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Bayes Filter

> Motion model: x; 1 = (X, us,w;) ~ pr(- | X¢, ue)
> Observation model: z; = h(x;,v;) ~ pu(- | x¢)

> Bayes filter: recursive computation of p(x7]|zo.7,ug.7—1) that tracks:
> Updated pdf: p;:(x:) := p(x: | zo:t, Uo:t—1)

» Predicted pdf pt+1\t(xt+1) = P(Xt+1 | zO:tyuo:t)

L .
Mt+1 Predict: p,y1)¢(Xt+1)

—_—

1
Nz lzom uan) Pz X X X¢, U x:)dx
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Histogram Filter
» Histogram filter: implementation of the Bayes filter for discrete random
variable x; that belongs to a discrete set X

» In this case, we can work with probability mass functions (pmfs) my.[x],
mey11¢[x], and m¢[x'|x, u] over the discrete set X’

» Due to the connection between a pdf and a pmf, integration in the Bayes
filter reduces to summation

> Prediction step: given prior pmf my; and input u;, use the motion model
my to compute a predicted pmf m;q);:

mt+1|t[xt+1] = Z me[Xey1 | 57Ut]mt\t[5]
scX

> Update step: given predicted pmf m;,|; and observation z;,1, use the
observation model pj to obtain an updated pmf m; 1j;11:

Ph(Zes1 | Xer1)Mey1je[Xeqa]
ZseX pn(Ze+1 | s)mt+1‘t[s]

Mi1)e41 [Xt1] =



Efficient Histogram Filter Prediction

» Let X be a regular grid discretization of R?
> Motion model: x' = f[x,u] +w
» Assume bounded “Gaussian” noise w

» Prediction step:

> shift the prior pmf data my.[x] at each grid index x € X to a new grid index x’
according to the motion model x' = f[x, u]

» convolve the shifted grid values with a separable Gaussian kernel:
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> This reduces the prediction step cost from O(n?) to O(n) where n is the
number of grid cells in X



Adaptive Histogram Filter

» The accuracy of the histogram filter is limited by the size of the grid X

» A high-resolution grid becomes very computationally expensive in high
dimensional state spaces because the number of cells is exponential in the
number of dimensions

» Adaptive Histogram Filter: represents the pmf via adaptive discretization,
e.g., an octree data structure

=S 3




Histogram Filter Localization

> Robot Localization Problem: Given a map m, a sequence of inputs ug.;_1,
and a sequence of measurements zg.;, infer the state of the robot x;

Prior:
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Particle Filter

> Particle filter: Bayes filter in which pyy1j¢(xt11) = p(Xt41]20:¢, Uo:¢) and
Pet1)e+1(Xer1) = P(Xe41]Z0:641, Uo:¢) are discrete distributions with N possible
values called particles

> A probability mass function «[1],..., «a[N] over N values p[1],..., u[N] can
be viewed as a continuous-space probability density function:

N

p(x) = alklé(x — ulK])

k=1

where ¢ is the Dirac delta function:

oo x=0 o o0
5(x) = {0 o /_ 13(0d = £(0) /_ d00dx=1



Particle Filter

> Particle: a hypothesis that the value of x is p[k] with probability a[k]

> The particle filter uses particles with locations u[k] and weights a[k] for
k=1,...,N to represent the pdfs p;; and p y|::

N
Pt\t(xt) = Zat|t[k]5 (Xt - Mt|t[k]>
k=1

N
Pri1je(Xe+1) = Zat+1\t[k]5 <Xt+1 - Nr+1|t[k]>
k=1

» To derive the particle filter, substitute these pdfs in the Bayes filter prediction
and update steps

» The prediction and update steps should maintain the form of the pdfs as a
mixture of delta functions
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Particle Filter Prediction Step

» Plug pyj¢(x:) Zam[k]é (xt ut|t[k]) in the Bayes filter prediction step:

N

pt+1|t(xt+1) = /Pf(Xt+1 | x¢,u;) Zat|t[k]5 (Xt - Nt|t[k]) dx;
k=1
N

= Zaﬂt[klpf(xu-l | Nt|t[k], u;)
k=1

> Since the predicted pdf is not a mixture of delta functions we need to
approximate it

> Apply the motion model to each particle p.[k] to obtain
Heielk] ~ pr(- | pepelk], ue) and approximate:

N N

Pt+1\t(xt+1) = Zat\t[k]Pf(xt+1 | Ht\t[kla u;) & Zat\t[k]‘s(xﬂrl - Nt+1\t[k])
k=1 k=1

» The prediction step changes only the particle positions but not their weights
11



Particle Filter Update Step

N

» Plug priae(Xes1) = E e [k]0 (xt+1 - ,u,t+1|t[k]> in the Bayes filter update
k=1
step:

Ph (zes1 | xe4) iy el (xes1 — pregae[K1)
J o (zer1 | 8) Sy aegelild (s = pegaolil) ds
N aryafe[k]pn (Zt+1 | Mt+1\t[k])

2 Sy acraellpn (2o | peanyeli)

ekl

Pt+1)t+1 (Xe1) =

(% = pesaye[K])
———

Fiiaje41 [K]

» The updated pdf turns out to be a mixture of delta functions so no
approximation is necessary

» The update step changes only the particle weights but not their positions
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Particle Resampling

» Particle depletion: most updated particle weights become close to zero
because a finite number of particles is not enough to represent the state pdf,

e.g., the observation likelihoods py, (zt+1 | IJ’t+1|t[k]) may be small at all
k=1,...,N

» Resampling tries to avoid particle depletion by adding new particles at
locations with high weights and reducing the particles at locations with low
weights. It focuses the representation power of the particles to likely regions.

» Given particle set {p/t‘t[k],at‘t[k]}, resampling is applied if the effective

1 5 is less than a threshold

number of particles: N.g \ = —————
! part! 7T S (andk)

» Resampling
> Draw j € {1,..., N} independently with replacement with probability c.[/]

> Add p,[j] with weight  to the new particle set

> Repeat N times

13



Particle Filter Summary

> Prior: x; | 20:t, Ug:t—1 ~~ Pt\t(xt) = ZQI:;[ at\t[k](s (Xt;liqt[k])

> Prediction: let p, ¢ [k] ~ pr(- | pye[k], ue) and apq)e[K] = aepe[K] so that:

N
Pey1je(Xes1) = Zat+1\t[k]5 (Xt+1 - IJ‘t+1|t[k])
k=1
» Update: rescale the particle weights based on the observation likelihood:

N at+1\t[k]Ph (Zt+1 ‘ /J’t+1|t[k])
Petifes1(Xer1) = Z N ; ;
k=1 Zj:l at+1|t[l]Ph (Zt+1 | Mt+1\tL’]

) 0 (Xt+1 - Ht+1|t[k])

1
ZkN:1(at+1\t+1[k])2

{H’t+1|t+1[k]7 at+1|t+1[k] }

» Resampling: If N = < N/10, resample the particle set

14



Particle Filter Summary
i=1...n=10 particles
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Particle Filter Localization (1-D)

)

Prior: [

Update:

Predict:

Resample:
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Particle Filter Localization (1-D)

Prior:
E:i:5:5:5:5:5:5:5:5:ﬁ:}:5:}:5:}:5:5:5:5:5:5:5:5:i: e

Update: A A A

Predict:

Resample:
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Outline

Particle Filter SLAM
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SLAM Overview

» SLAM problem: given sensor measurements zq.7 (e.g., LIDAR scans) and
control inputs ug. 71 (e.g., velocity), estimate the robot state trajectory xo.7
(e.g., pose) and build a map m of the environment

«“
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Mapping

» Given a robot state trajectory xo.7 and a sequence of measurements zg. 1,
build a map m of the environment

20



Sparse Map Representations

» Point cloud: a collection of points,
potentially with properties, e.g., color

» Landmarks: a collection of objects, each
having a category, position, orientation,
shape, etc.

» Surfels: a collection of oriented discs
containing photometric information




Dense Map Representations

» Implicit Surface Models:
> Occupancy-based: assign occupied (+1) or
free (—1) labels over the space of the
environment

> Distance-based: measure the signed
distance (negative inside) to the
environment surfaces

» Explicit Surface Models:
»> Polygonal mesh: a collection of points and
connectivity information among them,
forming polygons

22



Occupancy Grid Map

» One of the simplest and most widely used representations

» The environment is divided into a regular grid
with n cells

» Occupancy grid: a vector m € R”, whose

i-th entry indicates whether the i-th cell is

free (m; = —1) or occupied (m; = 1)

> The cells are called pixels (pictures (pics)

elements) in 2D and voxels (volumes

elements) in 3D

23



Probabilistic Occupancy Grid Mapping

» Occupancy grid mapping: the occupancy grid
m is unknown and needs to be estimated given
the robot trajectory xo.; and a sequence of
observations zg.;

» Since the map is unknown and the measurements
are uncertain, we maintain a probability mass
function p(m | zg.¢, Xo.+) over time

» Independence Assumption: most occupancy grid mapping algorithms
assume that the cell values are independent conditioned on the robot
trajectory:

n
P(m | ZO:nXO:t) = HP(mi | zO:t7x0:t)
i=1

» |t is sufficient to track the probability of being occupied,
vit = p(mj =1] zo.t,Xo:¢), for each map cell i=1,...,n

24



Probabilistic Occupancy Grid Mapping

» Model the map cells m; as independent Bernoulli random variables

)+l (Occupied)  with prob. ~;; := p(m; = 1| zo.t, Xo:t)
"] =1 (Free) with prob. 1 — 7,

» How do we update +; ; over time?

» Bayes Rule:

Vit = P(mi =1 | ZO:t7x0:t)

1
= ;ph(zt | mi =1,%x.)p(m; = 1| 20:¢—1,%0:¢—1)
t

1
= —pp(ze | Mmi = 1,%X¢)7ie-1
Nt

1
(1 - ’Yi,t) = P(mi =-1 | ZO:taXOZt) = n*Ph(Zt | mj = *LXt)(l - ’Yi,t—l)
t

25



Probabilistic Occupancy Grid Mapping

» Odds ratio of the Bernoulli random variable m; updated via Bayes rule:

p(m; =11 z0.¢,Xo:¢) Vit
o(m; | zo.e, Xo:t) 1 = =
( ' ‘ ot Olt) P(mi =-1 | ZO:t7X0:t) 1-— Vit

pr(ze | mi =1,x) Vit—1

pr(z: | mi=—1,%x;) 1—7i,1
—_——
gn(ze|mixe) o(mi|zo:t—1,%0:t—1)

» Observation model odds ratio: gu(z¢ | m;, x;)
» Using Bayes rule again, we can simplify the observation odds ratio:

Ph(zt | m; = 1,Xt) o P(mi =1 ’ Ztaxt) P(mi = —

1)

gh(Zt | miaxt) =

pn(ze | mi=—1,%) p(mi=—1]z,x) p(mi=1)

inverse observation model map prior
odds ratio odds ratio

26



Probabilistic Occupancy Grid Mapping

» Observation model odds ratio:

p(mi=1|zsx:) p(mi=—1)
p(m;i = —1[z¢,x;) p(m; =1)

gh(zt ‘ mi7xt) =

inverse observation model map prior
odds ratio odds ratio

» Assume z; indicates whether m; is occupied or not. Then, the inverse
observation model odds ratio specifies how much we trust the observations,
i.e., it is the ratio of true positives versus false positives:

p(m; = 1| m; is observed occupied at time t)  80%

= =4
p(m; = —1 | m; is observed occupied at time t)  20%

p(mi=1)
p(mi=—1)
chosen as 1 (occupied and free space are equally likely) or < 1 (optimistic

about free space)

» The second term is just a prior occupancy odds ratio and may be

27



Probabilistic Occupancy Grid Mapping

» Odds ratio occupancy grid mapping:

O(mi | ZO:hXO:t) = gh(Zt | mi7xt)o(mi \ zO:tflaxo:tfl)

p(mi=1|z¢,x:) p(mi=—1)

> Observation model odds ratio: gx(z: | m;, x;) = (e Te) p(m=T)
» Take log to convert the products to sums
» Log-odds of the Bernoulli random variable m;:

it = Am; | 2o:, Xo:¢) = log o(m; | Zo:¢, X0:¢)

» Log-odds occupancy grid mapping:

p(m; =11z, %)
p(mi = —1 ]z, %)

At = log —Aio+ Air—1

AN ¢

28



Probabilistic Occupancy Grid Mapping

» Log-odds occupancy grid mapping: estimating the probability mass
function of m; conditioned on zg.; and Xq.; is equivalent to accumulating the
log-odds ratio A\; ¢ of the inverse measurement model:

Ait = Ait—1+ (DAt — Nio)

» If the map prior is uniform, i.e., occupied and free space are equally likely:
)\,‘70 = |Og 1=0

» Assuming that z; indicates whether m; is occupied or not, the log-odds ratio
AM; ¢ of the inverse measurement model specifies the measurement “trust”,
e.g., for an 80% correct sensor:

A = log p(mi =11]z:,%x:) {—1— log4 if z; indicates m; is occupied

p(m; = —1]z¢x¢) = log4 if z; indicates m; is free

29



LiDAR Occupancy Grid Mapping

>

>

Maintain grid of map log-odds A; ; for i =1,...,n

Given a new LiDAR scan z;,1, transform it to the o

world frame using the robot pose x;11 "

Determine the cells that the LiDAR beams pass .-"f —
through, e.g., using Bresenham's line rasterization AT

algorithm

For each observed cell /, decrease the log-odds if it was observed free or

increase the log-odds if the cell was observed occupied:

)‘i,tJrl = )\,‘71» + |Og4

P Constrain Apv < Air < Amax to avoid overconfident estimation

» May introduce a decay on A;; to handle changing maps

» The map pmf 7;; can be recovered from the log-odds ); ; via the logistic

sigmoid function:

exp (Aie)

Yi,t = P(mi =1 | zO:taXO:t) = U()\i,t) = HTP()\')
It
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Project 2: Magic Differential-Drive Robot

» Wheel encoders
> IMU

» 2D Lidar

» RGBD camera

31



Project 2: Localization and Texture Mapping

scan 27775

scan 27775

200 200
400 400
600 600
800 800
1000 1000
1200
1200 0 1200

1200
0
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Localization

» Given a map m, a sequence of control inputs ug.7_1, and a sequence of
measurements zq.7, infer the robot state trajectory xq.7

33



Markov Localization in Occupancy Grid Maps

> Use a particle filter to maintain the pdf p(x¢|zo.¢, uo:t—1, m) of the robot
state x; over time

> Each particle p,,[k] is a hypothesis on the state x; with confidence a:[K]

» The particles specify the pdf of the robot state at time t¢:

N
Pate(xe) = P(xe | Zo:0stoe1,m) = D e [KIS (xe = pge[K])
k=1

» Prediction step: use the input u; and motion model pr to obtain the
predicted pdf pi1)¢(Xe+1)

» Update step: use the observation z;,; and observation model p, to obtain
the updated pdf pry1jes1(Xes1)

34



Prediction Step with Differential-drive Robot Model
> Each particle p,,[K] € IR3 represents a possible 2-D position (x, y) and
orientation 6

» Prediction step: for every particle utlt[k], k=1,...,N, compute:
“t+1\t[k] =f (Nt\t[k]v u; + €t> atp1)e[k] = age[K]

> f(x,u) is the differential-drive motion model

» u; = (v, w) is the linear and angular velocity input

2
> e~ N (0, {UOV 002}) is 2-D Gaussian motion noise

w

» If u; is unknown it can be obtained from wheel encoders (linear velocity v;)
and an IMU sensor (angular velocity w;):

» The distance traveled during time 7; for a given encoder count z;, wheel
diameter d, and 360 ticks per revolution is: T:v; ~ T;‘;gf

» The angular velocity w; is provided by the gyroscope yaw rate measurement
directly

35



Update Step with LiDAR Correlation Model

» Update step: the particle poses remain unchanged but the weights are
scaled by the observation model:

Nt+1\t+1[k] = Ht+1\t[k] aty1fer1[k] o< pr(zeta | :u’t+1\t[k]7m)at+1|t[k]
> Need to define a LIDAR observation model: py(z | x, m)

> LiDAR correlation model: likelihood model p,(z|x, m) for LiDAR scan z
obtained from sensor pose x in occupancy grid m. Set the LiDAR scan
likelihood proportional to the correlation between the scan’s world-frame
projection y = r(z,x) via the robot pose x and the occupancy grid m:

pn(z|x, m) o corr (r(z,x), m)

> Transform the scan z;.1 to the world frame using g, 4, [k], find all cells
ye+1[k] in the grid corresponding to the scan, and update the particle weights
using the scan-map correlation:

aey1)er1[k] o< corr (yes1[k], m) apy1pe[K]
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Update Step with LiDAR Correlation Model

» Computing correlation between LiDAR scan z obtained from pose x and
occupancy grid map m:
» Transform the scan z from the LiDAR frame to the world frame using the
robot pose x (transformation from the body frame to the world frame)

> Find all grid coordinates y that correspond to the scan, i.e., y is a vector of
grid cell indices i which are visited by the LiDAR scan rays, e.g., obtained
using Bresenham's line rasterization algorithm

> Let y = r(z,x) be the transformation from a lidar scan z to grid cell indices y.
Definite the correlation corr(r(z,x), m) between the transformed and
discretized scan y and the occupancy grid m as:

corr(y, m) = Z 1{y; = m;}

where:
1, ifyi=mj

{yi=m} = {

0, else.
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Update Step with LiDAR Correlation Model

> Transform the scan z.1 to the world frame using p1,,[k] and find all cells
Y:+1[k] in m corresponding to the scan

> The correlation corr (y;1[k], m) is large if y;,1[k] and m agree
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Monte Carlo Sampling
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Inverse Transform Sampling

» How do we sample from a target distribution with pdf p(x) and CDF

X
F(x) = f_oo p(s)ds?
Inverse transforming sampling for normal distribution
’

— pdf flx)
: | ‘

> Proposal distribution: /([0,1]) 5| i f _
— cdf Fz)= fit) dt
- |'l e

10 H e ppf )

Inverse transform sampling:

>
1. Draw u ~ U([0,1])

2. Return inverse CDF value:

p=F(u)
3. The CDF of F~(u) is:
B(F(u) < x) = B(u < F(x)) |
— F(x) e llu'
ok | . . L L
-15 =-1.0 05 0.0 05 10 15



Rejection Sampling

>

Can we sample from a target distribution with pdf p(x) without using its
CDF F(x)?

Proposal distribution: easy-to-sample pdf g(x), e.g., Uniform or Gaussian,
that satisfies p(x) < +q(x) for some A € (0,1)

~a(x)

Rejection sampling:
1. Draw p ~ g(-) and u ~ U(0,1)

2. Return p only if $q(u) < p(u)

H~q(x)

If X is small, many rejections are necessary. Good g(x) and A are difficult to
choose.
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Sample Importance Resampling

> Can we sample from a target distribution with pdf p(x) without scaling by
A€ (0,1)?

> Proposal distribution: pdf g(x)

> Sample importance resampling
1. Draw wu[l],..., u[N] from q(-)

p(p[k]) o]
) 5, all

3. Draw pu[k] independently with replacement from {u[1],..., u[N]} with
probability a[k]

2. Compute importance weights a[k] = and normalize afk] =

> If g(x) is a poor approximation of p(x), then even the best samples from
q(x) may not be good samples for resampling



Particle Filter
» Monte-Carlo approximation of pdf pyj¢(x:) = p(X¢|zo:t, Uo:t—1) using a finite

weighted set of particles {ut‘t[k],at‘t[k]} updated over time t

> Particles {ut‘t[k],at‘t[k]} approximate pgj¢(x;) in the sense that the
weighted sum of any function g evaluated over the particle set converges to
the expectation with respect to pgj¢(x:):

N
Zat\t[k]g(ut\t[k]) - /g(xt)pt|t(xt)dxt as N — o0
k=1

» Idea: apply sample importance resampling to target distribution:
P(Xt:t41]Z0:t41, Uo:t) = P(Xe41|Zet1, Ue, Xe ) P(Xe|Z0:25 Uo:e—1)
» Proposal distribution:

q(xt:t+1|ZO:t+la UO:t) = Q(Xt+1|zt+17 Uy, Xt)q(xt|20:ta UO:t—l)
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Sample Importance Resampling in the Particle Filter

1. Sample Mt+1\r+1[1]a .- 'aut+1|t+1[N] from q(Xe11|ze11, Ue, X¢)q(Xe|Z0:¢, U0t 1)
> Since gy [1], ..o, o [N] from q(xo:t|2o:t, uo:e—1) are already available from the
prior, we only need to sample:

Mf+1\t+1[k] ~ q(Xes1]ze1, ue, xe = Nq:[k]) Vk=1,...,N
> The performance depends on the choice of proposal g(X¢+1|z:+1, U, X¢)

> Common proposal choice: motion model g(X¢11|zet1, Ur, X¢) = pr(Xer1|Xe, Ur);
easy to sample from but may be suboptimal because z;; is not considered

2. Compute and normalize importance weights:

P(l"t+1\t+1[k]|zt+1a Utal‘t|t[k])P(Nt\t[k”20:t»uO:tfl)
Q(Ht+1\t+1[k]|zt+1a utal"t|t[k])q(ﬂt|t[k”20:tvUO:t—l)
. ph(zf+1‘Mt+1\t+1[k])pf(p’t+l\t+1[k]“I’t|t[k]aut)
B Pf(ﬂt+1|t+1[k]|ﬂt\t[k]vut)
ph(zf-‘rl‘Mt+l\t+1[k])at\t[k]

3. Resample: if Nes is small, draw g, 1).11[k] independently with replacement

from {per1je1[1], - -, pes1je41[N]} with probability aei1)e+1[k] and reset the
weights to 1/N

04t+1\t+1[k] X

at‘t[k]
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Stratified Resampling

> Sampling the particle set {u[k], a[k]} independently results in high variance,
i.e., sometimes samples with large weights might not be selected, while
samples with very small weights may be selected multiple times

> Stratified resampling: guarantees that samples with large weights appear at
least once and those with small weights — at most once

> Add the particle weights along the circumference of a circle

» Divide the circle into N equal pieces and sample a uniform distribution in each
piece

> Select the particles corresponding to the uniform distribution samples

> Stratified resampling is optimal in terms of variance (Thrun et al. 2005)
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Stratified Resampling

St

ratified Resampling

\

1
2
3
4
5:
6
7
8
9

Random

/

. Input: particle set {y[k],oz[k]}kN:1
: Output: resampled particle set
s j+ 1 c+afl]
for k=1,...,N do
u~14(0.3) ‘
B=u+ LX,I
while 3> ¢ do
j=j+1, c=c+alj
add (p[j], §) to the new set

Random \ /
Ty

Random

6
n“

> Systematic resampling: the same as stratified resampling except that the

same uniform is used for each piece, i.e., u~U (0, 1) is sampled only once
before the for loop above.

63



	Histogram Filter
	Particle Filter
	Particle Filter SLAM
	Monte Carlo Sampling

