discrete-time quaternion kinematics: if  $\omega(t) \equiv \omega_k$  is constant for  $t \in [t_k, t_{k+1})$  and  $\mathbf{q}_k := \mathbf{q}(t_k), \tau_k := t_{k+1} - t_k$ :

$$\mathbf{q}_{k+1} = \mathbf{q}_k \circ \exp([0, \tau_k \boldsymbol{\omega}_k/2])$$

where  $\exp(\mathbf{q}) = e^{q_s} \left[ \cos \|\mathbf{q}_v\|, \frac{\mathbf{q}_v}{\|\mathbf{q}_v\|} \sin \|\mathbf{q}_v\| \right]$  is the quaternion exponential function.

### **Pose Kinematics**

**Pose kinematics**: the pose of a rigid body  $T(t) \in SE(3)$  moving with generalized velocity  $\zeta(t) = \begin{bmatrix} \mathbf{v}(t) \\ \omega(t) \end{bmatrix} \in \mathbb{R}^6$  (in body-frame coordinates) satisfies:

$$\dot{\mathcal{T}}(t) = \mathcal{T}(t) \hat{\pmb{\zeta}}(t)$$
  $\hat{\pmb{\zeta}} = egin{bmatrix} \ddot{\mathbf{v}} \ \omega \end{bmatrix} := egin{bmatrix} \hat{\omega} & \mathbf{v} \ \mathbf{0} & 0 \end{bmatrix}$  (twist)

**Discrete-time pose kinematics**: if  $\zeta(t) \equiv \zeta_k$  is constant for  $t \in [t_k, t_{k+1})$  and  $T_k := T(t_k)$ ,  $\tau_k := t_{k+1} - t_k$ :

$$T_{k+1} = T_k \exp(\tau_k \hat{\boldsymbol{\zeta}}_k)$$

where  $\exp(X) = \sum_{n=0}^{\infty} \frac{1}{n!} X^n$  is the matrix exponential function.

# **Pose Dynamics**

**Pose dynamics**: the pose  $T(t) \in SE(3)$  and twist  $\zeta(t) \in \mathbb{R}^6$  of a rigid body with mass  $m \in \mathbb{R}_{>0}$  and moment of inertia  $J \in \mathbb{R}^{3 \times 3}$ , moving with **wrench** (generalized force)  $\mathbf{w}(t) = \begin{bmatrix} \mathbf{f}(t) \\ \boldsymbol{\tau}(t) \end{bmatrix} \in \mathbb{R}^6$  (in body-frame coordinates) satisfies:

$$\dot{T}(t) = T(t)\hat{\zeta}(t)$$
  $M := \begin{bmatrix} mI & 0 \\ 0 & J \end{bmatrix}$   $M\dot{\zeta}(t) = \dot{\hat{\zeta}}(t)^{\top}M\zeta(t) + \mathbf{w}(t)$   $\dot{\hat{\zeta}} = \begin{bmatrix} \hat{\omega} & \hat{\mathbf{v}} \\ \omega \end{bmatrix} := \begin{bmatrix} \hat{\omega} & \hat{\mathbf{v}} \\ \mathbf{0} & \hat{\omega} \end{bmatrix}$ 

6

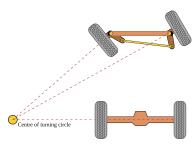
# **Outline**

Rigid-Body Kinematics and Dynamics

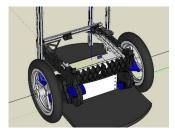
# Motion Models

Observation Models

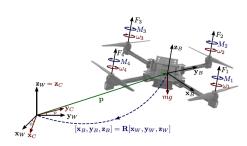
### **Motion Models**



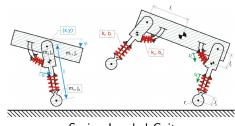
Ackermann Drive



Differential Drive



Quadrotor



Spring-Loaded Gait

#### **Motion Model**

- Variables describing a robot system:
  - time t (continuous or discrete)
  - state x (e.g., position, orientation)
  - control input **u** (e.g., velocity, force)
  - disturbance w (e.g., tire slip, wind)
- ▶ A **motion model** is a function *f* relating the current state **x** and input **u** of a robot with its state change
  - Continuous time:  $\dot{\mathbf{x}}(t) = f(\mathbf{x}(t), \mathbf{u}(t))$
  - ▶ Discrete time:  $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t)$
- ▶ If the motion is affected by disturbance **w** modeled as a random variable, then the state **x** is also a random variable described either:
  - in function form:  $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_t)$  or
  - with the probability density function  $p_f(\cdot \mid \mathbf{x}_t, \mathbf{u}_t)$  of  $\mathbf{x}_{t+1}$

# **Odometry-Based Motion Model**

- Consider a rigid-body robot with state  $\mathbf{x}_t = T_t \in SE(3)$  capturing the robot pose in the world frame at time t
- **Odometry**: onboard sensors (camera, lidar, encoders, imu, etc.) may be used to estimate the relative pose of the robot body frame at time t+1 with respect to the body frame at time t:

$$\mathbf{u}_t = {}_t T_{t+1} = \begin{bmatrix} {}_t R_{t+1} & {}_t \mathbf{p}_{t+1} \\ \mathbf{0}^\top & 1 \end{bmatrix} \in SE(3)$$

**Odometry-based motion model**: given the robot pose  $\mathbf{x}_t$  and the odometry  $\mathbf{u}_t$  at time t, the state at time t+1 satisfies:

$$T_{t+1} = \mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t) := \mathbf{x}_t \mathbf{u}_t = T_{t t} T_{t+1}$$

▶ Given an initial pose  $\mathbf{x}_0$  and odometry measurements  $\mathbf{u}_0, \dots, \mathbf{u}_t$ , the robot pose at time t+1 can be estimated as:

$$\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t) = f(\mathbf{x}_{t-1}, \mathbf{u}_{t-1})\mathbf{u}_t = \ldots = \mathbf{x}_0 \mathbf{u}_0 \mathbf{u}_1 \cdots \mathbf{u}_t$$

An odometry estimate is "drifting" (gets worse over time) because small measurement errors in each  $\mathbf{u}_t$  are accumulated

# **Differential-Drive Kinematic Model**

- ▶ **State**:  $\mathbf{x} = (\mathbf{p}, \theta)$ , where  $\mathbf{p} = (x, y) \in \mathbb{R}^2$  is the position and  $\theta \in (-\pi, \pi]$  is the orientation (yaw angle) in the world frame
- ▶ Control:  $\mathbf{u} = (v, \omega)$ , where  $v \in \mathbb{R}$  is the linear velocity and  $\omega \in \mathbb{R}$  is the angular velocity (yaw rate) in the body frame
- Continuous-time model:

$$\dot{\mathbf{x}} = \begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{y}} \\ \dot{\theta} \end{bmatrix} = f(\mathbf{x}, \mathbf{u}) := \begin{bmatrix} v \cos \theta \\ v \sin \theta \\ \omega \end{bmatrix}$$

▶ The model is obtained using 2D pose kinematics with body-frame twist  $\zeta = (v, 0, \omega)^{\top}$ :

$$\begin{bmatrix} \dot{R}(\theta) & \dot{\mathbf{p}} \\ \mathbf{0}^\top & 0 \end{bmatrix} = \begin{bmatrix} R(\theta) & \mathbf{p} \\ \mathbf{0}^\top & 1 \end{bmatrix} \begin{bmatrix} 0 & -\omega & v \\ \omega & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$



### **Differential-Drive Kinematic Model**

- Let  $\ell$  be the axle length (distance between wheels) and r be the radius of rotation, i.e., the distance from the ICC to the axle center
- ightharpoonup The arc-length traveled is equal to the angle  $\theta$  times the radius r

$$vt = r\theta$$
  $\Rightarrow$   $v = \frac{r\theta}{t} = r\omega$ 

ICC (Instantaneous Center of Curvature)  $v_L = \omega \left( R - \frac{L}{2} \right)$   $v = \omega R$   $v_R = \omega \left( R + \frac{L}{2} \right)$ 

- ▶ Left wheel:  $v_L = \omega(r \ell/2)$
- Right wheel:  $v_R = \omega(r + \ell/2)$
- ► Linear and angular velocity from wheel velocities:

$$\omega = \frac{v_R - v_L}{\ell}$$

$$r = \frac{\ell}{2} \left( \frac{v_L + v_R}{v_R - v_L} \right) = \frac{v}{\omega}$$

$$v = \frac{v_R + v_L}{2}$$

# Discrete-Time Differential-Drive Kinematic Model

**Euler discretization** over time interval of length  $\tau_t$ :

$$\mathbf{x}_{t+1} = \begin{bmatrix} x_{t+1} \\ y_{t+1} \\ \theta_{t+1} \end{bmatrix} = f_d(\mathbf{x}_t, \mathbf{u}_t) := \mathbf{x}_t + \tau_t \begin{bmatrix} v_t \cos(\theta_t) \\ v_t \sin(\theta_t) \\ \omega_t \end{bmatrix}$$

**Exact integration** over time interval of length  $\tau_t$ :

$$\mathbf{x}_{t+1} = \begin{bmatrix} \mathbf{x}_{t+1} \\ \mathbf{y}_{t+1} \\ \boldsymbol{\theta}_{t+1} \end{bmatrix} = f_d(\mathbf{x}_t, \mathbf{u}_t) := \mathbf{x}_t + \tau_t \begin{bmatrix} v_t \mathrm{sinc}\left(\frac{\omega_t \tau_t}{2}\right) \cos\left(\theta_t + \frac{\omega_t \tau_t}{2}\right) \\ v_t \mathrm{sinc}\left(\frac{\omega_t \tau_t}{2}\right) \sin\left(\theta_t + \frac{\omega_t \tau_t}{2}\right) \\ \omega_t \end{bmatrix}$$

▶ The exact integration is equivalent to the discrete-time pose kinematics:

$$\begin{bmatrix} R(\theta_{t+1}) & \mathbf{p}_{t+1} \\ \mathbf{0}^\top & 1 \end{bmatrix} = \begin{bmatrix} R(\theta_t) & \mathbf{p}_t \\ \mathbf{0}^\top & 1 \end{bmatrix} \exp \left( \tau_t \begin{bmatrix} 0 & -\omega_t & v_t \\ \omega_t & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right)$$

# Discrete-Time Differential-Drive Kinematic Model

- ▶ What is the state after  $\tau$  seconds if we apply constant linear velocity v and angular velocity  $\omega$  at time  $t_0$ ?
- ➤ To convert the continuous-time differential-drive model to discrete time, we solve the ordinary differential equations:

$$\theta(t_0 + \tau) = \theta(t_0) + \int_{t_0}^{t_0 + \tau} \omega ds = \theta(t_0) + \omega \tau$$

$$x(t_0 + \tau) = x(t_0) + v \int_{t_0}^{t_0 + \tau} \cos \theta(s) ds$$

$$= x(t_0) + \frac{v}{\omega} (\sin(\omega \tau + \theta(t_0)) - \sin \theta(t_0))$$

$$\dot{y}(t) = v \sin \theta(t) \Rightarrow = x(t_0) + v \tau \frac{\sin(\omega \tau/2)}{\omega \tau/2} \cos(\theta(t_0) + \frac{\omega \tau}{2})$$

$$\dot{\theta}(t) = \omega$$

$$y(t_0 + \tau) = y(t_0) + v \int_{t_0}^{t_0 + \tau} \sin \theta(s) ds$$

$$= y(t_0) - \frac{v}{\omega} (\cos \theta(t_0) - \cos(\omega \tau + \theta(t_0)))$$

$$= y(t_0) + v \tau \frac{\sin(\omega \tau/2)}{\omega \tau/2} \sin(\theta(t_0) + \frac{\omega \tau}{2})$$

### **Ackermann-Drive Kinematic Model**

- ▶ **State**:  $\mathbf{x} = (\mathbf{p}, \theta)$ , where  $\mathbf{p} = (x, y) \in \mathbb{R}^2$  is the position and  $\theta \in (-\pi, \pi]$  is the orientation (yaw angle) in the world frame
- **Control**: **u** =  $(v, \phi)$ , where  $v \in \mathbb{R}$  is the linear velocity and  $\phi \in (-\pi, \pi]$  is the steering angle in the body frame
- Continuous-time model:

$$\dot{\mathbf{x}} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = f(\mathbf{x}, \mathbf{u}) := \begin{bmatrix} v \cos \theta \\ v \sin \theta \\ \frac{v}{L} \tan \phi \end{bmatrix}$$

Centre of turning circle

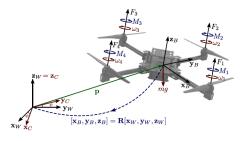
where L is the distance between the two wheel axles

With the definition  $\omega := \frac{v}{L} \tan \phi$ , the Ackermann-drive model is equivalent to the differential-drive model and we can use the same discretized models

# **Quadrotor Dynamics Model**

- **State**:  $\mathbf{x} = (\mathbf{p}, R, \mathbf{v}, \boldsymbol{\omega})$  with position  $\mathbf{p} \in \mathbb{R}^3$ , orientation  $R \in SO(3)$ , body-frame linear velocity  $\mathbf{v} \in \mathbb{R}^3$ , body-frame angular velocity  $\boldsymbol{\omega} \in \mathbb{R}^3$
- **Control**:  $\mathbf{u}=(
  ho,m{ au})$  with body-frame thrust force  $ho\in\mathbb{R}$  and torque  $m{ au}\in\mathbb{R}^3$
- ▶ Continuous-time dynamics model with mass m, gravity acceleration g, moment of inertia  $J \in \mathbb{R}^{3\times3}$  and  $\mathbf{e}_3 = (0,0,1)^\top$ , obtained from rigid-body pose dynamics:

$$\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}) = \begin{cases} \dot{\mathbf{p}} = R\mathbf{v} \\ \dot{R} = R\hat{\boldsymbol{\omega}} \\ m\dot{\mathbf{v}} = -\boldsymbol{\omega} \times m\mathbf{v} + (\rho\mathbf{e}_3 - mgR^{\top}\mathbf{e}_3) \\ J\dot{\boldsymbol{\omega}} = -\boldsymbol{\omega} \times J\boldsymbol{\omega} + \boldsymbol{\tau} \end{cases}$$



# **Outline**

Rigid-Body Kinematics and Dynamics

Motion Models

Observation Models

# **Observation Models**



Inertial Measurement Unit



Global Positioning System



**RGB** Camera



2-D Lidar

### **Observation Model**

- Variables describing a sensor:
  - sensor state x (e.g., position, orientation)
  - environment state **m** (e.g., object position, orientation, shape)
  - measurement z (e.g., image)
  - noise v (e.g., blur)
- ► An **observation model** is a function *h* relating the sensor state **x** and the environment state **m** with the sensor measurement **z**:

$$z = h(x, m)$$

- ▶ If the sensor is affected by noise **v** modeled as a random variable, then the measurement **z** is also a random variable described either:
  - in function form: z = h(x, m, v) or
  - with the probability density function  $p_h(\cdot \mid \mathbf{x}, \mathbf{m})$  of  $\mathbf{z}$

### **Common Sensor Models**

- ▶ Inertial or force sensor: measures velocity, acceleration, or force, e.g., encoder, magnetometer, gyroscope, accelerometer
- ▶ Position sensor: measures position, e.g., GPS, RGBD camera, laser scanner
- ▶ Bearing sensor: measures angles, e.g., compass, RGB camera
- Range sensor: measures distance, e.g., radio received signal strength or time-of-flight

#### **Encoder**

- ► A magnetic encoder consists of a rotating gear, a permanent magnet, and a sensing element
- ► The sensor has two output channels with offset phase to determine the direction of rotation
- ▶ A microcontroller counts the number of transitions adding or subtracting 1 (depending on the direction of rotation) to the counter
- ► The distance traveled by the wheel, corresponding to one tick on the encoder is:

$$\text{meters per tick} = \frac{\pi \times \text{(wheel diameter)}}{\text{ticks per revolution}}$$

▶ The distance traveled during time  $\tau$  for a given encoder count z, wheel diameter d, and n ticks on the sensor per revolution is:

$$\tau v \approx \frac{\pi dz}{n}$$

and can be used to measure the linear velocity for a differential-drive model

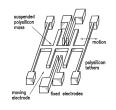


#### **Inertial Measurement Unit**

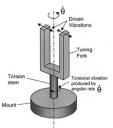
- ► IMU: inertial measurement unit:
  - triaxial accelerometer (measures linear acceleration)
  - triaxial gyroscope (measures angular velocity)

#### Accelerometer:

- A mass m on a spring with constant k. The spring displacement is proportional to the system acceleration:
   F = ma = kd ⇒ a = kd/m
- VLSI fabrication: the displacement of a metal plate with mass m is measured with respect to another plate using capacitance
- ► Used for car airbags (if the acceleration goes above 2g, the car is hitting something!)



Surface Micromachined Accelerometer



► **Gyroscope**: uses Coriolis force to detect rotational velocity from the changing mechanical resonsance of a tuning fork

### **IMU Observation Model**

- ▶ State:  $(\mathbf{p}, R, \mathbf{v}, \boldsymbol{\omega}, \mathbf{a}, \boldsymbol{\alpha}, \mathbf{b}_g, \mathbf{b}_a)$  with position  $\mathbf{p} \in \mathbb{R}^3$ , orientation  $R \in SO(3)$ , body-frame linear velocity  $\mathbf{v} \in \mathbb{R}^3$ , body-frame angular velocity  $\boldsymbol{\omega} \in \mathbb{R}^3$ , body-frame angular acceleration  $\mathbf{a} \in \mathbb{R}^3$ , body-frame angular acceleration  $\boldsymbol{\alpha} \in \mathbb{R}^3$ , gyroscope bias  $\mathbf{b}_g \in \mathbb{R}^3$ , accelerometer bias  $\mathbf{b}_a \in \mathbb{R}^3$
- **Extrinsic Parameters**: IMU position  ${}_{B}\mathbf{p}_{I} \in \mathbb{R}^{3}$  and orientation  ${}_{B}R_{I} \in SO(3)$  in the body frame are assumed known or obtained from calibration
- **Strapdown IMU**: the IMU frame and the body frame are identical, i.e,  ${}_{B}\mathbf{p}_{I}=\mathbf{0}$  and  ${}_{B}R_{I}=I$
- ▶ Measurement:  $(\mathbf{z}_{\omega}, \mathbf{z}_{a})$  with angular velocity measurement  $\mathbf{z}_{\omega} \in \mathbb{R}^{3}$  and linear acceleration measurement  $\mathbf{z}_{a} \in \mathbb{R}^{3}$ :

$$\begin{split} \mathbf{z}_{\omega} &= {}_{\mathcal{B}}R_{I}^{\top}\boldsymbol{\omega} + \mathbf{b}_{g} + \mathbf{n}_{g} \\ \mathbf{z}_{a} &= {}_{\mathcal{B}}R_{I}^{\top} \left( \mathbf{a} - gR^{\top}\mathbf{e}_{3} + \hat{\boldsymbol{\alpha}} \, {}_{\mathcal{B}}\mathbf{p}_{I} + \hat{\boldsymbol{\omega}}^{2}{}_{\mathcal{B}}\mathbf{p}_{I} \right) + \mathbf{b}_{a} + \mathbf{n}_{a} \end{split}$$

# **Laser Sensors**



Single-Beam Garmin Lidar



2-D Hokuyo Lidar

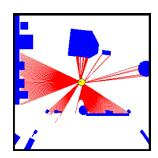


3-D Velodyne Lidar

### **LIDAR Model**

- ► LIDAR: Light Detection And Ranging
- Illuminates the scene with pulsed laser light and measures the return times and wavelengths of the reflected pulses
- Mirrors are used to steer the laser beam in the xy plane (and zy plane for 3D lidars)
- ▶ LIDAR rays are emitted over a set of known horizontal (azimuth) and vertical (elevation) angles  $\{\alpha_k, \epsilon_k\}$  and return range estimates  $\{r_k\}$  to obstacles in the environment  $\mathbf{m}$
- ► Example: Hokuyo URG-04LX; detectable range: 0.02 to 4m; 240° field of view with 0.36° angular resolution (666 beams); 100 ms/scan





# Laser Range-Azimuth-Elevation Model

- ▶ Consider a Lidar with position  $\mathbf{p} \in \mathbb{R}^3$  and orientation  $R \in SO(3)$  observing a point  $\mathbf{m} \in \mathbb{R}^3$  in the world frame
- ▶ The point **m** has coordinates  $\bar{\mathbf{m}} := R^{\top}(\mathbf{m} \mathbf{p})$  in the lidar frame
- ▶ The lidar provides a spherical coordinate measurement of  $\bar{\mathbf{m}}$ :

$$\bar{\mathbf{m}} = R^{\top}(\mathbf{m} - \mathbf{p}) = \begin{bmatrix} r \cos \alpha \cos \epsilon \\ r \sin \alpha \cos \epsilon \\ r \sin \epsilon \end{bmatrix}$$

where r is the range,  $\alpha$  is the azimuth, and  $\epsilon$  is the elevation

- ▶ Inverse observation model: expresses the lidar state  $\mathbf{p}$ , R and environment state  $\mathbf{m}$ , in terms of the measurement  $\mathbf{z} = \begin{bmatrix} r & \alpha & \epsilon \end{bmatrix}^T$
- Inverting gives the laser range-azimuth-elevation model:

$$\mathbf{z} = \begin{bmatrix} r \\ \alpha \\ \epsilon \end{bmatrix} = \begin{bmatrix} \|\bar{\mathbf{m}}\|_2 \\ \arctan(\bar{\mathbf{m}}_y/\bar{\mathbf{m}}_x) \\ \arcsin(\bar{\mathbf{m}}_z/\|\bar{\mathbf{m}}\|_2) \end{bmatrix} \qquad \bar{\mathbf{m}} = R^{\top}(\mathbf{m} - \mathbf{p})$$

# **Common Observation Models**

**Position sensor**: state  $\mathbf{x} = (\mathbf{p}, R)$ , position  $\mathbf{p} \in \mathbb{R}^3$ , orientation  $R \in SO(3)$ , observed point  $\mathbf{m} \in \mathbb{R}^3$ , measurement  $\mathbf{z} \in \mathbb{R}^3$ :

$$z = h(x, m) = R^{\top}(m - p)$$

▶ Range sensor: state  $\mathbf{x} = (\mathbf{p}, R)$ , position  $\mathbf{p} \in \mathbb{R}^3$ , orientation  $R \in SO(3)$ , observed point  $\mathbf{m} \in \mathbb{R}^3$ , measurement  $z \in \mathbb{R}$ :

$$z = h(\mathbf{x}, \mathbf{m}) = \|R^{\top}(\mathbf{m} - \mathbf{p})\|_2 = \|\mathbf{m} - \mathbf{p}\|_2$$

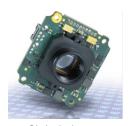
**Bearing sensor**: state  $\mathbf{x} = (\mathbf{p}, \theta)$ , position  $\mathbf{p} \in \mathbb{R}^2$ , orientation  $\theta \in (-\pi, \pi]$ , observed point  $\mathbf{m} \in \mathbb{R}^2$ , bearing  $z \in \mathbb{R}$ :

$$z = h(\mathbf{x}, \mathbf{m}) = \arctan\left(\frac{m_2 - p_2}{m_1 - p_1}\right) - \theta$$

▶ Camera sensor: state  $\mathbf{x} = (\mathbf{p}, R)$ , position  $\mathbf{p} \in \mathbb{R}^3$ , orientation  $R \in SO(3)$ , intrinsic camera matrix  $K \in \mathbb{R}^{3 \times 3}$ , projection matrix  $P := [I, \mathbf{0}] \in \mathbb{R}^{2 \times 3}$ , observed point  $\mathbf{m} \in \mathbb{R}^3$ , pixel  $\mathbf{z} \in \mathbb{R}^2$ :

$$\mathbf{z} = h(\mathbf{x}, \mathbf{m}) = PK\pi(R^{\top}(\mathbf{m} - \mathbf{p}))$$
 projection:  $\pi(\mathbf{m}) := \frac{1}{\mathbf{e}_{\top}^{\top}\mathbf{m}}\mathbf{m}$ 

### **Camera Sensors**



Global shutter





Stereo (+ IMU)



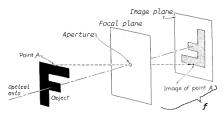
Event-based

# **Image Formation**

- Image formation model: must trade-off physical accuracy and mathematical simplicity
- ► The values of an image depend on the shape and reflectance of the scene as well as the distribution of light
- ▶ Image intensity I(u, v) describes the energy falling onto a small patch of the imaging sensor (integrated both over the shutter interval and over a region of space) and is measured in power per unit area  $(W/m^2)$
- ► A camera uses a set of lenses to control the direction of light propagation by means of diffraction, refraction, and reflection
- ► Thin lens model: a simple geometric model of image formation that considers only <u>refraction</u>
- ▶ **Pinhole model**: a thin lens model in which the lens aperture is decreased to zero and all rays are forced to go through the optical center and remain undeflected (diffraction becomes dominant).

### Pinhole Camera Model

► Focal plane: perpendicular to the optical axis with a circular aperture at the optical center



- ► Image plane: parallel to the focal plane and a distance f (focal length) in meters from the optical center
- ► The pinhole camera model is described in an **optical frame** centered at the optical center with the optical axis as the *z*-axis:
  - **optical frame**: x = right, y = down, z = forward
  - **regular frame**: x =forward, y =left, z =up
- ▶ Image flip: the object appears upside down on the image plane. To eliminate this effect, we can simply flip the image  $(x,y) \rightarrow (-x,-y)$ , which corresponds to placing the image plane  $\{z=-f\}$  in front of the optical center instead of behind  $\{z=f\}$ .

### **Pinhole Camera Model**

- ▶ **Field of view**: the angle subtended by the spatial extend of the image plane as seen from the optical center. If s is the side of the image plane in meters, then the field of view is  $\theta = 2 \arctan\left(\frac{s}{2f}\right)$ .
  - For a flat image plane:  $\theta < 180^{\circ}$ .
  - For a spherical or ellipsoidal imaging surface, common in omnidirectional cameras,  $\theta$  can exceed  $180^{\circ}$ .
- ▶ Ray tracing: assuming a pinhole model and Lambertian surfaces, image formation can be reduced to tracing rays from points on objects to pixels. A mathematical model associating 3-D points in the world frame to 2-D points in the image frame must account for:
  - 1. Extrinsics: world-to-camera frame transformation
  - 2. Projection: 3D-to-2D coordinate projection
  - 3. Intrinsics: scaling and translation of the image coordinate frame

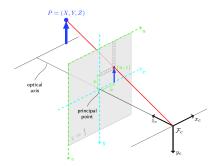
### **Extrinsics**

- Let  ${}_{w}\mathbf{p}_{r} \in \mathbb{R}^{3}$  and  ${}_{w}R_{r} \in SO(3)$  be the position and orientation of the (regular) camera frame in the world frame
- ▶ Rotation from regular to optical frame:  ${}_{o}R_{r} := \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix}$
- Let  $(X_w, Y_w, Z_w)$  be the coordinates of point **m** in the world frame. The coordinates of **m** in the optical frame are then:

$$\begin{pmatrix} X_o \\ Y_o \\ Z_o \\ 1 \end{pmatrix} = \begin{bmatrix} {}_oR_r & \mathbf{0} \\ \mathbf{0}^\top & 1 \end{bmatrix} \begin{bmatrix} {}_wR_r & {}_w\mathbf{p}_r \\ \mathbf{0}^\top & 1 \end{bmatrix}^{-1} \begin{pmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{pmatrix} = \begin{bmatrix} {}_oR_{rw}R_r^\top & -{}_oR_{rw}R_r^\top {}_w\mathbf{p}_r \\ 0 & 1 \end{bmatrix} \begin{pmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{pmatrix}$$

# **Projection**

▶ The 3D-to-2D perspective projection operation relates the optical-frame coordinates  $(X_o, Y_o, Z_o)$  of point  $\mathbf{m}$  to its image coordinates (x, y) using similar triangles:



$$\begin{aligned} x &= f \frac{X_o}{Z_o} \\ y &= f \frac{Y_o}{Z_o} \end{aligned} \qquad \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \frac{1}{Z_o} \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{pmatrix} X_o \\ Y_o \\ Z_o \\ 1 \end{pmatrix}$$

▶ The above can be decomposed into:

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \underbrace{\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\text{image flip: } F_{f}} \underbrace{\begin{bmatrix} -f & 0 & 0 \\ 0 & -f & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\text{focal scaling: } K_{f}} \underbrace{\frac{1}{Z_{o}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}}_{\text{canonical projection: } \pi} \begin{pmatrix} X_{o} \\ Y_{o} \\ Z_{o} \\ 1 \end{pmatrix}$$

#### **Intrinsics**

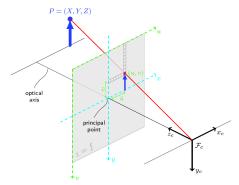
- ▶ Images are obtained in terms of pixels (u, v) with the origin of the pixel array typically in the upper-left corner of the image
- ► The relationship between the image frame and the pixel array is specified via the following parameters:
  - $(s_u, s_v)$  [pixels/meter]: define the **scaling** from meters to pixels and the **aspect** ration  $\sigma = s_u/s_v$
  - $(c_u, c_v)$  [pixels]: coordinates of the *principal point* used to translate the image frame origin, e.g.,  $(c_u, c_v) = (320.5, 240.5)$  for a  $640 \times 480$  image
  - ullet  $s_{ heta}$  [pixels/meter]: **skew factor** that scales non-rectangular pixels and is proportional to  $\cot(\alpha)$  where  $\alpha$  is the angle between the coordinate axes of the pixel array
- ► Normalized coordinates in the image frame are converted to pixel coordinates in the pixel array using the **intrinsic parameter matrix**:

$$\underbrace{ \begin{bmatrix} s_u & s_\theta & c_u \\ 0 & s_v & c_v \\ 0 & 0 & 1 \end{bmatrix}}_{\text{pixel scaling: } K_s} \underbrace{ \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\text{image flip: } F_f} \underbrace{ \begin{bmatrix} -f & 0 & 0 \\ 0 & -f & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\text{focal scaling: } K_f} = \underbrace{ \begin{bmatrix} fs_u & fs_\theta & c_u \\ 0 & fs_v & c_v \\ 0 & 0 & 1 \end{bmatrix}}_{\text{calibration matrix: } K} \in \mathbb{R}^{3 \times 3}$$

# **Pinhole Camera Model Summary**

**Extrinsics**:

$$\begin{pmatrix} X_o \\ Y_o \\ Z_o \\ 1 \end{pmatrix} = \begin{bmatrix} {}_oR_{rw}R_r^\top & -{}_oR_{rw}R_{rw}^\top \mathbf{p}_r \\ \mathbf{0}^\top & 1 \end{bmatrix} \begin{pmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{pmatrix}$$



Projection and Intrinsics:

$$\underbrace{\begin{pmatrix} u \\ v \\ 1 \end{pmatrix}}_{\text{pixels}} = \underbrace{\begin{bmatrix} fs_u & fs_\theta & c_u \\ 0 & fs_v & c_v \\ 0 & 0 & 1 \end{bmatrix}}_{\text{calibration: } K} \underbrace{\frac{1}{Z_o} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}}_{\text{canonical projection: } \pi} \begin{pmatrix} X_o \\ Y_o \\ Z_o \\ 1 \end{pmatrix}$$

# **Perspective Projection Camera Model**

▶ The canonical projection function for vector  $\mathbf{x} \in \mathbb{R}^3$  is:

$$\pi(\mathbf{x}) := \frac{1}{\mathbf{e}_3^{ op} \mathbf{x}} \mathbf{x}$$

▶ Camera observation model: state  $\mathbf{x} = (\mathbf{p}, R)$  with position  $\mathbf{p} \in \mathbb{R}^3$  and orientation  $R \in SO(3)$  of the optical frame, intrinsic camera matrix  $K \in \mathbb{R}^{3 \times 3}$ , observed point  $\mathbf{m} \in \mathbb{R}^3$ , pixel  $\mathbf{z} \in \mathbb{R}^2$ :

$$\mathbf{z} = h(\mathbf{x}, \mathbf{m}) = PK\pi(R^{\top}(\mathbf{m} - \mathbf{p}))$$
  $P := \begin{bmatrix} I & \mathbf{0} \end{bmatrix} \in \mathbb{R}^{2 \times 3}$ 

▶ The camera model can be written directly in terms of the camera optical frame pose  $T \in SE(3)$  using homogeneous coordinates:

$$\underline{\mathbf{z}} = K\pi(PT^{-1}\underline{\mathbf{m}})$$
  $\underline{\mathbf{x}} := \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}$   $P := \begin{bmatrix} I & \mathbf{0} \end{bmatrix} \in \mathbb{R}^{3 \times 4}$ 

### Radial Distortion and Other Camera Models

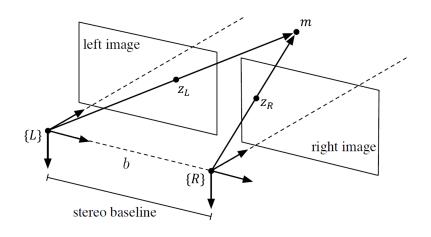
- ▶ Wide field of view camera: in addition to linear distortions described by the intrinsic parameters K, one can observe distortion along radial directions
- ► The simplest effective **model for radial distortion** is:

$$x = x_d(1 + a_1r^2 + a_2r^4)$$
  
$$y = y_d(1 + a_1r^2 + a_2r^4)$$

where  $(x_d, y_d)$  are the pixel coordinates of distorted points and  $r^2 = x_d^2 + y_d^2$  and  $a_1, a_2$  are additional parameters modeling the amount of distortion

- ▶ Spherical perspective projection: if the imaging surface is a sphere  $\mathbb{S}^2 := \{\mathbf{x} \in \mathbb{R}^3 \mid \|\mathbf{x}\| = 1\}$  (motivated by retina shapes in biological systems), we can define a spherical projection  $\pi_s(\mathbf{x}) = \frac{\mathbf{x}}{\|\mathbf{x}\|_2}$  and use it in place of  $\pi$  in the perspective projection model
- Catadioptric model: uses an ellipsoidal imaging surface

# Stereo Camera Model



### **Stereo Camera Model**

- ► **Stereo camera**: two perspective cameras rigidly connected to one another with a known transformation
- ▶ Unlike a single camera, a stereo camera can determine the depth of a point from a single stereo observation
- ▶ **Stereo camera baseline**: the transformation between the two stereo cameras is only a displacement along the *x*-axis (optical frame) of size *b*
- ▶ The pixel coordinates  $\mathbf{z}_L, \mathbf{z}_R \in \mathbb{R}^2$  of a point  $\mathbf{m} \in \mathbb{R}^3$  in the world frame observed by a stereo camera at position  $\mathbf{p} \in \mathbb{R}^3$  and orientation  $R \in SO(3)$  with intrinsic parameters  $K \in \mathbb{R}^{3 \times 3}$  are:

$$\underline{\mathbf{z}}_L = K\pi \left( R^{\top}(\mathbf{m} - \mathbf{p}) \right) \qquad \underline{\mathbf{z}}_R = K\pi \left( R^{\top}(\mathbf{m} - \mathbf{p}) - b\mathbf{e}_1 \right)$$

### Stereo Camera Model

▶ Stacking the two observations together gives the stereo camera model:

$$\begin{bmatrix} u_L \\ v_L \\ u_R \\ v_R \end{bmatrix} = \underbrace{\begin{bmatrix} fs_u & 0 & c_u & 0 \\ 0 & fs_v & c_v & 0 \\ fs_u & 0 & c_u & -fs_u b \\ 0 & fs_v & c_v & 0 \end{bmatrix}}_{z} \underbrace{\frac{1}{z} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}}_{z} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = R^{\top}(\mathbf{m} - \mathbf{p})$$

- ▶ Because of the stereo setup, two rows of *M* are identical. The vertical coordinates of the two pixel observations are always the same because the epipolar lines in the stereo configuation are horizontal.
- ► The  $v_R$  equation may be dropped, while the  $u_R$  equation is replaced with a **disparity** measurement  $d = u_L u_R = \frac{1}{z} f s_u b$  leading to:

$$\begin{bmatrix} u_L \\ v_L \\ d \end{bmatrix} = \begin{bmatrix} fs_u & 0 & c_u & 0 \\ 0 & fs_v & c_v & 0 \\ 0 & 0 & 0 & fs_u b \end{bmatrix} \frac{1}{z} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \qquad \begin{bmatrix} x \\ y \\ z \end{bmatrix} = R^{\top} (\mathbf{m} - \mathbf{p})$$