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Rotation Kinematics

▶ The trajectory R(t) of continuous rotation motion satisfies:

R⊤(t)R(t) = I ⇒ Ṙ⊤(t)R(t) + R⊤(t)Ṙ(t) = 0.

▶ Since R⊤(t)Ṙ(t) is skew-symmetric, there exists ω(t) ∈ R3 such that:

R⊤(t)Ṙ(t) = ω̂(t)

▶ Rotation kinematics: the orientation of a rigid body R(t) ∈ SO(3) rotating
with angular velocity ω(t) ∈ R3 (in body-frame coordinates) satisfies:

Ṙ(t) = R(t)ω̂(t)

▶ Discrete-time rotation kinematics: if ω(t) ≡ ωk is constant for
t ∈ [tk , tk+1) and Rk := R(tk), τk := tk+1 − tk :

Rk+1 = Rk exp(τk ω̂k)

where exp(X ) =
∑∞

n=0
1
n!X

n is the matrix exponential function.
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Quaternion Kinematics

▶ Quaternion kinematics: the orientation of a rigid body q(t) ∈ H∗ rotating
with angular velocity ω(t) ∈ R3 (in body-frame coordinates) satisfies:

q̇(t) = q(t) ◦ [0,ω(t)/2]

▶ Discrete-time quaternion kinematics: if ω(t) ≡ ωk is constant for
t ∈ [tk , tk+1) and qk := q(tk), τk := tk+1 − tk :

qk+1 = qk ◦ exp([0, τkωk/2])

where exp(q) = eqs
[
cos ∥qv∥, qv

∥qv∥ sin ∥qv∥
]
is the quaternion exponential

function.
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Pose Kinematics

▶ Pose kinematics: the pose of a rigid body T (t) ∈ SE (3) moving with

generalized velocity ζ(t) =

[
v(t)
ω(t)

]
∈ R6 (in body-frame coordinates)

satisfies:

Ṫ (t) = T (t)ζ̂(t) ζ̂ =
ˆ[v
ω

]
:=

[
ω̂ v
0 0

]
(twist)

▶ Discrete-time pose kinematics: if ζ(t) ≡ ζk is constant for t ∈ [tk , tk+1)
and Tk := T (tk), τk := tk+1 − tk :

Tk+1 = Tk exp(τk ζ̂k)

where exp(X ) =
∑∞

n=0
1
n!X

n is the matrix exponential function.
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Pose Dynamics

▶ Pose dynamics: the pose T (t) ∈ SE (3) and twist ζ(t) ∈ R6 of a rigid body
with mass m ∈ R>0 and moment of inertia J ∈ R3×3, moving with wrench

(generalized force) w(t) =

[
f(t)
τ (t)

]
∈ R6 (in body-frame coordinates) satisfies:

Ṫ (t) = T (t)ζ̂(t) M :=

[
mI 0
0 J

]

M ζ̇(t) =
⋏
ζ(t)⊤Mζ(t) +w(t)

⋏
ζ =

⋏[
v
ω

]
:=

[
ω̂ v̂
0 ω̂

]
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Motion Models

Ackermann Drive

Differential Drive

Quadrotor

Spring-Loaded Gait
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Motion Model

▶ Variables describing a robot system:
▶ time t (continuous or discrete)
▶ state x (e.g., position, orientation)
▶ control input u (e.g., velocity, force)
▶ disturbance w (e.g., tire slip, wind)

▶ A motion model is a function f relating the current state x and input u of a
robot with its state change
▶ Continuous time: ẋ(t) = f (x(t), u(t))

▶ Discrete time: xt+1 = f (xt , ut)

▶ If the motion is affected by disturbance w modeled as a random variable,
then the state x is also a random variable described either:
▶ in function form: xt+1 = f (xt , ut ,wt) or

▶ with the probability density function pf (· | xt , ut) of xt+1
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Odometry-Based Motion Model
▶ Consider a rigid-body robot with state xt = Tt ∈ SE (3) capturing the robot

pose in the world frame at time t

▶ Odometry: onboard sensors (camera, lidar, encoders, imu, etc.) may be
used to estimate the relative pose of the robot body frame at time t + 1 with
respect to the body frame at time t:

ut = tTt+1 =

[
tRt+1 tpt+1

0⊤ 1

]
∈ SE (3)

▶ Odometry-based motion model: given the robot pose xt and the odometry
ut at time t, the state at time t + 1 satisfies:

Tt+1 = xt+1 = f (xt ,ut) := xtut = Tt tTt+1

▶ Given an initial pose x0 and odometry measurements u0, . . . ,ut , the robot
pose at time t + 1 can be estimated as:

xt+1 = f (xt ,ut) = f (xt−1,ut−1)ut = . . . = x0u0u1 · · ·ut

▶ An odometry estimate is “drifting” (gets worse over time) because small
measurement errors in each ut are accumulated
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Differential-Drive Kinematic Model

▶ State: x = (p, θ), where p = (x , y) ∈ R2 is the position and θ ∈ (−π, π] is
the orientation (yaw angle) in the world frame

▶ Control: u = (v , ω), where v ∈ R is the linear velocity and ω ∈ R is the
angular velocity (yaw rate) in the body frame

▶ Continuous-time model:

ẋ =

ẋẏ
θ̇

 = f (x,u) :=

v cos θv sin θ
ω


▶ The model is obtained using 2D pose kinematics

with body-frame twist ζ = (v , 0, ω)⊤:

[
Ṙ(θ) ṗ
0⊤ 0

]
=

[
R(θ) p
0⊤ 1

]0 −ω v
ω 0 0
0 0 0


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Differential-Drive Kinematic Model

▶ Let ℓ be the axle length (distance between wheels) and r be the radius of
rotation, i.e., the distance from the ICC to the axle center

▶ The arc-length traveled is equal to the angle θ times the radius r

vt = rθ ⇒ v =
rθ

t
= rω

▶ Left wheel: vL = ω(r − ℓ/2)

▶ Right wheel: vR = ω(r + ℓ/2)

▶ Linear and angular velocity from
wheel velocities:

ω =
vR − vL

ℓ

r =
ℓ

2

(
vL + vR
vR − vL

)
=

v

ω

v =
vR + vL

2
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Discrete-Time Differential-Drive Kinematic Model

▶ Euler discretization over time interval of length τt :

xt+1 =

xt+1

yt+1

θt+1

 = fd(xt ,ut) := xt + τt

vt cos(θt)vt sin(θt)
ωt


▶ Exact integration over time interval of length τt :

xt+1 =

xt+1

yt+1

θt+1

 = fd(xt ,ut) := xt + τt

vtsinc (ωtτt
2

)
cos

(
θt +

ωtτt
2

)
vtsinc

(
ωtτt
2

)
sin

(
θt +

ωtτt
2

)
ωt


▶ The exact integration is equivalent to the discrete-time pose kinematics:

[
R(θt+1) pt+1

0⊤ 1

]
=

[
R(θt) pt
0⊤ 1

]
exp

τt

 0 −ωt vt
ωt 0 0
0 0 0


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Discrete-Time Differential-Drive Kinematic Model
▶ What is the state after τ seconds if we apply constant linear velocity v and

angular velocity ω at time t0?

▶ To convert the continuous-time differential-drive model to discrete time, we
solve the ordinary differential equations:

ẋ(t) = v cos θ(t)

ẏ(t) = v sin θ(t)

θ̇(t) = ω

⇒

θ(t0 + τ) = θ(t0) +

∫ t0+τ

t0

ωds = θ(t0) + ωτ

x(t0 + τ) = x(t0) + v

∫ t0+τ

t0

cos θ(s)ds

= x(t0) +
v

ω
(sin (ωτ + θ(t0))− sin θ(t0))

= x(t0) + vτ
sin(ωτ/2)

ωτ/2
cos

(
θ(t0) +

ωτ

2

)
y(t0 + τ) = y(t0) + v

∫ t0+τ

t0

sin θ(s)ds

= y(t0)−
v

ω
(cos θ(t0)− cos (ωτ + θ(t0)))

= y(t0) + vτ
sin(ωτ/2)

ωτ/2
sin

(
θ(t0) +

ωτ

2

)
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Ackermann-Drive Kinematic Model

▶ State: x = (p, θ), where p = (x , y) ∈ R2 is the position and θ ∈ (−π, π] is
the orientation (yaw angle) in the world frame

▶ Control: u = (v , ϕ), where v ∈ R is the linear velocity and ϕ ∈ (−π, π] is
the steering angle in the body frame

▶ Continuous-time model:

ẋ =

ẋẏ
θ̇

 = f (x,u) :=

v cos θ
v sin θ
v
L tanϕ


where L is the distance between the two wheel axles

▶ With the definition ω := v
L tanϕ, the Ackermann-drive model is equivalent to

the differential-drive model and we can use the same discretized models
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Quadrotor Dynamics Model
▶ State: x = (p,R, v,ω) with position p ∈ R3, orientation R ∈ SO(3),

body-frame linear velocity v ∈ R3, body-frame angular velocity ω ∈ R3

▶ Control: u = (ρ, τ ) with body-frame thrust force ρ ∈ R and torque τ ∈ R3

▶ Continuous-time dynamics model with mass m, gravity acceleration g ,
moment of inertia J ∈ R3×3 and e3 = (0, 0, 1)⊤, obtained from rigid-body
pose dynamics:

ẋ = f (x,u) =


ṗ = Rv

Ṙ = Rω̂

mv̇ = −ω ×mv +
(
ρe3 −mgR⊤e3

)
Jω̇ = −ω × Jω + τ
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Observation Models

Inertial Measurement Unit

Global Positioning System

RGB Camera

2-D Lidar
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Observation Model

▶ Variables describing a sensor:
▶ sensor state x (e.g., position, orientation)
▶ environment state m (e.g., object position, orientation, shape)
▶ measurement z (e.g., image)
▶ noise v (e.g., blur)

▶ An observation model is a function h relating the sensor state x and the
environment state m with the sensor measurement z:

z = h(x,m)

▶ If the sensor is affected by noise v modeled as a random variable, then the
measurement z is also a random variable described either:
▶ in function form: z = h(x,m, v) or

▶ with the probability density function ph(· | x,m) of z
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Common Sensor Models

▶ Inertial or force sensor: measures velocity, acceleration, or force, e.g.,
encoder, magnetometer, gyroscope, accelerometer

▶ Position sensor: measures position, e.g., GPS, RGBD camera, laser scanner

▶ Bearing sensor: measures angles, e.g., compass, RGB camera

▶ Range sensor: measures distance, e.g., radio received signal strength or
time-of-flight
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Encoder

▶ A magnetic encoder consists of a rotating gear, a
permanent magnet, and a sensing element

▶ The sensor has two output channels with offset
phase to determine the direction of rotation

▶ A microcontroller counts the number of transitions
adding or subtracting 1 (depending on the direction
of rotation) to the counter

▶ The distance traveled by the wheel, corresponding to
one tick on the encoder is:

meters per tick =
π × (wheel diameter)

ticks per revolution

▶ The distance traveled during time τ for a given encoder count z , wheel
diameter d , and n ticks on the sensor per revolution is:

τv ≈ πdz

n

and can be used to measure the linear velocity for a differential-drive model
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Inertial Measurement Unit

▶ IMU: inertial measurement unit:
▶ triaxial accelerometer (measures linear acceleration)
▶ triaxial gyroscope (measures angular velocity)

▶ Accelerometer:
▶ A mass m on a spring with constant k. The spring

displacement is proportional to the system acceleration:
F = ma = kd ⇒ a = kd

m

▶ VLSI fabrication: the displacement of a metal plate with
mass m is measured with respect to another plate using
capacitance

▶ Used for car airbags (if the acceleration goes above 2g ,
the car is hitting something!)

▶ Gyroscope: uses Coriolis force to detect rotational velocity from the
changing mechanical resonsance of a tuning fork
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IMU Observation Model

▶ State: (p,R, v,ω, a,α,bg ,ba) with position p ∈ R3, orientation R ∈ SO(3),
body-frame linear velocity v ∈ R3, body-frame angular velocity ω ∈ R3,
body-frame linear acceleration a ∈ R3, body-frame angular acceleration
α ∈ R3, gyroscope bias bg ∈ R3, accelerometer bias ba ∈ R3

▶ Extrinsic Parameters: IMU position BpI ∈ R3 and orientation BRI ∈ SO(3)
in the body frame are assumed known or obtained from calibration

▶ Strapdown IMU: the IMU frame and the body frame are identical, i.e,

BpI = 0 and BRI = I

▶ Measurement: (zω, za) with angular velocity measurement zω ∈ R3 and
linear acceleration measurement za ∈ R3:

zω = BR
⊤
I ω + bg + ng

za = BR
⊤
I

(
a− gR⊤e3 + α̂ BpI + ω̂2

BpI
)
+ ba + na
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Laser Sensors

Single-Beam Garmin Lidar

2-D Hokuyo Lidar

3-D Velodyne Lidar
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LIDAR Model

▶ LIDAR: LIght Detection And Ranging

▶ Illuminates the scene with pulsed laser light and
measures the return times and wavelengths of
the reflected pulses

▶ Mirrors are used to steer the laser beam in the
xy plane (and zy plane for 3D lidars)

▶ LIDAR rays are emitted over a set of known
horizontal (azimuth) and vertical (elevation)
angles {αk , ϵk} and return range estimates {rk}
to obstacles in the environment m

▶ Example: Hokuyo URG-04LX; detectable range:
0.02 to 4m; 240◦ field of view with 0.36◦

angular resolution (666 beams); 100 ms/scan
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Laser Range-Azimuth-Elevation Model
▶ Consider a Lidar with position p ∈ R3 and orientation R ∈ SO(3) observing a

point m ∈ R3 in the world frame

▶ The point m has coordinates m̄ := R⊤(m− p) in the lidar frame

▶ The lidar provides a spherical coordinate measurement of m̄:

m̄ = R⊤(m− p) =

r cosα cos ϵ
r sinα cos ϵ

r sin ϵ


where r is the range, α is the azimuth, and ϵ is the elevation

▶ Inverse observation model: expresses the lidar state p, R and environment

state m, in terms of the measurement z =
[
r α ϵ

]T
▶ Inverting gives the laser range-azimuth-elevation model:

z =

r
α
ϵ

 =

 ∥m̄∥2
arctan (m̄y/m̄x)
arcsin (m̄z/∥m̄∥2)

 m̄ = R⊤(m− p)
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Common Observation Models
▶ Position sensor: state x = (p,R), position p ∈ R3, orientation R ∈ SO(3),

observed point m ∈ R3, measurement z ∈ R3:

z = h(x,m) = R⊤(m− p)

▶ Range sensor: state x = (p,R), position p ∈ R3, orientation R ∈ SO(3),
observed point m ∈ R3, measurement z ∈ R:

z = h(x,m) = ∥R⊤(m− p)∥2 = ∥m− p∥2
▶ Bearing sensor: state x = (p, θ), position p ∈ R2, orientation θ ∈ (−π, π],

observed point m ∈ R2, bearing z ∈ R:

z = h(x,m) = arctan

(
m2 − p2
m1 − p1

)
− θ

▶ Camera sensor: state x = (p,R), position p ∈ R3, orientation R ∈ SO(3),
intrinsic camera matrix K ∈ R3×3, projection matrix P := [I , 0] ∈ R2×3,
observed point m ∈ R3, pixel z ∈ R2:

z = h(x,m) = PKπ(R⊤(m− p)) projection: π(m) :=
1

e⊤3 m
m
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Camera Sensors

Global shutter

RGBD

Stereo (+ IMU)

Event-based
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Image Formation

▶ Image formation model: must trade-off physical accuracy and
mathematical simplicity

▶ The values of an image depend on the shape and reflectance of the scene as
well as the distribution of light

▶ Image intensity I (u, v) describes the energy falling onto a small patch of
the imaging sensor (integrated both over the shutter interval and over a
region of space) and is measured in power per unit area (W /m2)

▶ A camera uses a set of lenses to control the direction of light propagation by
means of diffraction, refraction, and reflection

▶ Thin lens model: a simple geometric model of image formation that
considers only refraction

▶ Pinhole model: a thin lens model in which the lens aperture is decreased to
zero and all rays are forced to go through the optical center and remain
undeflected (diffraction becomes dominant).
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Pinhole Camera Model

▶ Focal plane: perpendicular to the
optical axis with a circular aperture
at the optical center

▶ Image plane: parallel to the focal plane and a distance f (focal length) in
meters from the optical center

▶ The pinhole camera model is described in an optical frame centered at the
optical center with the optical axis as the z-axis:
▶ optical frame: x = right, y = down, z = forward
▶ regular frame: x = forward, y = left, z = up

▶ Image flip: the object appears upside down on the image plane. To
eliminate this effect, we can simply flip the image (x , y) → (−x ,−y), which
corresponds to placing the image plane {z = −f } in front of the optical
center instead of behind {z = f }.
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Pinhole Camera Model

▶ Field of view: the angle subtended by the spatial extend of the image plane
as seen from the optical center. If s is the side of the image plane in meters,
then the field of view is θ = 2arctan

(
s
2f

)
.

▶ For a flat image plane: θ < 180◦.
▶ For a spherical or ellipsoidal imaging surface, common in omnidirectional

cameras, θ can exceed 180◦.

▶ Ray tracing: assuming a pinhole model and Lambertian surfaces, image
formation can be reduced to tracing rays from points on objects to pixels. A
mathematical model associating 3-D points in the world frame to 2-D points
in the image frame must account for:

1. Extrinsics: world-to-camera frame transformation

2. Projection: 3D-to-2D coordinate projection

3. Intrinsics: scaling and translation of the image coordinate frame
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Extrinsics

▶ Let wpr ∈ R3 and wRr ∈ SO(3) be the position and orientation of the
(regular) camera frame in the world frame

▶ Rotation from regular to optical frame: oRr :=

0 −1 0
0 0 −1
1 0 0


▶ Let (Xw ,Yw ,Zw ) be the coordinates of point m in the world frame. The

coordinates of m in the optical frame are then:
Xo

Yo

Zo

1

 =

[
oRr 0
0⊤ 1

] [
wRr wpr
0⊤ 1

]−1


Xw

Yw

Zw

1

 =

[
oRr wR

⊤
r −oRr wR

⊤
r wpr

0 1

]
Xw

Yw

Zw

1


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Projection

▶ The 3D-to-2D perspective projection
operation relates the optical-frame
coordinates (Xo ,Yo ,Zo) of point m to
its image coordinates (x , y) using
similar triangles:

x = f
Xo

Zo

y = f
Yo

Zo

x
y
1

 =
1

Zo

f 0 0 0
0 f 0 0
0 0 1 0



Xo

Yo

Zo

1


▶ The above can be decomposed into:x

y
1

 =

−1 0 0
0 −1 0
0 0 1


︸ ︷︷ ︸

image flip: Ff

−f 0 0
0 −f 0
0 0 1


︸ ︷︷ ︸
focal scaling: Kf

1

Zo

1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸
canonical projection: π


Xo

Yo

Zo

1


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Intrinsics

▶ Images are obtained in terms of pixels (u, v) with the origin of the pixel array
typically in the upper-left corner of the image

▶ The relationship between the image frame and the pixel array is specified via
the following parameters:
▶ (su, sv ) [pixels/meter]: define the scaling from meters to pixels and the aspect

ration σ = su/sv
▶ (cu, cv ) [pixels]: coordinates of the principal point used to translate the image

frame origin, e.g., (cu, cv ) = (320.5, 240.5) for a 640× 480 image
▶ sθ [pixels/meter]: skew factor that scales non-rectangular pixels and is

proportional to cot(α) where α is the angle between the coordinate axes of the
pixel array

▶ Normalized coordinates in the image frame are converted to pixel coordinates
in the pixel array using the intrinsic parameter matrix:su sθ cu
0 sv cv
0 0 1


︸ ︷︷ ︸
pixel scaling: Ks

−1 0 0
0 −1 0
0 0 1


︸ ︷︷ ︸

image flip: Ff

−f 0 0
0 −f 0
0 0 1


︸ ︷︷ ︸
focal scaling: Kf

=

fsu fsθ cu
0 fsv cv
0 0 1


︸ ︷︷ ︸
calibration matrix: K

∈ R3×3
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Pinhole Camera Model Summary

▶ Extrinsics:
Xo

Yo

Zo

1

=

[
oRr wR

⊤
r −oRr wR

⊤
r wpr

0⊤ 1

]
Xw

Yw

Zw

1



▶ Projection and Intrinsics:

u
v
1


︸ ︷︷ ︸
pixels

=

fsu fsθ cu
0 fsv cv
0 0 1


︸ ︷︷ ︸

calibration: K

1

Zo

1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸
canonical projection: π


Xo

Yo

Zo

1



35



Perspective Projection Camera Model

▶ The canonical projection function for vector x ∈ R3 is:

π(x) :=
1

e⊤3 x
x

▶ Camera observation model: state x = (p,R) with position p ∈ R3 and
orientation R ∈ SO(3) of the optical frame, intrinsic camera matrix
K ∈ R3×3, observed point m ∈ R3, pixel z ∈ R2:

z = h(x,m) = PKπ(R⊤(m− p)) P :=
[
I 0

]
∈ R2×3

▶ The camera model can be written directly in terms of the camera optical
frame pose T ∈ SE (3) using homogeneous coordinates:

z = Kπ(PT−1m) x :=

[
x
1

]
P :=

[
I 0

]
∈ R3×4
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Radial Distortion and Other Camera Models

▶ Wide field of view camera: in addition to linear distortions described by
the intrinsic parameters K , one can observe distortion along radial directions

▶ The simplest effective model for radial distortion is:

x = xd(1 + a1r
2 + a2r

4)

y = yd(1 + a1r
2 + a2r

4)

where (xd , yd) are the pixel coordinates of distorted points and r2 = x2d + y2
d

and a1, a2 are additional parameters modeling the amount of distortion

▶ Spherical perspective projection: if the imaging surface is a sphere
S2 := {x ∈ R3 | ∥x∥ = 1} (motivated by retina shapes in biological systems),
we can define a spherical projection πs(x) =

x
∥x∥2

and use it in place of π in

the perspective projection model

▶ Catadioptric model: uses an ellipsoidal imaging surface
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Stereo Camera Model
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Stereo Camera Model

▶ Stereo camera: two perspective cameras rigidly connected to one another
with a known transformation

▶ Unlike a single camera, a stereo camera can determine the depth of a point
from a single stereo observation

▶ Stereo camera baseline: the transformation between the two stereo
cameras is only a displacement along the x-axis (optical frame) of size b

▶ The pixel coordinates zL, zR ∈ R2 of a point m ∈ R3 in the world frame
observed by a stereo camera at position p ∈ R3 and orientation R ∈ SO(3)
with intrinsic parameters K ∈ R3×3 are:

zL = Kπ
(
R⊤(m− p)

)
zR = Kπ

(
R⊤(m− p)− be1

)
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Stereo Camera Model

▶ Stacking the two observations together gives the stereo camera model:
uL
vL
uR
vR

 =


fsu 0 cu 0
0 fsv cv 0
fsu 0 cu −fsub
0 fsv cv 0


︸ ︷︷ ︸

M

1

z


x
y
z
1


xy
z

 = R⊤(m− p)

▶ Because of the stereo setup, two rows of M are identical. The vertical
coordinates of the two pixel observations are always the same because the
epipolar lines in the stereo configuation are horizontal.

▶ The vR equation may be dropped, while the uR equation is replaced with a
disparity measurement d = uL − uR = 1

z fsub leading to:

uLvL
d

 =

fsu 0 cu 0
0 fsv cv 0
0 0 0 fsub

 1

z


x
y
z
1


xy
z

 = R⊤(m− p)
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