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Localization and Odometry from Point Features

» Point-cloud map: consider a map represented as a set of points m; € R?

> Observation model: relates an observation z; obtained from robot position
p and orientation 8 or R with the point m; that generated it:

> Position Sensor: z; = R (m; — p)

> Range Sensor: z; = ||m; — p|2

v

Bearing Sensor: z; = arctan (M) -0

mj x—Px
» Camera Sensor: z; = Kr (R' (m; — p))

» Localization Problem: Given landmark positions {m;};, and measurements
{zi}, at one time instance, determine the global robot position p and
orientation 6 or R

> Odometry Problem: Given measurements z; ;, ;11 at two time instances,
determine the relative position ;p;y1 and orientation ;0,1 or ;R;;1 between
the two robot frames at time t and t + 1



Outline

Localization and Odometry from Relative Position Measurements



2-D Localization from Relative Position Measurements

> Goal: determine the robot position p € R? and orientation 6 € (—, ]

» Given: two landmark positions m;, my € R? (world frame) and relative
position measurements (body frame):

zj=R'(9)(m; —p) eR?, =12

0 -1

» lLet z:=2z; — 2y and J ;= {1 0

} so that:

my - my — [cosH —sin 9} (z1—12,) = [0z Joz] (cos@)

sind  cosf sin 0
> As long as det [6z  J0z] = [|6z)3 = ||m1 — my||3 # 0, we can compute:
cosf) 1 0z, 0z, _ .
(sin 9> = 520 [_&y (52J (m;y —my) = 6= atan2(sin 0, cosb)

» Given the orientation 6, we can then obtain the robot position:

1

p= 5 ((m1 + m2) - R(@)(Zl + 22))



3-D Localization from Relative Position Measurements

>
>

Goal: determine the robot position p € R® and orientation R € SO(3)
Given: three landmark positions my, my, m3 € R? (world frame) and relative
position measurements (body frame):

zi=R"(m;—p)eR3 =123
Let mj := m; —m; and z; = z; — z; and compute:
mi> X mi3 = (Rz12) X (Rz13) = R(z12 X z13)

The vector mi; X my3 provides orthogonal information to m; and m; and
can be used to estimate the orientation R as long as the three points are
not all on the same line:

[m12 mp3 Mz X m13} =R [212 213 Z12 X Z13]
R = [m12 mp3 Mz X m13] [212 713 212 X 213]_1

Given the orientation R, we can then obtain the robot position:

3
1
p= 5 Z(m, — RZ,‘)
i=1



3-D Localization from Relative Position Measurements

» Goal: determine the robot position p € R? and orientation R € SO(3)

» Given: n landmark positions m; € R3 (world frame) and relative position
measurements (body frame):

zi=R'(mj—p)cR3 i=1,....n

» Localization from relative position measurements is known as the point
cloud registration problem

> Given two sets {m;} and {z;} of points, find the transformation p, R that
aligns them

> The data association A := {(/, ) : m; corresponds to z;} that specifies
which observation j corresponds to landmark i might not be available



Point Cloud Registration

> Given two sets {m;} and {z;} of points in RY, find the transformation
p € RY R € SO(d) and data association A that align them:

f(R,p,A) = ) wyl(Rz;+p)—mil3

min
ReSO(d),peR?,A




Known Data Association: Kabsch Algorithm

» Find the transformation p € R?, R € SO(d) between sets {m;} and {z;} of
associated points:

in _ f(Rp):=> wl(Rz +p) — mi3
s FORB) = 3wl (R ) — i

1

> The optimal translation is obtained by setting V,f(R, p) to zero:
0="V,of(R,p)=2> wi((Rzi+p)—m))

» Let the point cloud centroids be:

o= Z,’ wim; = . Z,‘ Wi Zj
. > Wi W

> Solving Vpf(R,p) = 0 for p leads to:

p=m-—Rz



Known Data Association: Kabsch Algorithm
> Replace p=m — Rz in f(R,p):

f(R,m— Rz) = ZWfllR(Zf —2) — (m; —m)|3

1
» Define the centered point clouds:
5m,~ ::m,-—ﬁ1 52,’ ZZZ;—E

» Finding the optimal rotation reduces to:

i :||[Réz; — 5my|?
Rerglcp(d)Z:WH z; — om;|3

» The objective function can be simplified further:

> willRézi — omj|3 = " w; (5z,T R"Réz; — 26m; Roz; + 5m,T§m,-)
i i i

» Note that:

> 6z 6z; and dm; Sm; are constant wrt R
> 3, widm; Rézi = 3, witr(6m; Rézi) = tr ((32; wisziom; ) R)



Known Data Association: Kabsch Algorithm

» Wahba's problem: to determine the rotation R that aligns two associated
centered point clouds {dm;} and {dz;}, we need to solve a linear
optimization problem in SO(d):

max tr(Q'R)
RESO(d)

where Q :=>"; w;om;éz;

» Wahba's problem can be solved via the Kabsch algorithm

10



Known Data Association: Kabsch Algorithm
> Wahba's problem: maxgeso(a)tr (Q'R)

> SVD: let @ = ULV be the singular value decomposition of @

v

The singular vectors U, V and singular values ¥ satisfy:
Y>>0 UTU=1 det(U)=+1 V'V=1  det(V)=4=1
Let W := UT RV such that WTW = [ and det(W) = +1

v

v

The columns w; of W are orthonormal, w}rwj =1, and hence:

T 2 2
L=ww;= Wj = W<1 = |W<1

v

Since X is diagonal with X; > 0:
tr(QTR) = tr(XUTRV) = tr(TW) Zz,, W; < Zz,,

» The maximum is achieved with W = [: )
W=I1 = URV=1 ™2 p_y| val
reflection 1

det(UVT)|



Unknown Data Association: Iterative Closest Point (ICP)

» Find the transformation p, R between sets {m;} and {z;} of points with
unknown data association A

» ICP algorithm: iterates between finding associations A based on closest
points and applying the Kabsch algorithm to determine p, R

> Initialize with pg, Ry (sensitive to initial guess) and iterate
1. Given pg, R, find correspondences (i,j) € A based on closest points:

i PR argmin||m; — (Rij+Pk)H§
J

2. Given correspondences (i,j) € A, find px+1, Rkt+1 via Kabsch algorithm

12



Unknown Data Association: Probabilistic ICP

» Many variations for determining the data association A in ICP exist:

> data association via point-to-plane distance (Chen & Medioni, 1991)
> probabilistic data association (EM-ICP, Granger & Pennec, 2002)

> Place a probability density function 7 (e.g., Gaussian) at each m; to define a
mixture distribution for the data:

n n
p(x) = Za,-ﬂ'(x; m;, o?/) a; >0 Za,- =1
i=1 i=1
> Find parameters p, R to maximize the likelihood of {Rz; + p};:
m n
) 2
T)%XZ log Z a;m(Rzj + p;m;,o7l)

j=1 i=1

> Use EM to determine membership probabiliites (E step) and optimize the
parameters p, R (M step). ICP is a special case with 02 — 0

> Robustness: use exp (—M> with 3 € (0,2) instead of exp (_ \x—mf\2>

20[-2 2(7’.2

13



Iterative Closest Point (ICP)

Iteration 0
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Iterative Closest Point (ICP)

Iteration 1
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Iterative Closest Point (ICP)

Iteration 2
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Iterative Closest Point (ICP)

Iteration 3
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Iterative Closest Point (ICP)

Iteration 4
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Iterative Closest Point (ICP)

Iteration 5
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Iterative Closest Point (ICP)

Iteration 6
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Iterative Closest Point (ICP)

Iteration 7
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Iterative Closest Point (ICP)

Iteration 8
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Iterative Closest Point (ICP)

Iteration 9
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Iterative Closest Point (ICP)

Iteration 10
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Iterative Closest Point (ICP)

Iteration 11
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Iterative Closest Point (ICP)

Iteration 12
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Iterative Closest Point (ICP)

Iteration 13
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Iterative Closest Point (ICP)

Iteration 14
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Iterative Closest Point (ICP)

Iteration 15
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Iterative Closest Point (ICP)

Iteration 16
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2-D Odometry from Relative Position Measurements

> Goal: determine the relative transformation (p;+1 € R? and ;0,1 € (—, 7]
between two robot frames at time t +1 and t

> Given: relative position measurements z;1,2;> € R? and z;11.1,2¢+12 € R?
at consecutive time steps to two unknown landmarks

» |f we consider the robot frame at time t to be the “world frame”, this
problem is the same as 2-D localization from relative position
measurements with m; 1=z, ;, z; == z;11;, P := tPry1, 0 = 011

31



3-D Odometry from Relative Position Measurements

> Goal: determine the relative transformation ps11 € R3 and +Re+1 € SO(3)
between two robot frames at time t +1 and t

> Given: relative position measurements z,; € R3 and z,,1; € R3 at
consecutive time steps to n unknown landmarks

» |f we consider the robot frame at time t to be the “world frame”, this
problem is the same as 3-D localization from relative position
measurements with m; 1=z, ;, z; ==z, 1, P := tPt41, R == tRea

32



Summary: Rel. Position Measurements z; = R (

» Localization

m; — p)

2
mi,my,z;,z; € R

(my —my) =

R(0)(z1 — 22)

12
,EZ

i=1
3 . [mlz mij3 Mo X m13} =R [212 Z13 212 X Z13]
my,z; e R, i=1,2,3 1 3
m,-j:=m,-fmj, Zj =2 —Zj gz 7RZ
mi,z,eR3 i=1,...,n R—argmaxZ(Sm Réz;
, ReSO(3) 5
1
dmiz=m; — =) m;, . 10 0
= Kabsch algorithm ulo 1 0 VT
1 SVD(Zr, om;oz] )=UsVT 0 0 det(UVT)
0z; ‘=zj — — zZ; 10
j=1 p= - Z(m,- — Rz;)
i=1
> Odometry: same with m; = z;;, z; := z¢11,, P 1= tPe+1, R 1= tReq1

33



Outline

Localization and Odometry from Bearing Measurements
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2-D Localization from Bearing Measurements

> Goal: determine the robot position p € R? and orientation 6 € (—, ]
» Given: two landmark positions m;, m, € R? (world frame) and bearing
measurements (body frame):
mj, — .
z; = arctan (,ypy> —0 eR, i=1,2
mj x — Px
» The bearing constraints are equivalent to:

cos(6)

m-p _ {605(2#9)} =R(z+0er = R (z)(m;—p)=]m;—pl L—.n(e)

lm; — pll2 ~ |sin(z +0)

» To eliminate 6, the two constraints can be combined via:
0= fms —pla sind~cost] [ 7o) m —pl:

os(

n(¢

~ s~ pll [;ﬁ:gg;ﬁ( ) |oon) | 2 = ol

|

35



2-D Localization from Bearing Measurements
» The previous equation is quadratic in p:
(m: — p)TR(z1)R (g) R (22)(my —p) =0
> Let n:=z — z +7/2, so that:

p'R(np — (m{ R(n) + my R"(n)) p+m{ R(n)m, =0

» Use the following to solve the quadratic equation:
> p'R(n)p = cos(n)p'p
» p'p+2b'p+c=(p+b) (p+b)+c—b'b

> As long as cos(n) # 0, i.e., the robot and the two landmarks are not on
the same line:

_ 1
" 2cos(n)

(p—po) (p—po) = (pJ Po— #mIR(n)m) po - (RT(n)ms + R()my)

cos(7n)

» The position p lies on one of the two circles containing m; and mj

36



2-D Localization from Bearing Measurements

» Pose disambiguation: obtain a third bearing measurement:

RT(z)(m; — p) = [m; — pll [Z?j((g))] L i=123

» Find 3 and 7 such that RT(z;) + BR"(z) + YR (z3) = 0. Then:

RT(z1)my + BRT (z)my + YR (z3)ms — [R' (z1) + BR" (22) + YR (z3)] p

=u 0
cos(f
= ([my = pll2 + #mz — pll2 +7]lms — p]l2) [Sin((g))]
> We can compute 6§ as cos(0)) _ and recover p from:
P sin(6) | — Tl p from:
TN ) e, cos(6) .
R (@)m —p) = m; — ol | o] 7=1.2.3

37



3-D Localization from Bearing Measurements (P3P)

» Goal: determine the robot position p € R® and orientation R € SO(3)

> Given: three landmark positions m; € R3 (world frame) and pixel
measurements z; € R (homogeneous coordinates, body frame) obtained
from a (calibrated pinhole) camera:
1
z = )\—RT(m,- - p) Ai = e; (RT(m; — p)) = unknown scale
i
» If we determine )\;, we can transform the P3P problem to 3-D localization
from relative position measurements

38



Find the depths )\; via Grunert’s method
» Normalize the bearing equations:

b, = Z; Ai T(

- = R RT m; —p
Iz~ MR (=)l (mi =p)

m; —p) = 1
' 5\,‘
where \; = |[RT(m; — p)|l2 = |m; — p|2

» Cosines of the angles among the bearing vectors by, by, bs:

cos(7;) = ——L— =b, b;
7 lIbillzlbyll
> Let ¢ := ||m; — mj||2 be the lengths of the triangle formed in the world

frame by my, my, m3. Applying the law of cosines gives:

22+ 5\J2- — 2\ \jcos(vi) = 63.
> Let A\ = u)\; and 5\3 = v\; so that:

M (u? + v? — 2uv cos(23)) = €35

M1+ v —2vcos(713)) = €34

M (u? + 1 —2ucos(y12)) = €2,

39



Find the depths )\; via Grunert’s method
» Equivalently

2 2 2
623 613 612

u? 4+ v2 — 2uv cos(y23) T 1+v2-2v cos(y13) w2 +1—2ucos(y12)

X2 =

» Cross-multiplying the second fraction, with the first and the third:

2 6%3 - 5%3 2 2533 6%3
U* 4 ——5—=v" — 2uv cos(y23) + —5-vcos(113) — 5 =0 (1)
€13 €13 €13
2 6%2 2 6%2 6%3 — 6%2
U — 5=v° + 2v—5= cos(y13) — 2ucos(y12) + ——5—— =0 2)
€13 €13 €13

> Substituting (1) into (2):

2. _¢2 2. _2 2. _¢2
(_14_%) V2—2< 23~ 12)C0$(713)V+1+ 23~ C10
U= ‘13 ‘13 €13 (3)
2(cos(712) — v cos(723))

> Substituting (3) into (1), we get a fourth-order polynomial in v:
a4v4 + éJ?,V3 + agv2 +av+ag=0

40



Polynomial Coefficients

2 2 2 2
€553 — € €
ay = (¥ - 1> - 4% cos?(723)
€13 €13

2 2 2 2 2 2 2

€53 — € €53 — € €3t ¢ €

a3 =4 ( 23 5 12 <1 -2 3 12> cos(v13) — <1 - ¥> cos(23) cos(y12) + 2% c052(723)c05('\,13))
€13 €13 €13 €13

33— b : 33— b : 2 3 — b 2 €l3 — e 2
a =2 e 1+2( 55— cos*(y13) +2 —a |cos (723) +2 | === ) cos*(712)
13 13

€13 €13

‘%3 - (%2
—4 o cos(723) cos(713) cos(V12)
13
€2, — €2 €2, — €2 €3+ €3 €
a =4 (— < 2362 12) <1 + 2362 12) cos(yi3) — <1 — ¥> cos(v23) cos(y12) + 265—3 cos?(712) cos(7'13)>
13 13 13

13

2 2\ 2 2

€3 — 12 4ezz

ap = (1 + =5—=] — == cos’(m2)
€13 €13

> We can obtain up to 4 real solutions for v, which we can substitute in (3) to
obtain u.

> We can recover \; from u and v via the fraction relationship

» Having A1, A := u)j, and 5\3 := v\ we have converted the P3P problem
into 3-D localization from relative position measurements

41



3-D Localization from Bearing Measurements (PnP)

» Goal: determine the robot position p € R® and orientation R € SO(3)

» Given: landmark positions m; € R® (world frame) and pixel measurements
z; € R3 (homogeneous coordinates) obtained from a (calibrated pinhole)

camera for i =1,...,n:
1
z, = /\—RT(m; -p) \i = e4 RT(m; — p) = unknown depth

» The PnP problem is a constrained nonlinear least-squares minimization:

! 1
min z.— —RT m; — 2
i, Sl = R~ p)IE

st. RTR=1, detR=1, )\ =ej R"(m;—p)

42



Solving the PnP Problem

» Terzakis and Lourakis, ECCV'20:

» Eliminate the auxiliary variables A; and directly optimize over p and R
» The optimal translation is a function of R and can be eliminated to obtain
optimization in R only

> Sequential quadratic programming with careful initialization on the 8-sphere

» Hesch and Roumeliotis, ICCV'11:
> Express p and ); in terms of R and eliminate them to obtain an optimization
in R only

» Use Cayley-Gibbs-Rodrigues rotation parameterization to obtain a polynomial
system of equations
1

= m((l —-g'g)l +2gg’ —2g)

R=(I+g) (I -g)

where g € R3 is related to the angle 6 and axis ) of rotation as: g = ntan %

43



Solving the PnP Problem (Terzakis and Lourakis, ECCV’20)
> Consider the PnP objective: /\mm Z lz:A\i — RT(m; — p)|3

177

» Substitute \; = e; R (m; — p) and re-write the PnP objective:
lzAi = RT(m; —p)|3 = [lzies R" (m; — p) — R (m; — p)I3

= ll(zie3 — 1)R"m; — (zie5 — )R pll3
= |I(zie3 — R (m; —p)|3

» The Kronecker product ® satisfies:

vec(AXB) = (BT @ A) vec(X)
Hence, R"m; = (m/ ® I)vec(RT)
Let Ai=m] ® /1 €R¥>° r=vec(R"), b= —RTp, so that:
2 — R (mi — p)IE = (zie] — 1)(Ar + b3
With @Q; = (z;e] — /)" (z;e; — 1) € R3*3, the PnP objective becomes:

v

v

v

- . TO(A:
TLn;(A,r+b) Qi(Air +b)

44



Solving the PnP Problem (Terzakis and Lourakis, ECCV’20)
» We reduced the PnP problem to:
min ;(Afr +b)" Qi(Air +b)

> Setting the derivative with respect to b to zero, we get the optimal

translation: =
b= Pr P=— (Z Q;) (Z QiAi>
i=1 i=1

> With Q =37 (A + P)T Q;(A; + P), we get a nonlinear quadratic program:

min r'Qr
mat(r)€SO(3)

> Use sequential quadratic programming initialized from solutions of
Minyese v Qr
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Solving the PnP Problem (Hesch and Roumeliotis, ICCV’11)

» The constraints \;z; = R"(m; — p) can be re-written in matrix form as:

z, —1 A_l RT m;
z, —I —IénTp RT| [m,
A ~— w d

X

where A and d are known or measured, x are the unknowns we wish to
eliminate, and W is a block diagonal matrix of the unknown rotation R

» Express p and ); in terms of the other quantities:

U

x=(ATA) AT Wd = [v

| wa

where (AT A)~1AT is partitioned so that the scale parameters are a function
of U and the translation —RTp is a function of V.

46



Solving the PnP Problem (Hesch and Roumeliotis, ICCV’11)

U

x=(ATA)TATWd = {v

} wd
» Exploiting the sparse structure of A, the matrices U and V can be computed
in closed form
» Both \; and —RTp are linear functions of the unknown R:
A =u Wd —RTp=VvWd, i=1,...,n
where u;" is the i-th row of U
» We can rewrite the constraints \;z; = R (m; — p) as:

u/ Wdz; = R"m; + VWd
—— ~—~—
i —RTp

» We have reduced the number of unknowns from 6 + n to 3

47



Solving the PnP Problem (Hesch and Roumeliotis, ICCV’11)

» Cayley-Gibbs-Rodrigues rotation parameterization:

C ~ o R N
RT=irerg C=U-970+8)=(0-g'0)h+2%+2%)

» The CGR parameters automatically satisfy the rotation matrix constraints,
i.e., RTR =/ and det(R) = 1 and allow us to formulate an unconstrained
least-squares minimization in g.

» Reformulation into a polynomial system: Since R appears linearly in the
equations, we can cancel the denominator 1 + g'g. This leads to the
following formulation of the PnP problem:

e c 2
inJ(g) = r - dz, — Cm; — V . d
min J(g) = _ |u; . z; — Cm .

i=1 ¢ ¢

which contains all monomials up to degree four, i.e.,
(1,61,8,83.8182, 8183, 8283, -, 81+ 83,83 }-

48



Solving the PnP Problem (Hesch and Roumeliotis, ICCV’11)

> Since J(g) is a fourth-order polynomial, the optimality conditions form a
system of three third-order polynomials (derivatives with respect to g1, &
and g3).

> Use a Macaulay resultant matrix (matrix of polynomial coefficients) to find
the roots of the third-order polynomials and hence compute all critical points

of J(g)

> Since the polynomial system is of constant degree (independent of n), it is
only necessary to compute the Macaulay matrix symbolically once

» Online, the elements of the Macaulay matrix are formed from the data (linear
operation in n) and the roots are determined via an eigen-decomposition of
the Schur complement (dense 27 x 27 matrix) of the top block of the
Macaulay matrix (sparse 120 x 120 matrix)

49



2-D Odometry from Bearing Measurements

> Goal: determine the relative transformation :p;; € R? and ;0,1 € (—, 7]
between two robot frames at time t + 1 and t

> Given: bearing measurements z;; € R and z;;1,; € R at consecutive time
steps to n unknown landmarks

> Form unit-vectors b; ; and by, ; in the direction of z;; and z;11 ;:

_ [cos(z.i)  [cos(ze41,) -
b.; = [sin(zty,-):| b1 = [sin(zt+17,-) , i=1,...,n

» The measurements are related as follows:
dribei = ePey1 + der1,iR(e0e11)beyi, i=1,...,n
where d; j, dyy1,; are the unknown distances to m;.

» There are 2n equations and 2n + 3 unknowns, which means that this problem
is not solvable.
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3-D Odometry from Bearing Measurements

> Goal: determine the relative transformation ;p;;1 € R3 and ;R;1 € SO(3)
between two robot frames at time t + 1 and t

> Given: pixel coordinates z, ; € R and z,, ; € R® at consecutive time steps
to n unknown landmarks (n > 5) with known camera calibration matrices
Kt and Kt+1

> Without loss of generality, assume that the first camera frame coincides with
the world frame and denote p = ;p;+1 and R = ;Ry11

> Let Y, = Kt z,;andy
coordinates so that:

Yo, = KtHth, be the normalized pixel

)\n,-xtl_ =m;, Aei = e;rm,- = unknown depth

Ner1 ¥y, = RT(Mi—p), A1 =e] R (m; — p) = unknown depth

51



Epipolar Constraint and Essential Matrix

» The pixel projections of landmark m; in the two images satisfy:

)\tvi!ti = )\t+1,iRy

Yer1, TP

> To eliminate the unknown depths A;j, Ar17, pre-multiply by p and note that
ﬁxt’. is perpendicular to y, .:

Aeiy. BY, ;= Aerriy, PRY,,,, +Y, PP
~—_———— ~——
0 0

» Epipolar constraint: the normalized pixel coordinates Y, = K{lgtf,- and
Yeir; = Ktjrllgtﬂ’,- of the same point m; in two calibrated cameras with
relative pose (R, p) of cam 2 in the frame of cam 1 satisfy:

0= XI; (BR)y

where E 1= pR € R3*3 is the essential matrix

T
t+1,i Xt,iEXt-HJ

> Essential matrix characterization: a non-zero E € R3*3 is an essential
matrix iff its singular value decomposition is E = Udiag(o,o,0)V " for some
o >0and U,V € SO(3)
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3-D Odometry from Bearing Measurements (8-Pt Alg)

» The epipolar constraint 0 = LT’,ELH’, is linear in the elements of E:

where y; := vec(xt”.xll”.) € R% e :=vec(E) € R% and vec(-) is the

vectorization of a matrix, which stacks its columns into a vector
> Stacking y; from all 8 observations together, we obtain an 8 x 9 matrix

Yi=[y - ygf leading to the following equation for e:

Ye=0

> Thus, e is a singular vector of Y associated to a singular value that equals
zero

> If at least 8 linearly independent vectors ¥; are used to construct Y, then the
singular vector is unique (up to scalar multiplication) and e and E can be
determined
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3-D Odometry from Bearing Measurements (5-Pt Alg)

> The essential matrix E can be recovered from Ye = 0, even if only 5 linearly
independent vectors y; are available using the fact that:

1
0=EE"E - 5 tr(EET)E
> Stacking ¥;'s together, we obtain a 5 x 9 matrix Y := [y; - y5]T

» The right nullspace of Y has dimension 4 and the vectors that span the
nullspace (obtained from SVD or QR decomposition) correspond to 3 x 3
matrices N;, i = 1,...,4 such that

E = a1 Ny + asNo + asN3 + ag Ny, ai € R
> Since the measurements are scale-invariant, we can arbitrarily fix ag = 1
» Substituting E = a1 Ny + aa Ny + azN3 + Ny, we obtain 9 cubic-in-«;

equations and can recover up to 10 solutions for E
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3-D Odometry from Bearing Measurements

» Once E is recovered, p and R can be computed from the singular value
decomposition of E

» Pose recovery from the essential matrix: there are exactly two relative
poses corresponding to a non-zero essential matrix £ = Udiag(c,,0)V ":

(B, R) = (URZ (g) diag(o,0,0)UT, URT (g) VT)
(B, R) = (URZ (,g) diag(c,0,0)U", URS @g) VT)
» Only one of these will place the points in front of both cameras

» The ambiguity can be resolved by intersecting the measurements of a single
point and verifying which solution places it on the positive optical z-axis of
both cameras
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Bearing Measurement Triangulation

» Goal: determine the coordinates of a point m € R3 observed by two cameras
in the reference frame of the first camera

> Given: pixel coordinates z; € R? and z, € R? obtained from two calibrated
cameras with known relative transformation p € R® and R € SO(3) of cam 2
in the frame of cam 1:

A1z; = m, A= e3Tm = unknown depth
A2z, = RT(m —p), A2 = eJ RT(m — p) = unknown depth

P> We can determine m = \;z; by solving for the unknown depth A; using the
second measurement equation

» Note that A, = \;eJ RTz; —eJ RTp and thus:
(Mes Rz, —e3Rp)z, = MRz, —RTp

1
(R'p—esR"pz;) — = (R'z, — eJR"2,2,)

AL
a b
1 a'b N a'a
— = m=—z
A a'a a'b™!
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Summary: Bearing Measurements z; = +~R' (m; — p)

> 2-D
1.
2.

> 3-D

Localization: given m;,m; € R? and z, z € [, 7]
2-D bearing: %RT(H)(m,- —p) = R(z)e
Eliminate 0:

0= Me; R(O)R (g) R(0)er)s = (my — p) " R(z1)R (g) R (z2)(m: — p)

. The position p in on one of two circles containing m; and m; and we need a

third bearing measurement z; to disambiguate it
Find 3,5 such that R" (z1) + BR" (z) + YR (z3) = 0 and combine

R™(z)(mi —p) = \i [(;?ns((g))] to solve for 6
Orientation: [CS?:(((Z))] =, foru= R (z1)m1 + BR" (z2)mz + YR (z3)ms

Localization (P3P): m; € R3, z; € R® (homogeneous), i = 1,2,3

. Convert P3P to relative position localization by determining the depths

A1, A2, A3 via Grunert's method

. Define angles «; among normalized z,,z,,z; and apply the law of cosines:

AP+ A7 — 22X\ cos(yy) = [[mi — my |3

. Let A2 = uX; and A3 = vA; and combine the 3 equations to get a fourth order

polynomial: asv* + asv® + apv? + ajv +ag =0
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Summary: Bearing Measurements z; = +~R' (m; — p)

» 3-D Localization (PnP)

1. Rewrite \jz; = R"(m; — p) in matrix form and solve for
x:=(A1,..., A0, —RTp)T in terms of R

2. The equations for \; and —R " p turn out to be linear in R so we are left with
one equation with 3 unknowns (the 3 degrees of freedom of R)

3. Obtain a fourth order polynomial J(g) in terms of the Cayley-Gibbs-Rodrigues
rotation parameterization g

4. Compute a Macaulay matrix of the coefficients of J(g) symbolically once.
Online, determine the roots of J(g) via an eigen-decomposition of the Schur
complement of the Macaulay matrix.

» 2-D Odometry: not solvable

» 3-D Odometry: 5-point or 8-point algorithm:

T
1. Obtain E from the epipolar constraint: 0 = vec (!t ,_!;rﬂ I_) vec (E),

i=1,...,5 and the property 0 = EETE — %tr(EET)E
2. Recover two possible camera poses based on SVD(E) = Udiag(c,o,0)V T
and choose the one that places the measurements in front of both cameras
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Outline

Localization and Odometry from Range Measurements
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2-D Localization from Range Measurements

> Goal: determine the robot position p € R? and orientation 6 € (—, ]

» Given: two landmark positions my, m, € R? (world frame) and range
measurements (body frame):

z,-:||m,'7p||2€R, I:132

» Because all possible positions whose distance to m; is z; is a circle, the

possible robot positions are given by the intersection of two circles
Y

60



2-D Localization from Range Measurements
y

Y

» Applying the law of cosines to the triangle gives:

222 = 212 + ||m2 — m1||§ — 221||m2 — m1||2 COS(Z5
» Solving for ¢ and then the circle intersection points provides the possible

robot positions:

m; —mp
=my + 2R(+¢) ———

P 2 2 ( (b)”ml_mQ”Z

» The orientation of the robot 6 is not identifiable



2-D Localization from Range Measurements

» Pose disambiguation: the robot can make a move with known translation
pa (measured in the frame at time t) and take two new range measurements

» There are 2 possible robot positions at each time frame for a total of 4
combinations but comparing ||ps+1 — pt||2 to the known ||pa|2 leaves only
two valid options (and we cannot distinguish between them)

» To obtain the orientation, we use geometric constraints:

x 0
Pi+1 — Pr = R(6:)pa = {PA’ PA,y] [cos t}

PAa.,y PA x sin 91’
> As long as det ['DA’X pA’y} = ||pall3 # 0, we can compute:
PA,y PA,x
cost] 1 [ pax pA,y]
e Koo [LERES

0, = atan2(sin 0, cos 6;)
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3-D Localization from Range Measurements

>

>

Goal: determine the robot position p € R® and orientation R € SO(3)

Given: three landmark positions m;, my, m3 € R3 (world frame) and range
measurements (body frame):

zi=|m;—pl2eR, =123
All possible positions whose distance to my is z; is a sphere
The possible robot positions are the intersections of three spheres

To find the intersection of 3 spheres, we first find the intersection of sphere
one and two (a circle) and of sphere two and three (a circle). The
intersection of these two circles gives the possible robot positions.

Degenerate case: all landmarks are on the same line — the intersection of
the spheres is a circle with infinitely many possible robot positions
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3-D Localization from Range Measurements

» Intersecting circle of spheres with radii z; and z: center 015, radius r,
normal vector ny, (perpendicular to the circle plane)

> Law of Cosines: z5 = zZ + ||my — my||3 — 2z1||my — my |2 cos 6o

» Geometric relationships:

012 = My + z1 cos B1oNn19

Ny = zl|sin(912)|
my; —my
Ny = +——
[mz — ma |

> Intersecting circle of spheres with radii z and z3: center 053, radius rs3,
normal vector ny3 (perpendicular to the circle plane):

. m3 —mp
023 = My + 23 oS fr3N23 r3 = 23| sin(623))| "3 = [[ms —my|,
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3-D Localization from Range Measurements

» The intersecting points of the two circles can be obtained from:

n1T2(012 — 0) =0 T

T ) "12012
ny;3(023 —0) =0 n2T3 0= n2T3023
s sns) (o —0) 0 L2 xne) 7] (e ma) o

» As long as the three landmarks are not on the same line, we can uniquely

solve for o:
-
Ny
det n;—3 #0 & ny> and np3 not colinear
T
(n12 X ny3)

» The two possible robot positions are:

0 — 012 cosf — ||0—012||2

p = 012 + naR(n1a, ie)m P

» As in the 2-D case, the robot orientation R is not identifiable
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3-D Localization from Range Measurements
» Pose disambiguation: the robot can make a move with known translation
pa € R3 and rotation Ry € SO(3) and take three new range measurements

» As in the 2-D case, after eliminating the impossible robot positions, we
should be left with only two options for p; and p;i1

> Given p¢, pt+1, Pa, and Ra, we can now obtain R;
Pt+1 = Pt + R:pa
» This is not sufficient because the rotation about pa is not identifiable

» The robot needs to move a second time to a third pose p;io, Ryro with
known translation pa > € R3 and take three more range measurements to the
three landmarks:

Pt+2 = Pe+1 + Rer1Pa,2 = Pey1 + ReRapa2
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3-D Localization from Range Measurements

» Putting the previous two equations together:

Pt+1 — Pt = Ripa
Pt+2 — Pe+1 = RtRapa

» Taking a cross product between the two:
(Pt+1 — Pt) X (P42 — Per1) = Re(pPa X Rapa2)
> As long as U := [pa, RaPa,2, Pa X Rapa2)] is nonsingular, i.e., pa and

Rapa,2 are not co-linear or equivalently the three robot positions are not
on the same line, we can determine the robot orientation:

Re = [(Pr41 — Pt), (Pery2 — Per1); (Pry1 — Pe) X (Pe2 — Pes1)] U™
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2-D Odometry from Range Measurements

> Goal: determine the relative transformation ¢p;y1 € R? and (0,1 € (—, 7]
between two robot frames at time t + 1 and t

> Given: range measurements z;; € R and z,;1; € R at consecutive time
steps to n unknown landmarks

P Let m. ;1 ; be the relative position to the i-th landmark at t 4 1 so that:

Zey1,i = Mgz
zei = [[ePes1 + R(e0r11)mesa il
» Squaring and combining these equations, we get:
T T T 2 2 :
[tPer1]  tPey1 + 2mt+17,-R (:0t11)ePrr1 = Zyi — Ziy1,is 1= L...,n

> We have n equations with n+ 3 unknowns (3 for the relative pose and n for
the unknown directions to the landmarks at t + 1), which is not solvable.

68



3-D Odometry from Range Measurements

» Goal: determine the relative transformation :p;;1 € R3 and :R;11 € SO(3)
between two robot frames at time t + 1 and t

P> Given: range measurements z;; € R and z,;; € R at consecutive time
steps to n unknown landmarks

» Following the same derivation as in the 2-D case, we obtain:
T T T 2 2 .
[tpt+1] tPe+1 + 2mt+1’, [th+1] tPt+1 = 2 — Zp41,is 1 = 1,...,n

> We have n equations with 2n + 6 unknowns (6 for the relative pose and 2n
for the unknown directions to the landmarks at t + 1), which is not solvable.

69



Summary: Range Measurements z; = |m; — p||»

» 2-D Localization: given m;,m; € R?> and z;, 2, € R
1. Law of Cosines: zz = z£ + ||mp — my||3 — 2z ||m2 — my]|2 cos @
2. Position: p = my + zﬂ?(iﬁ)ﬁ
3. Move with known pa,0a (in frame t)
4. Orientation: (pt+1 — pt) = R(0:)pa

> 3-D Localization: given m;,mo,ms; € R3 and z,2,z3 € R
1. Intersection of 2 circles with centers 012, 023, radii r2, r23, normals niz, nys
obtained via Law of Cosines and point o on intersecting line:

T T
LUV Nn1,012
T T
No3 0= Ny3023
T T
(12 X n23) (n12 X n23) o2
2. Position: p = 012 + naR(ni2, £0) 7=, where cos ) = 7”“:1’212“2

3. Move twice with known pa, Ra,pa.2, Ra2
4. Orientation: as long as U := [pa, Rapa,2, Pa X Rapa,2)] is nonsingular:

R: = [(Pt+1 — Pt)s (Prr2 — Pey1), (Per1 — Pr) X (Pey2 — PH—I)]U71

» Odometry: not solvable
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