ECE276B: Planning & Learning in Robotics Lecture 10: Infinite-Horizon Optimal Control

Nikolay Atanasov natanasov@ucsd.edu

Outline

Infinite-Horizon Optimal Control

Bellman Equations

Policy Evaluation

Value Iteration

Policy Iteration

Linear Programming

Finite-Horizon Stochastic Optimal Control

Recall the finite-horizon stochastic optimal control problem:

$$\min_{\boldsymbol{\pi}_{\tau:T-1}} V_{\tau}^{\boldsymbol{\pi}}(\mathbf{x}_{\tau}) := \mathbb{E}_{\mathbf{x}_{\tau+1:T}} \left[\gamma^{T-\tau} \mathfrak{q}(\mathbf{x}_{T}) + \sum_{t=\tau}^{T-1} \gamma^{t-\tau} \ell(\mathbf{x}_{t}, \pi_{t}(\mathbf{x}_{t})) \mid \mathbf{x}_{\tau} \right]$$
s.t. $\mathbf{x}_{t+1} \sim p_{f}(\cdot \mid \mathbf{x}_{t}, \pi_{t}(\mathbf{x}_{t})), \qquad t = \tau, \dots, T-1$
 $\mathbf{x}_{t} \in \mathcal{X}, \ \pi_{t}(\mathbf{x}_{t}) \in \mathcal{U}$

```
\mathbf{x} \in \mathcal{X}
                          state
\mathbf{u} \in \mathcal{U} control
p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) motion model
\mathbf{x}' = f(\mathbf{x}, \mathbf{u}, \mathbf{w}) motion model
\ell(x, u)
                          stage cost
q(x)
                         terminal cost
T \in \mathbb{N}
                          planning horizon
\gamma \in [0,1]
                          discount factor
\pi_t(\mathbf{x})
                          policy function at time t
V_t^{\pi}(\mathbf{x})
                          value function at state x, time t, under policy \pi_{t,T-1}
```

Finite-Horizon Deterministic Optimal Control

Finite-horizon deterministic optimal control (DOC) problem:

$$\begin{aligned} & \min_{\mathbf{u}_{\tau:T-1}} \ V_{\tau}^{\mathbf{u}_{\tau:T-1}}(\mathbf{x}_{\tau}) := \gamma^{T-\tau} \mathfrak{q}(\mathbf{x}_{T}) + \sum_{t=\tau}^{T-1} \gamma^{t-\tau} \ell_{t}(\mathbf{x}_{t}, \mathbf{u}_{t}) \\ & \text{s.t.} \ \mathbf{x}_{t+1} = f(\mathbf{x}_{t}, \mathbf{u}_{t}), \qquad t = \tau, \dots, T-1 \\ & \mathbf{x}_{t} \in \mathcal{X}, \ \mathbf{u}_{t} \in \mathcal{U} \end{aligned}$$

- lacktriangle An open-loop control sequence $oldsymbol{\mathbf{u}}_{ au:T-1}^*$ is optimal for the DOC problem
- The DOC problem is equivalent to the deterministic shortest path (DSP) problem, which led to the forward Dynamic Programming and Label Correcting algorithms

Infinite-Horizon Stochastic Optimal Control

- In this lecture, we consider what happens with the stochastic optimal control problem as the planning horizon T goes to infinity
- We will consider two formulations of the infinite-horizon stochastic optimal control problem
 - ▶ Discounted Problem: obtained by letting $T \to \infty$ in the finite-horizon stochastic optimal control problem with $\gamma < 1$
 - ► First-Exit Problem: obtained by considering stochastic transitions in the shortest path problem and terminating when the goal region is reached
- ▶ Just like the DOC and DSP problems, the Discounted Problem and the First-Exit Problem are equivalent, i.e., one can be converted into the other

Discounted Problem

- Let $T \to \infty$ in the finite-horizon stochastic optimal control problem
- ▶ The terminal cost q is no longer necessary since the problem never terminates
- \blacktriangleright Assume the motion model p_f and the stage cost ℓ are time-invariant
- \blacktriangleright The discount factor γ must be <1 to ensure that the infinite sum of stage costs is finite
- As $T \to \infty$, the time-invariant motion model and stage costs lead to **time-invariant** optimal value function $V^*(\mathbf{x}) = \min_{\pi} V^{\pi}(\mathbf{x})$ and associated optimal policy $\pi^*(\mathbf{x}) \in \arg\min_{\pi} V^{\pi}(\mathbf{x})$
- Discounted Problem:

$$egin{aligned} V^*(\mathbf{x}) &= \min_{\pi} \ V^{\pi}(\mathbf{x}) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \ell(\mathbf{x}_t, \pi(\mathbf{x}_t)) \ \middle| \ \mathbf{x}_0 = \mathbf{x}
ight] \ & ext{s.t.} \ \mathbf{x}_{t+1} \sim p_f(\cdot \mid \mathbf{x}_t, \pi(\mathbf{x}_t)), \ & ext{} \mathbf{x}_t \in \mathcal{X}, \ \pi(\mathbf{x}_t) \in \mathcal{U} \end{aligned}$$

First-Exit Problem

- Consider a stochastic shortest path problem with state space \mathcal{X} and transitions defined by $p_f(\mathbf{x}'|\mathbf{x},\mathbf{u})$ with control $\mathbf{u} \in \mathcal{U}$
- ▶ Let $\mathcal{T} \subseteq \mathcal{X}$ be a set of **terminal states** with terminal cost $\mathfrak{q}(\mathbf{x})$ for $\mathbf{x} \in \mathcal{T}$
- ▶ **First-Exit Time**: terminate at $T := \min\{t \ge 0 \mid \mathbf{x}_t \in \mathcal{T}\}$, the first passage time from an initial state \mathbf{x}_0 to a terminal state $\mathbf{x}_t \in \mathcal{T}$
- ▶ Note that *T* is a **random variable** unlike in the finite-horizon problem
- First-Exit Problem:

$$\begin{aligned} V^*(\mathbf{x}) &= \min_{\pi} \ V^{\pi}(\mathbf{x}) := \mathbb{E}\left[\mathfrak{q}(\mathbf{x}_T) + \sum_{t=0}^{T-1} \ell(\mathbf{x}_t, \pi(\mathbf{x}_t)) \ \middle| \ \mathbf{x}_0 = \mathbf{x} \right] \\ \text{s.t.} \ \mathbf{x}_{t+1} &\sim p_f(\cdot \mid \mathbf{x}_t, \pi(\mathbf{x}_t)), \\ \mathbf{x}_t &\in \mathcal{X}, \ \pi(\mathbf{x}_t) \in \mathcal{U} \end{aligned}$$

- ▶ Given a Discounted Problem, we can define an equivalent First-Exit problem
- ▶ Discounted Problem: \mathcal{X} , \mathcal{U} , $p_f(\mathbf{x}'|\mathbf{x},\mathbf{u})$, $\ell(\mathbf{x},\mathbf{u})$, γ
- ▶ First-Exit Problem: $\tilde{\mathcal{X}}$, $\tilde{\mathcal{U}}$, $\tilde{p}_f(\mathbf{x}'|\mathbf{x},\mathbf{u})$, $\tilde{\ell}(\mathbf{x},\mathbf{u})$, $\tilde{\mathfrak{q}}(\mathbf{x})$, $\tilde{\mathcal{T}}$
 - ▶ State space: $\tilde{\mathcal{X}} = \mathcal{X} \cup \{\tau\}$ and $\tilde{\mathcal{T}} = \{\tau\}$ where τ is a virtual terminal state
 - ightharpoonup Control space: $\tilde{\mathcal{U}} = \mathcal{U}$
 - Motion model:

$$\begin{split} \tilde{\rho}_f(\mathbf{x}'\mid\mathbf{x},\mathbf{u}) &= \gamma p_f(\mathbf{x}'\mid\mathbf{x},\mathbf{u}) & \text{for } \mathbf{x}'\neq\tau \\ \tilde{\rho}_f(\tau\mid\mathbf{x},\mathbf{u}) &= 1-\gamma, \\ \tilde{\rho}_f(\mathbf{x}'\mid\tau,\mathbf{u}) &= 0, & \text{for } \mathbf{x}'\neq\tau \\ \tilde{\rho}_f(\tau\mid\tau,\mathbf{u}) &= 1, \end{split}$$

- Stage cost: $\tilde{\ell}(\mathbf{x}, \mathbf{u}) = \begin{cases} \ell(\mathbf{x}, \mathbf{u}) & \mathbf{x} \neq \tau \\ 0 & \mathbf{x} = \tau \end{cases}$
- ► Terminal cost: $\tilde{q}(x) = 0$
- There is a one-to-one mapping between a policy $\tilde{\pi}$ of this first-exit problem and a policy π of the discounted problem:

$$ilde{\pi}(\mathbf{x}) = egin{cases} \pi(\mathbf{x}) & \mathbf{x}
eq au \ \text{some } \mathbf{u} \in \mathcal{U}, & \mathbf{x} = au \end{cases}$$

Next, we show that for all $\mathbf{x} \in \mathcal{X}$:

$$ilde{V}^{ ilde{\pi}}(\mathbf{x}) = \mathbb{E}\left[\sum_{t=0}^{T-1} ilde{\ell}(ilde{\mathbf{x}}_t, ilde{\pi}_t(ilde{\mathbf{x}}_t)) \;\middle|\; ilde{\mathbf{x}}_0 = \mathbf{x}
ight] = V^{\pi}(\mathbf{x}) = \mathbb{E}\left[\sum_{t=0}^{T-1} \gamma^t \ell(\mathbf{x}_t, \pi_t(\mathbf{x}_t)) \;\middle|\; \mathbf{x}_0 = \mathbf{x}
ight]$$

where the expectations are over $\tilde{\mathbf{x}}_{1:T}$ and $\mathbf{x}_{1:T}$ and subject to transitions induced by $\tilde{\pi}$ and π , respectively

▶ Conclusion: since $\tilde{V}^{\tilde{\pi}}(\mathbf{x}) = V^{\pi}(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}$ and $\tilde{\pi}$ maps to π , by solving the auxiliary First-Exit Problem, we can obtain an optimal policy and the optimal value for the Discounted Problem

$$\begin{split} \mathbb{E}_{\tilde{\mathbf{x}}_{1:T}} [\tilde{\ell}(\tilde{\mathbf{x}}_{t}, \tilde{\pi}_{t}(\tilde{\mathbf{x}}_{t})) \mid \mathbf{x}_{0} = \mathbf{x}] &= \sum_{\tilde{\mathbf{x}}_{1:T} \in \tilde{\mathcal{X}}^{T}} \tilde{\ell}(\bar{\mathbf{x}}_{t}, \tilde{\pi}_{t}(\bar{\mathbf{x}}_{t})) \mathbb{P}(\tilde{\mathbf{x}}_{1:T} = \bar{\mathbf{x}}_{1:T} \mid \mathbf{x}_{0} = \mathbf{x}) \\ &= \sum_{\tilde{\mathbf{x}}_{t} \in \tilde{\mathcal{X}}} \tilde{\ell}(\bar{\mathbf{x}}_{t}, \tilde{\pi}_{t}(\bar{\mathbf{x}}_{t})) \mathbb{P}(\tilde{\mathbf{x}}_{t} = \bar{\mathbf{x}}_{t} \mid \mathbf{x}_{0} = \mathbf{x}) \\ &\frac{\tilde{\ell}(\tau, \mathbf{u}) = 0}{\tilde{\mathcal{X}} = \mathcal{X} \cup \{\tau\}} \sum_{\tilde{\mathbf{x}}_{t} \in \mathcal{X}} \tilde{\ell}(\bar{\mathbf{x}}_{t}, \tilde{\pi}_{t}(\bar{\mathbf{x}}_{t})) \mathbb{P}(\tilde{\mathbf{x}}_{t} = \bar{\mathbf{x}}_{t}, \tilde{\mathbf{x}}_{t} \neq \tau \mid \mathbf{x}_{0} = \mathbf{x}) \\ &= \sum_{\tilde{\mathbf{x}}_{t} \in \mathcal{X}} \tilde{\ell}(\bar{\mathbf{x}}_{t}, \tilde{\pi}_{t}(\bar{\mathbf{x}}_{t})) \mathbb{P}(\tilde{\mathbf{x}}_{t} = \bar{\mathbf{x}}_{t} \mid \mathbf{x}_{0} = \mathbf{x}, \tilde{\mathbf{x}}_{t} \neq \tau) \mathbb{P}(\tilde{\mathbf{x}}_{t} \neq \tau \mid \mathbf{x}_{0} = \mathbf{x}) \\ &\frac{(?)}{\tilde{\mathbf{x}}_{t} \in \mathcal{X}} \tilde{\ell}(\bar{\mathbf{x}}_{t}, \tilde{\pi}_{t}(\bar{\mathbf{x}}_{t})) \mathbb{P}(\mathbf{x}_{t} = \bar{\mathbf{x}}_{t} \mid \mathbf{x}_{0} = \mathbf{x}) \gamma^{t} \\ &= \sum_{\tilde{\mathbf{x}}_{t} \in \mathcal{X}} \ell(\bar{\mathbf{x}}_{t}, \pi_{t}(\bar{\mathbf{x}}_{t})) \mathbb{P}(\mathbf{x}_{t} = \bar{\mathbf{x}}_{t} \mid \mathbf{x}_{0} = \mathbf{x}) \gamma^{t} \\ &= \mathbb{E}_{\mathbf{x}_{1:T}} \left[\gamma^{t} \ell(\mathbf{x}_{t}, \pi_{t}(\mathbf{x}_{t})) \mid \mathbf{x}_{0} = \mathbf{x} \right] \end{split}$$

- (?) Show that for transitions $\tilde{p}_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u})$ under $\tilde{\pi}$, $\mathbb{P}(\tilde{\mathbf{x}}_t \neq \tau \mid \mathbf{x}_0 = \mathbf{x}) = \gamma^t$
 - For any $\mathbf{x} \in \mathcal{X}$ and $\mathbf{u} \in \tilde{\mathcal{U}}$:

$$\mathbb{P}(\mathbf{ ilde{x}}_{t+1}
eq au \mid \mathbf{ ilde{x}}_t = \mathbf{x}) = 1 - ilde{
ho}_{\! extit{f}}(au \mid \mathbf{x}, \mathbf{u}) = \gamma$$

ightharpoonup Similarly, for any $\mathbf{x} \in \mathcal{X}$

$$\begin{split} \mathbb{P}(\tilde{\mathbf{x}}_{t+2} \neq \tau \mid \tilde{\mathbf{x}}_t = \mathbf{x}) &= \sum_{\mathbf{x}' \in \mathcal{X}} \mathbb{P}(\tilde{\mathbf{x}}_{t+2} \neq \tau \mid \tilde{\mathbf{x}}_{t+1} = \mathbf{x}', \tilde{\mathbf{x}}_t = \mathbf{x}) \mathbb{P}(\tilde{\mathbf{x}}_{t+1} = \mathbf{x}' \mid \tilde{\mathbf{x}}_t = \mathbf{x}) \\ &= \sum_{\mathbf{x}' \in \mathcal{X}} \mathbb{P}(\tilde{\mathbf{x}}_{t+2} \neq \tau \mid \tilde{\mathbf{x}}_{t+1} = \mathbf{x}') \mathbb{P}(\tilde{\mathbf{x}}_{t+1} = \mathbf{x}' \mid \tilde{\mathbf{x}}_t = \mathbf{x}) \\ &= \gamma \sum_{\mathbf{x}' \in \mathcal{X}} \tilde{p}_f(\mathbf{x}' \mid \mathbf{x}, \tilde{\pi}(\mathbf{x})) = \gamma^2 \end{split}$$

▶ Similarly, we can show that for any m > 0: $\mathbb{P}(\tilde{\mathbf{x}}_{t+m} \neq \tau \mid \mathbf{x}_t = \mathbf{x}) = \gamma^m$

- (?) Show that $\mathbb{P}(\tilde{\mathbf{x}}_t = \bar{\mathbf{x}}_t \mid \mathbf{x}_0 = \mathbf{x}, \tilde{\mathbf{x}}_t \neq \tau) = \mathbb{P}(\mathbf{x}_t = \bar{\mathbf{x}}_t \mid \mathbf{x}_0 = \mathbf{x})$
 - For any $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$ and $\mathbf{u} = \tilde{\pi}_t(\mathbf{x}) = \pi_t(\mathbf{x})$, we have

$$\begin{split} \mathbb{P}(\tilde{\mathbf{x}}_{t+1} = \mathbf{x}' \mid \tilde{\mathbf{x}}_{t+1} \neq \tau, \tilde{\mathbf{x}}_{t} = \mathbf{x}, \tilde{\mathbf{u}}_{t} = \mathbf{u}) &= \frac{\mathbb{P}(\tilde{\mathbf{x}}_{t+1} = \mathbf{x}', \tilde{\mathbf{x}}_{t+1} \neq \tau \mid \tilde{\mathbf{x}}_{t} = \mathbf{x}, \tilde{\mathbf{u}}_{t} = \mathbf{u})}{\mathbb{P}(\tilde{\mathbf{x}}_{t+1} \neq \tau \mid \tilde{\mathbf{x}}_{t} = \mathbf{x}, \tilde{\mathbf{u}}_{t} = \mathbf{u})} \\ &= \frac{\tilde{\rho}_{f}(\mathbf{x}' \mid \mathbf{x}, \mathbf{u})}{\gamma} = \rho_{f}(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) = \mathbb{P}(\mathbf{x}_{t+1} = \mathbf{x}' \mid \mathbf{x}_{t} = \mathbf{x}, \mathbf{u}_{t} = \mathbf{u}) \end{split}$$

▶ Similarly, it can be shown that for $\bar{\mathbf{x}}_t \in \mathcal{X}$:

$$\mathbb{P}(\mathbf{\tilde{x}}_t = \mathbf{\bar{x}}_t \mid \mathbf{x}_0 = \mathbf{x}, \mathbf{\tilde{x}}_t \neq \tau) = \mathbb{P}(\mathbf{x}_t = \mathbf{\bar{x}}_t \mid \mathbf{x}_0 = \mathbf{x})$$

Outline

Infinite-Horizon Optimal Contro

Bellman Equations

Policy Evaluation

Value Iteration

Policy Iteration

Linear Programming

Bellman Equation

▶ Recall the Dynamic Programming algorithm for finite horizon *T*:

$$\begin{aligned} & V_{T}(\mathbf{x}) = \mathfrak{q}(\mathbf{x}), & \forall \mathbf{x} \in \mathcal{X} \\ & V_{t}(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}} \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot | \mathbf{x}, \mathbf{u})} \left[V_{t+1}(\mathbf{x}') \right], & \forall \mathbf{x} \in \mathcal{X}, t = T - 1, \dots, \tau \end{aligned}$$

▶ Bellman Equation: as $T \to \infty$, the sequence ..., $V_{t+1}(\mathbf{x}), V_t(\mathbf{x}), ...$ converges to a fixed point $V(\mathbf{x})$ of the dynamic programming recursion:

$$V(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V(\mathbf{x}') \right] \right\}, \quad \forall \mathbf{x} \in \mathcal{X}$$

- ightharpoonup Assuming convergence, V(x) is equal to the optimal value $V^*(x)$
- ▶ Both $V^*(\mathbf{x})$ and the associated optimal policy $\pi^*(\mathbf{x})$ are **stationary**
- ▶ The Bellman Equation needs to be solved for all $\mathbf{x} \in \mathcal{X}$ simultaneously, which can be done analytically only for very few problems (e.g., the Linear Quadratic Regulator (LQR) problem)

Bellman Equation

▶ The optimal value function $V^*(\mathbf{x})$ satisfies:

$$V^*(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V^*(\mathbf{x}') \right] \right\}, \quad \forall \mathbf{x} \in \mathcal{X}$$

▶ The value function $V^{\pi}(\mathbf{x})$ of policy π satisfies:

$$V^{\pi}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \pi(\mathbf{x}))} [V^{\pi}(\mathbf{x}')], \quad \forall \mathbf{x} \in \mathcal{X}$$

► The latter can be obtained from:

$$V^{\pi}(\mathbf{x}) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \ell(\mathbf{x}_{t}, \pi(\mathbf{x}_{t})) \mid \mathbf{x}_{0} = \mathbf{x}\right]$$

$$= \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} \ell(\mathbf{x}_{t}, \pi(\mathbf{x}_{t})) \mid \mathbf{x}_{0} = \mathbf{x}\right]$$

$$= \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot \mid \mathbf{x}, \pi(\mathbf{x}))} [V^{\pi}(\mathbf{x}')]$$

Action-Value (Q) Function

- ▶ Value Function $V^{\pi}(\mathbf{x})$: the expected long-term cost of following policy π starting from state \mathbf{x}
- ▶ **Q Function** $Q^{\pi}(\mathbf{x}, \mathbf{u})$: the expected long-term cost of taking action \mathbf{u} in state \mathbf{x} and following policy π afterwards:

$$Q^{\pi}(\mathbf{x}, \mathbf{u}) := \ell(\mathbf{x}, \mathbf{u}) + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t} \ell(\mathbf{x}_{t}, \pi(\mathbf{x}_{t})) \mid \mathbf{x}_{0} = \mathbf{x}\right]$$

$$= \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot \mid \mathbf{x}, \mathbf{u})} \left[V^{\pi}(\mathbf{x}')\right]$$

$$= \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot \mid \mathbf{x}, \mathbf{u})} \underbrace{\left[Q^{\pi}(\mathbf{x}', \pi(\mathbf{x}'))\right]}_{V^{\pi}(\mathbf{x}')}$$

▶ Optimal Q Function: $Q^*(\mathbf{x}, \mathbf{u}) := \min_{\pi} Q^{\pi}(\mathbf{x}, \mathbf{u})$

$$\begin{split} Q^*(\mathbf{x}, \mathbf{u}) &= \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim \rho_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V^*(\mathbf{x}') \right] \\ &= \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim \rho_f(\cdot | \mathbf{x}, \mathbf{u})} \left[\min_{\mathbf{u}' \in \mathcal{U}} Q^*(\mathbf{x}', \mathbf{u}') \right] \\ \pi^*(\mathbf{x}) \in \arg\min_{\mathbf{x}} Q^*(\mathbf{x}, \mathbf{u}) \end{split}$$

Bellman Equations Summary

► Value Function:

$$V^{\pi}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{\epsilon}(\cdot | \mathbf{x}, \pi(\mathbf{x}))} [V^{\pi}(\mathbf{x}')], \quad \forall \mathbf{x} \in \mathcal{X}$$

Optimal Value Function:

$$V^*(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V^*(\mathbf{x}') \right] \right\}, \quad \forall \mathbf{x} \in \mathcal{X}$$

Q Function:

$$Q^{\pi}(\mathbf{x}, \mathbf{u}) = \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[Q^{\pi}(\mathbf{x}', \pi(\mathbf{x}')) \right], \quad \forall \mathbf{x} \in \mathcal{X}, \mathbf{u} \in \mathcal{U}$$

Optimal Q Function:

$$Q^*(\mathbf{x}, \mathbf{u}) = \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[\min_{\mathbf{u}' \in \mathcal{U}} Q^*(\mathbf{x}', \mathbf{u}') \right], \quad \forall \mathbf{x} \in \mathcal{X}, \mathbf{u} \in \mathcal{U}$$

Bellman Operators

► Hamiltonian:

$$H[\mathbf{x}, \mathbf{u}, V] = \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} [V(\mathbf{x}')]$$

► Policy Evaluation Operator:

$$\mathcal{B}_{\pi}[V](\mathbf{x}) := \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \pi(\mathbf{x}))}[V(\mathbf{x}')] = H[\mathbf{x}, \pi(\mathbf{x}), V(\cdot)]$$

► Optimal Value Operator:

$$\mathcal{B}_*[V](\mathbf{x}) := \min_{\mathbf{u} \in \mathcal{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V(\mathbf{x}') \right] \right\} = \min_{\mathbf{u} \in \mathcal{U}} H[\mathbf{x}, \mathbf{u}, V(\cdot)]$$

► Policy Q-Evaluation Operator:

$$\mathcal{B}_{\pi}[Q](\mathbf{x},\mathbf{u}) := \ell(\mathbf{x},\mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x},\mathbf{u})} \left[Q(\mathbf{x}',\pi(\mathbf{x}')) \right] \\ = H[\mathbf{x},\mathbf{u},Q(\cdot,\pi(\cdot))]$$

► Optimal Q-Value Operator:

$$\mathcal{B}_*[Q](\mathbf{x},\mathbf{u}) := \ell(\mathbf{x},\mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[\min_{\mathbf{u}' \in \mathcal{U}} Q(\mathbf{x}', \mathbf{u}') \right] = H[\mathbf{x}, \mathbf{u}, \min_{\mathbf{u}' \in \mathcal{U}} Q(\cdot, \mathbf{u}')]$$

Finite-Horizon Problem

▶ Trajectories terminate at fixed $T < \infty$

$$\min_{\pi} V_{\tau}^{\pi}(\mathbf{x}) = \mathbb{E}\left[\gamma^{T-\tau}\mathfrak{q}(\mathbf{x}_{T}) + \sum_{t=\tau}^{T-1} \gamma^{t-\tau}\ell(\mathbf{x}_{t}, \pi_{t}(\mathbf{x}_{t})) \mid \mathbf{x}_{\tau} = \mathbf{x}\right]$$

The optimal value $V_t^*(\mathbf{x})$ can be found with a single backward pass through time, initialized from $V_T^*(\mathbf{x}) = \mathfrak{q}(\mathbf{x})$ and following the recursion:

Bellman Equations (Finite-Horizon Problem)

Hamiltonian:
$$H[\mathbf{x}, \mathbf{u}, V(\cdot)] = \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} [V(\mathbf{x}')]$$

Policy Evaluation:
$$V_t^{\pi}(\mathbf{x}) = Q_t^{\pi}(\mathbf{x}, \pi_t(\mathbf{x})) = H[\mathbf{x}, \pi_t(\mathbf{x}), V_{t+1}^{\pi}(\cdot)]$$

Bellman Equation:
$$V_t^*(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}} Q_t^*(\mathbf{x}, \mathbf{u}) = \min_{\mathbf{u} \in \mathcal{U}} H[\mathbf{x}, \mathbf{u}, V_{t+1}^*(\cdot)]$$

Optimal Policy:
$$\pi_t^*(\mathbf{x}) = \arg\min_{\mathbf{u} \in \mathcal{U}} Q_t^*(\mathbf{x}, \mathbf{u}) = \arg\min_{\mathbf{u} \in \mathcal{U}} H[\mathbf{x}, \mathbf{u}, V_{t+1}^*(\cdot)]$$

Infinite-Horizon Discounted Problem

▶ Trajectories continue forever but costs are discounted via $\gamma \in [0,1)$:

$$\min_{\pi} V^{\pi}(\mathbf{x}) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \ell(\mathbf{x}_{t}, \pi(\mathbf{x}_{t})) \middle| \mathbf{x}_{0} = \mathbf{x}\right]$$

Bellman Equations (Discounted Problem)

Hamiltonian: $H[\mathbf{x}, \mathbf{u}, V(\cdot)] = \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} [V(\mathbf{x}')]$

Policy Evaluation: $V^{\pi}(\mathbf{x}) = Q^{\pi}(\mathbf{x}, \pi(\mathbf{x})) = H[\mathbf{x}, \pi(\mathbf{x}), V^{\pi}(\cdot)]$

Bellman Equation: $V^*(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}} Q^*(\mathbf{x}, \mathbf{u}) = \min_{\mathbf{u} \in \mathcal{U}} H[\mathbf{x}, \mathbf{u}, V^*(\cdot)]$

Optimal Policy: $\pi^*(\mathbf{x}) = \underset{\mathbf{u} \in \mathcal{U}}{\operatorname{arg min}} Q^*(\mathbf{x}, \mathbf{u}) = \underset{\mathbf{u} \in \mathcal{U}}{\operatorname{arg min}} H[\mathbf{x}, \mathbf{u}, V^*(\cdot)]$

Infinite-Horizon First-Exit Problem

▶ Trajectories terminate at $T := \inf\{t \ge 1 | \mathbf{x}_t \in \mathcal{T}\}$, the first passage time from initial state \mathbf{x}_0 to a terminal state $\mathbf{x}_t \in \mathcal{T} \subseteq \mathcal{X}$:

$$\min_{\pi} V^{\pi}(\mathbf{x}) = \mathbb{E}\left[\left. \mathfrak{q}(\mathbf{x}_T) + \sum_{t=0}^{T-1} \ell(\mathbf{x}_t, \pi(\mathbf{x}_t)) \right| \mathbf{x}_0 = \mathbf{x}
ight]$$

- lacktriangle At terminal states, $V^*(\mathbf{x}) = V^\pi(\mathbf{x}) = \mathfrak{q}(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{T}$
- ▶ At other states, the following are satisfied:

Bellman Equations (First-Exit Problem)

Hamiltonian:
$$H[\mathbf{x}, \mathbf{u}, V(\cdot)] = \ell(\mathbf{x}, \mathbf{u}) + \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})}[V(\mathbf{x}')]$$

Policy Evaluation:
$$V^{\pi}(\mathbf{x}) = Q^{\pi}(\mathbf{x}, \pi(\mathbf{x})) = H[\mathbf{x}, \pi(\mathbf{x}), V^{\pi}(\cdot)]$$

Bellman Equation:
$$V^*(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}} Q^*(\mathbf{x}, \mathbf{u}) = \min_{\mathbf{u} \in \mathcal{U}} H[\mathbf{x}, \mathbf{u}, V^*(\cdot)]$$

Optimal Policy:
$$\pi^*(\mathbf{x}) = \underset{\mathbf{u} \in \mathcal{U}}{\arg \min} Q^*(\mathbf{x}, \mathbf{u}) = \underset{\mathbf{u} \in \mathcal{U}}{\arg \min} H[\mathbf{x}, \mathbf{u}, V^*(\cdot)]$$

Bellman Equation Algorithms

- To determine the value function of policy π in either the Discounted or First-Exit Problem, we need to solve a **Policy Evaluation equation**:
 - Policy Evaluation: $V^{\pi}(\mathbf{x}) = H[\mathbf{x}, \pi(\mathbf{x}), V^{\pi}(\cdot)]$
 - Policy Q-Evaluation: $Q^{\pi}(\mathbf{x}, \mathbf{u}) = H[\mathbf{x}, \mathbf{u}, Q^{\pi}(\cdot, \pi(\cdot))]$
- ▶ A Policy Evaluation equation can be solved by:
 - ► Iterative Policy Evaluation
 - ▶ Linear System Solution (only for finite state space X)
- ➤ To the determine the optimal value function in either the Discounted or First-Exit Problem, we need to solve a Bellman equation:
 - ▶ Bellman Equation: $V^*(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}} H[\mathbf{x}, \mathbf{u}, V^*(\cdot)]$
 - ▶ Q-Bellman Equation: $Q^*(\mathbf{x}, \mathbf{u}) = H[\mathbf{x}, \mathbf{u}, \min_{\mathbf{u}' \in \mathcal{U}} Q^*(\cdot, \mathbf{u}')]$
- ► A Bellman equation can be solved by:
 - ► Value Iteration
 - Policy Iteration
 - Linear Programming (only for finite state space \mathcal{X})

Outline

Infinite-Horizon Optimal Contro

Bellman Equations

Policy Evaluation

Value Iteration

Policy Iteration

Linear Programming

Policy Evaluation

Policy Evaluation Theorem (Discounted Problem)

The value function $V^{\pi}(\mathbf{x})$ of policy π is the unique solution of:

$$V^{\pi}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \pi(\mathbf{x}))} [V^{\pi}(\mathbf{x}')], \quad \forall \mathbf{x} \in \mathcal{X}.$$

If $\gamma \in [0,1)$, for any initial condition $V_0(\mathbf{x})$, the sequence $V_k(\mathbf{x})$ generated by the recursion below converges to $V^{\pi}(\mathbf{x})$:

$$V_{k+1}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \pi(\mathbf{x}))} [V_k(\mathbf{x}')], \quad \forall \mathbf{x} \in \mathcal{X}.$$

- lacktriangle The PE algorithm requires infinite iterations for $V_k(\mathbf{x})$ to converge to $V^\pi(\mathbf{x})$
- ▶ In practice, the PE algorithm is terminated when $|V_{k+1}(\mathbf{x}) V_k(\mathbf{x})| < \epsilon$ for all $\mathbf{x} \in \mathcal{X}$ and some threshold ϵ

Policy Evaluation

▶ Proper policy for first-exit problem: a policy π for which there exists an integer m such that $\mathbb{P}(\mathbf{x}_m \in \mathcal{T} \mid \mathbf{x}_0 = \mathbf{x}) > 0$ for all $\mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$

Policy Evaluation Theorem (First-Exit Problem)

The value function $V^{\pi}(\mathbf{x})$ of policy π is the unique solution of:

$$egin{aligned} V^{\pi}(\mathbf{x}) &= \mathfrak{q}(\mathbf{x}), & \forall \mathbf{x} \in \mathcal{T}, \ V^{\pi}(\mathbf{x}) &= \ell(\mathbf{x}, \pi(\mathbf{x})) + \mathbb{E}_{\mathbf{x}' \sim
ho_f(\cdot | \mathbf{x}, \pi(\mathbf{x}))} \left[V^{\pi}(\mathbf{x}')
ight], & \forall \mathbf{x} \in \mathcal{X} \setminus \mathcal{T}. \end{aligned}$$

If π is a proper policy, for any initial condition $V_0(\mathbf{x})$, the sequence $V_k(\mathbf{x})$ generated by the recursion below converges to $V^{\pi}(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$:

$$V_{k+1}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \pi(\mathbf{x}))} \left[V_k(\mathbf{x}') \right], \qquad \forall \mathbf{x} \in \mathcal{X} \setminus \mathcal{T}.$$

Policy Evaluation (Discounted Finite-State Problem)

- ▶ Let $X = \{1, ..., n\}$
- ▶ Let $\mathbf{v}_i := V^{\pi}(i)$, $\ell_i := \ell(i, \pi(i))$, $P_{ij} := p_f(j \mid i, \pi(i))$ for i, j = 1, ..., n
- Policy evaluation:

$$\mathbf{v} = \boldsymbol{\ell} + \gamma P \mathbf{v} \qquad \Rightarrow \qquad (I - \gamma P) \mathbf{v} = \boldsymbol{\ell}$$

- Existence of solution: The matrix P has eigenvalues with modulus ≤ 1 . All eigenvalues of γP have modulus < 1, so $(\gamma P)^T \to 0$ as $T \to \infty$ and $(I \gamma P)^{-1}$ exists.
- ▶ The Policy Evaluation Theorem is an iterative solution to the linear system:

$$\mathbf{v}_{1} = \ell + \gamma P \mathbf{v}_{0}$$

$$\mathbf{v}_{2} = \ell + \gamma P \mathbf{v}_{1} = \ell + \gamma P \ell + (\gamma P)^{2} \mathbf{v}_{0}$$

$$\vdots$$

$$\mathbf{v}_{k} = (I + \gamma P + (\gamma P)^{2} + \dots + (\gamma P)^{k-1})\ell + (\gamma P)^{k} \mathbf{v}_{0}$$

$$\vdots$$

$$\mathbf{v}_{\infty} \to (I - \gamma P)^{-1}\ell$$

Policy Evaluation (First-Exit Finite-State Problem)

- ▶ Let $\mathcal{X} = \mathcal{N} \cup \mathcal{T}$ and $P_{ij} := p_f(j \mid i, \pi(i))$ for $i, j \in \mathcal{N} \cup \mathcal{T}$
- ▶ Let $\mathbf{q}_i := \mathbf{q}(i)$ for $i \in \mathcal{T}$ and $\mathbf{v}_i := V^{\pi}(i)$, $\ell_i := \ell(i, \pi(i))$ for $i \in \mathcal{N}$
- ▶ Policy evaluation:

$$\mathbf{v} = \ell + P_{\mathcal{N}\mathcal{N}}\mathbf{v} + P_{\mathcal{N}\mathcal{T}}\mathbf{q} \qquad \Rightarrow \qquad (I - P_{\mathcal{N}\mathcal{N}})\mathbf{v} = \ell + P_{\mathcal{N}\mathcal{T}}\mathbf{q}$$

- Existence of solution: A unique solution for \mathbf{v} exists as long as π is a proper policy. By the Chapman-Kolmogorov equation, $[P^k]_{ij} = \mathbb{P}(\mathbf{x}_k = j \mid \mathbf{x}_0 = i)$ and since π is proper, $[P^k]_{ij} \to 0$ as $k \to \infty$ for all $i, j \in \mathcal{X} \setminus \mathcal{T}$. Since $P^k_{\mathcal{N}\mathcal{N}}$ vanishes as $k \to \infty$, all eigenvalues of $P_{\mathcal{N}\mathcal{N}}$ must have modulus less than 1 and $(I P_{\mathcal{N}\mathcal{N}})^{-1}$ exists.
- ▶ The Policy Evaluation Theorem is an iterative solution to the linear system:

$$\begin{split} \mathbf{v}_1 &= \boldsymbol{\ell} + P_{\mathcal{N}\mathcal{T}} \mathbf{q} + P_{\mathcal{N}\mathcal{N}} \mathbf{v}_0 \\ \mathbf{v}_2 &= \boldsymbol{\ell} + P_{\mathcal{N}\mathcal{T}} \mathbf{q} + P_{\mathcal{N}\mathcal{N}} \mathbf{v}_1 = \boldsymbol{\ell} + P_{\mathcal{N}\mathcal{T}} \mathbf{q} + P_{\mathcal{N}\mathcal{N}} \left(\boldsymbol{\ell} + P_{\mathcal{N}\mathcal{T}} \mathbf{q}\right) + P_{\mathcal{N}\mathcal{N}}^2 \mathbf{v}_0 \\ \mathbf{v}_{\infty} &\to \left(I - P_{\mathcal{N}\mathcal{N}}\right)^{-1} \left(\boldsymbol{\ell} + P_{\mathcal{N}\mathcal{T}} \mathbf{q}\right) \end{split}$$

Outline

Infinite-Horizon Optimal Control

Bellman Equations

Policy Evaluation

Value Iteration

Policy Iteration

Linear Programming

Value Iteration

Value Iteration Theorem (Discounted Problem)

The optimal value function $V^*(\mathbf{x})$ is the unique solution of:

$$V^*(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim \rho_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V^*(\mathbf{x}') \right] \right\}, \qquad \forall \mathbf{x} \in \mathcal{X}.$$

If $\gamma \in [0,1)$, for any initial condition $V_0(\mathbf{x})$, the sequence $V_k(\mathbf{x})$ generated by the recursion below converges to $V^*(\mathbf{x})$:

$$V_{k+1}(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V_k(\mathbf{x}') \right] \right\}, \quad \forall \mathbf{x} \in \mathcal{X}.$$

- ▶ The VI algorithm is an infinite-horizon equivalent of the DP algorithm $(V_0(\mathbf{x}) \text{ in VI corresponds to } V_{T\to\infty}(\mathbf{x}) \text{ in DP})$
- ▶ VI requires infinite iterations for $V_k(\mathbf{x})$ to converge to $V^*(\mathbf{x})$
- ▶ In practice, the VI algorithm is terminated when $|V_{k+1}(\mathbf{x}) V_k(\mathbf{x})| < \epsilon$ for all $\mathbf{x} \in \mathcal{X}$ and some threshold ϵ

Gauss-Seidel Value Iteration

▶ A regular VI implementation stores the values from a previous iteration and updates them for all states simultaneously:

$$\begin{split} \hat{V}(\mathbf{x}) \leftarrow \min_{\mathbf{u} \in \mathcal{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V(\mathbf{x}') \right] \right\}, \qquad \forall \mathbf{x} \in \mathcal{X} \\ V(\mathbf{x}) \leftarrow \hat{V}(\mathbf{x}), \qquad \forall \mathbf{x} \in \mathcal{X} \end{split}$$

► Gauss-Seidel Value Iteration updates the values in place:

$$V(\mathbf{x}) \leftarrow \min_{\mathbf{u} \in \mathcal{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V(\mathbf{x}') \right] \right\}, \qquad \forall \mathbf{x} \in \mathcal{X}$$

 Gauss-Seidel VI converges and often leads to faster convergence and requires less memory than VI

Value Iteration

Value Iteration Theorem (First-Exit Problem)

The optimal value function $V^*(\mathbf{x})$ is the unique solution of:

$$\begin{aligned} V^*(\mathbf{x}) &= \mathfrak{q}(\mathbf{x}), & \forall \mathbf{x} \in \mathcal{T}, \\ V^*(\mathbf{x}) &= \min_{\mathbf{u} \in \mathcal{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \mathbb{E}_{\mathbf{x}' \sim \rho_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V^*(\mathbf{x}') \right] \right\}, & \forall \mathbf{x} \in \mathcal{X} \setminus \mathcal{T}. \end{aligned}$$

If a proper policy exists, for any initial condition $V_0(\mathbf{x})$, the sequence $V_k(\mathbf{x})$ generated by the recursion below converges to $V^*(\mathbf{x})$:

$$\begin{aligned} V_k(\mathbf{x}) &= \mathfrak{q}(\mathbf{x}), & \forall \mathbf{x} \in \mathcal{T}, \ \forall k, \\ V_{k+1}(\mathbf{x}) &= \min_{\mathbf{u} \in \mathcal{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V_k(\mathbf{x}') \right] \right\}, & \forall \mathbf{x} \in \mathcal{X} \setminus \mathcal{T}. \end{aligned}$$

Contraction in Discounted Problems

Contraction Mapping

Let $\mathcal{F}(\mathcal{X})$ denote the linear space of bounded functions $V: \mathcal{X} \mapsto \mathbb{R}$ with norm $\|V\|_{\infty} := \sup_{\mathbf{x} \in \mathcal{X}} |V(\mathbf{x})|$. A function $\mathcal{B}: \mathcal{F}(\mathcal{X}) \mapsto \mathcal{F}(\mathcal{X})$ is called a *contraction mapping* if there exists a scalar $\alpha < 1$ such that:

$$\|\mathcal{B}[V] - \mathcal{B}[V']\|_{\infty} \le \alpha \|V - V'\|_{\infty} \qquad \forall V, V' \in \mathcal{F}(\mathcal{X})$$

Contraction Mapping Theorem

If $\mathcal{B}: \mathcal{F}(\mathcal{X}) \mapsto \mathcal{F}(\mathcal{X})$ is a contraction mapping, then there exists a unique function $V^* \in \mathcal{F}(\mathcal{X})$ such that $\mathcal{B}[V^*] = V^*$.

Contraction in Discounted Problems

Properties of $\mathcal{B}_*[V]$

The operator $\mathcal{B}_*[V](\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} [V(\mathbf{x}')] \right\}$ satisfies:

- 1. Monotonicity: $V(\mathbf{x}) \leq V'(\mathbf{x}) \Rightarrow \mathcal{B}_*[V](\mathbf{x}) \leq \mathcal{B}_*[V'](\mathbf{x})$
- 2. γ -Additivity: $\mathcal{B}_*[V+d](\mathbf{x}) = \mathcal{B}_*[V](\mathbf{x}) + \gamma d$ for $d \in \mathbb{R}$
- 3. Contraction: $\|\mathcal{B}_*[V] \mathcal{B}_*[V']\|_{\infty} \le \gamma \|V V'\|_{\infty}$
- **Proof of Contraction**: Let $d = \sup_{\mathbf{x}} |V(\mathbf{x}) V'(\mathbf{x})|$. Then:

$$V(\mathbf{x}) - d \le V'(\mathbf{x}) \le V(\mathbf{x}) + d, \quad \forall \mathbf{x} \in \mathcal{X}$$

Apply \mathcal{B}_* to both sides and use monotonicity and γ -additivity:

$$\mathcal{B}_*[V](\mathbf{x}) - \gamma d \leq \mathcal{B}_*[V'](\mathbf{x}) \leq \mathcal{B}_*[V](\mathbf{x}) + \gamma d, \quad \forall \mathbf{x} \in \mathcal{X}$$

Proof of VI Convergence in Discounted Problems

- \blacktriangleright $\mathcal{B}_*[V]$ is monotone, γ -additive, and a contraction mapping
- ▶ By the contraction mapping theorem, there exists $V^*(\mathbf{x})$ such that $\mathcal{B}_*[V^*] = V^*$
- ► Value Iteration Algorithm:

$$egin{aligned} V_0(\mathbf{x}) &\equiv 0 \ V_{k+1}(\mathbf{x}) &= \mathcal{B}_*[V_k](\mathbf{x}) \end{aligned}$$

- ▶ Since $\mathcal{B}_*[V]$ is a contraction, the sequence V_k is Cauchy, i.e., $\|V_{k+1} V_k\|_{\infty} \le \gamma^k \|V_1 V_0\|_{\infty}$
- ▶ If $(\mathcal{F}(\mathcal{X}), \|\cdot\|_{\infty})$ is a complete metric space, then V_k has a limit $V^* \in \mathcal{F}(\mathcal{X})$ and V^* is a fixed point of \mathcal{B}_*

Outline

Infinite-Horizon Optimal Control

Bellman Equations

Policy Evaluation

Value Iteration

Policy Iteration

Linear Programming

Discounted Problem Policy Iteration (PI)

- ▶ PI is an alternative algorithm to VI for computing $V^*(x)$
- ▶ PI iterates over policies instead of values
- ▶ Policy Iteration: repeat until $V^{\pi'}(\mathbf{x}) = V^{\pi}(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}$:
 - 1. **Policy Evaluation**: given a policy π , compute V^{π} :

$$V^{\pi}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} [V^{\pi}(\mathbf{x}')], \quad \forall \mathbf{x} \in \mathcal{X}$$

2. **Policy Improvement**: given V^{π} , obtain a new policy π' :

$$\pi'(\mathbf{x}) \in \arg\min_{\mathbf{u} \in \mathcal{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V^{\pi}(\mathbf{x}') \right] \right\}, \qquad \forall \mathbf{x} \in \mathcal{X}$$

First-Exit Problem Policy Iteration (PI)

- ▶ Policy Iteration: repeat until $V^{\pi'}(\mathbf{x}) = V^{\pi}(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$:
 - 1. **Policy Evaluation**: given a policy π , compute V^{π} :

$$V^{\pi}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V^{\pi}(\mathbf{x}')
ight], \qquad orall \mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$$

2. **Policy Improvement**: given V^{π} , obtain a new policy π' :

$$\pi'(\mathbf{x}) = \mathop{\mathsf{arg\,min}}_{\mathbf{u} \in \mathcal{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot \mid \mathbf{x}, \mathbf{u})} \left[V^\pi(\mathbf{x}') \right] \right\}, \qquad \forall \mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$$

Policy Improvement Theorem

Let π and π' be such that $V^{\pi}(\mathbf{x}) \geq Q^{\pi}(\mathbf{x}, \pi'(\mathbf{x}))$ for all $\mathbf{x} \in \mathcal{X}$. Then, π' is at least as good as π , i.e., $V^{\pi}(\mathbf{x}) \geq V^{\pi'}(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}$

► Proof:

$$\begin{split} V^{\pi}(\mathbf{x}) &\geq Q^{\pi}(\mathbf{x}, \pi'(\mathbf{x})) = \ell(\mathbf{x}, \pi'(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot | \mathbf{x}, \pi'(\mathbf{x}))} \left[V^{\pi}(\mathbf{x}') \right] \\ &\geq \ell(\mathbf{x}, \pi'(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot | \mathbf{x}, \pi'(\mathbf{x}))} \left[Q^{\pi}(\mathbf{x}', \pi'(\mathbf{x}')) \right] \\ &= \ell(\mathbf{x}, \pi'(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot | \mathbf{x}, \pi'(\mathbf{x}))} \left\{ \ell(\mathbf{x}', \pi'(\mathbf{x}')) + \gamma \mathbb{E}_{\mathbf{x}'' \sim p_{f}(\cdot | \mathbf{x}', \pi'(\mathbf{x}'))} V^{\pi}(\mathbf{x}'') \right\} \\ &\geq \dots \geq \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^{t} \ell(\mathbf{x}_{t}, \pi'(\mathbf{x}_{t})) \middle| \mathbf{x}_{0} = \mathbf{x} \right] = V^{\pi'}(\mathbf{x}) \end{split}$$

Theorem: Optimality of Pl

Suppose that \mathcal{X} is finite and:

- $ightharpoonup \gamma \in [0,1)$ (Discounted Problem),
 - ▶ there exists a proper policy (First-Exit Problem).

Then, the Policy Iteration algorithm converges to an optimal policy after a finite number of steps.

Proof of Optimality of PI (First-Exit Problem)

- Let π be a proper policy with value V^{π} obtained from Policy Evaluation
- Let π' be the policy obtained from Policy Improvement
- ▶ By definition of Policy Improvement: $V^{\pi}(\mathbf{x}) \geq Q^{\pi}(\mathbf{x}, \pi'(\mathbf{x}))$ for all $\mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$
- ▶ By the Policy Improvement Thm., $V^{\pi}(\mathbf{x}) \geq V^{\pi'}(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$
- ▶ Since π is proper, $V^{\pi}(\mathbf{x}) < \infty$ for all $\mathbf{x} \in \mathcal{X}$, and hence π' is proper
- \blacktriangleright Since π' is proper, the Policy Evaluation step has a unique solution $V^{\pi'}$
- lacktriangle Since the number of stationary policies is finite, eventually $V^\pi=V^{\pi'}$ after a finite number of steps
- Once V^{π} has converged, it follows from the Policy Improvement step:

$$V^{\pi'}(\mathbf{x}) = V^{\pi}(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \sum_{\mathbf{x}' \in \mathcal{X}} \widetilde{p}_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V^{\pi}(\mathbf{x}')
ight\}, \quad \mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$$

Since this is the Bellman equation for the first-exit problem, we have converged to an optimal policy $\pi^* = \pi$ with optimal value $V^* = V^\pi$

Generalized Policy Iteration

- ▶ PI and VI have a lot in common
- Rewrite VI as follows:
 - 2. **Policy Improvement**: Given $V_k(\mathbf{x})$ obtain a policy:

$$\pi(\mathbf{x}) \in \mathop{\mathsf{arg\,min}}_{\mathbf{u} \in \mathcal{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot \mid \mathbf{x}, \mathbf{u})} \left[V_k(\mathbf{x}') \right] \right\}, \qquad \forall \mathbf{x} \in \mathcal{X}$$

1. Value Update: Given $\pi(x)$ and $V_k(x)$, compute

$$V_{k+1}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} [V_k(\mathbf{x}')], \quad \forall \mathbf{x} \in \mathcal{X}$$

- Value Update is a single step of the iterative Policy Evaluation algorithm
- ▶ PI solves the Policy Evaluation equation completely, which is equivalent to running the Value Update step of VI an infinite number of times
- ▶ **Generalized Policy Iteration**: assuming the Value Update and Policy Improvement steps are executed an infinite number of times for all states, all combinations of the following converge:
 - ▶ Any number of Value Update steps in between Policy Improvement steps
 - Any number of states updated at each Value Update step
 - Any number of states updated at each Policy Improvement step

Complexity of VI and PI

- lackbox Consider the complexity of VI and PI for a finite state space ${\mathcal X}$
- ▶ Complexity of VI per Iteration: $O(|\mathcal{X}|^2|\mathcal{U}|)$: evaluating the expectation (i.e., sum over \mathbf{x}') requires $|\mathcal{X}|$ operations and there are $|\mathcal{X}|$ minimizations over $|\mathcal{U}|$ possible control inputs
- ▶ Complexity of PI per Iteration: $O(|\mathcal{X}|^2(|\mathcal{X}|+|\mathcal{U}|))$: the Policy Evaluation step requires solving a system of $|\mathcal{X}|$ equations in $|\mathcal{X}|$ unknowns $(O(|\mathcal{X}|^3))$, while the Policy Improvement step has the same complexity as one iteration of VI
- ▶ PI is more computationally expensive than VI
- ▶ Theoretically it takes an infinite number of iterations for VI to converge
- ightharpoonup PI converges in $|\mathcal{U}|^{|\mathcal{X}|}$ iterations (all possible policies) in the worst case

Value Iteration

 \triangleright V^* is a fixed point of \mathcal{B}_* : V_0 , $\mathcal{B}_*[V_0]$, $\mathcal{B}_*^2[V_0]$, $\mathcal{B}_*^3[V_0]$,... \rightarrow V^*

Algorithm Value Iteration

- 1: Initialize V_0
- 2: **for** $k = 0, 1, 2, \dots$ **do**
- 3: $V_{k+1} = \mathcal{B}_* [V_k]$
- $ightharpoonup Q^*$ is a fixed point of \mathcal{B}_* : Q_0 , $\mathcal{B}_*[Q_0]$, $\mathcal{B}_*^2[Q_0]$, $\mathcal{B}_*^3[Q_0]$,... $\to Q^*$

Algorithm Q-Value Iteration

- 1: Initialize Q_0
- 2: **for** $k = 0, 1, 2, \dots$ **do**
- 3: $Q_{k+1} = \mathcal{B}_* \left[Q_k \right]$

Policy Iteration

▶ Policy Evaluation: V_0 , $\mathcal{B}_{\pi}[V_0]$, $\mathcal{B}_{\pi}^2[V_0]$, $\mathcal{B}_{\pi}^3[V_0]$, . . . $\rightarrow V^7$

Algorithm Policy Iteration

- 1: Initialize V_0
- 2: **for** $k = 0, 1, 2, \dots$ **do**
- 3: $\pi_{k+1}(\mathbf{x}) = \arg\min_{\mathbf{x} \in \mathcal{X}} H[\mathbf{x}, \mathbf{u}, V_k(\cdot)]$
- 4: $V_{k+1} = \mathcal{B}_{\pi_{k+1}}^{\infty} [V_k]$

- ⊳ Policy Improvement
 - ▶ Policy Evaluation
- Policy Q-Evaluation: Q_0 , $\mathcal{B}_{\pi}[Q_0]$, $\mathcal{B}_{\pi}^2[Q_0]$, $\mathcal{B}_{\pi}^3[Q_0]$,... $\to Q^{\pi}$

Algorithm Q-Policy Iteration

- 1: Initialize Q_0
- 2: **for** $k = 0, 1, 2 \dots$ **do**
- 3: $\pi_{k+1}(\mathbf{x}) = \arg\min Q_k(\mathbf{x}, \mathbf{u})$
- 4: $Q_{k+1} = \mathcal{B}_{\pi_{k+1}}^{\infty}[Q_k]$

- ▶ Policy Improvement
 - ▶ Policy Evaluation

Generalized Policy Iteration

Algorithm Generalized Policy Iteration

- 1: Initialize V_0
- 2: **for** $k = 0, 1, 2, \dots$ **do**
- $\pi_{k+1}(\mathbf{x}) = \arg\min H[\mathbf{x}, \mathbf{u}, V_k(\cdot)]$ 3:
- 4: $V_{k+1} = \mathcal{B}_{\pi_{k+1}}^n [V_k], \quad \text{for } n \geq 1$

- ▶ Policy Improvement
 - ▶ Policy Evaluation

Algorithm Generalized Q-Policy Iteration

- 1: Initialize Q_0
- 2: **for** $k = 0, 1, 2, \dots$ **do**
- $\pi_{k+1}(\mathbf{x}) = \arg\min Q_k(\mathbf{x}, \mathbf{u})$ 3:
- 4: $Q_{k+1} = \mathcal{B}_{\pi_{k+1}}^n [Q_k], \text{ for } n \ge 1$

- ▶ Policy Improvement
 - ▶ Policy Evaluation

Example: Frozen Lake Problem

- Winter is here
- You and your friends were tossing around a frisbee at the park when you made a wild throw that left the frisbee out in the middle of the lake
- ▶ The water is mostly frozen but there are a few holes where the ice has melted
- ▶ If you step into one of those holes, you fall into the freezing water
- ► There is an international frisbee shortage so it is absolutely imperative that you navigate across the lake and retrieve the disc
- However, the ice is slippery so you cannot always move in the direction you intend

Example: Frozen Lake Problem

S	F	F	F
F	H	F	Н
F	F	F	Ξ
H	F	F	G

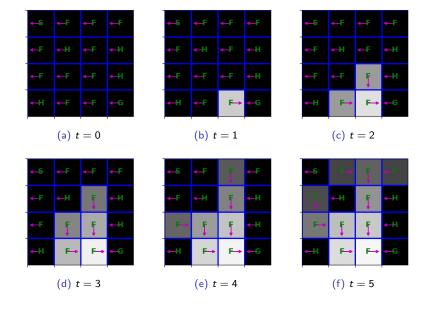
- ► S : starting point, safe
- F: frozen surface, safe
- ► H : hole, fall to your doom
- ▶ G : goal, where the frisbee is located
- $\mathcal{X} = \{0, 1, \dots, 15\}$
- $ightharpoonup \mathcal{U} = \{ Left(0), Down(1), Right(2), Up(3) \}$
- ➤ You receive a reward of 1 if you reach the goal, and zero otherwise
- ▶ An input $u \in \mathcal{U}$ succeeds 80% of the time. A neighboring control is executed in the other 50% of the time due to slip, e.g.,

$$x' \mid x = 9, u = 1 =$$

$$\begin{cases}
13, & \text{with prob. } 0.8 \\
8, & \text{with prob. } 0.1 \\
10, & \text{with prob. } 0.1
\end{cases}$$

- ▶ The state remains unchanged if a control leads outside of the map
- An episode ends when you reach the goal or fall in a hole

Value Iteration on Frozen Lake



Value Iteration on Frozen Lake Iteration $\max_{x} |V_{t+1}(x) - V_{t}(x)|$ 0.80000 0.60800

5

6

8

9

10

11

12

13

14

15

16

17

18

19

0.51984 0.39508

0.30026 0.25355

0.00735

0.00310

0.00190

0.00083

0.00049

0.00022

0.00013

0.00006

0.00003

0.10478 0.09657

0.03656 0.02772

0.01111

changed actions

0.506

0.517 0.524 0.527 0.529 0.530 0.531

0.531

0.531

0.531

0.531

V(0)

0.000

0.000

0.000

0.000

0.000

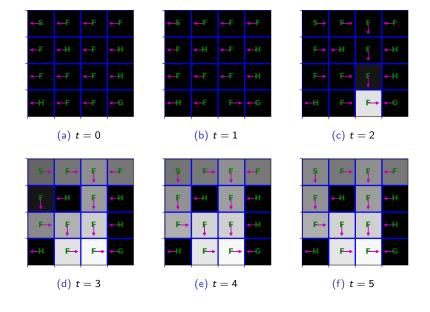
0.254

0.345

0.442

0.478

Policy Iteration on Frozen Lake



Policy Iteration on Frozen Lake # changed actions Iteration $\max_{x} |V_{t+1}(x) - V_{t}(x)|$ V(0)0.00000 0.000 0.89296 0.000 0.398 0.88580 3 0.48504 0.455 4 0.07573 0.531 5 0.00000 0.531 6 0.00000 0.531 0.00000 0 0.531

		_	
8	0.00000	0	0.531
9	0.00000	0	0.531
10	0.00000	0	0.531
11	0.00000	0	0.531
12	0.00000	0	0.531
13	0.00000	0	0.531
14	0.00000	0	0.531
15	0.00000	0	0.531
16	0.00000	0	0.531

0.00000

0.00000

0.00000

17

18

19

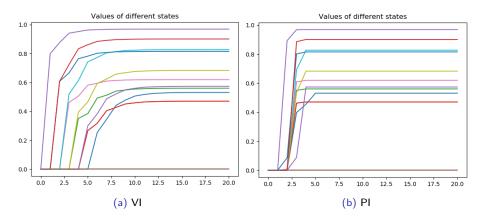
50

0.531

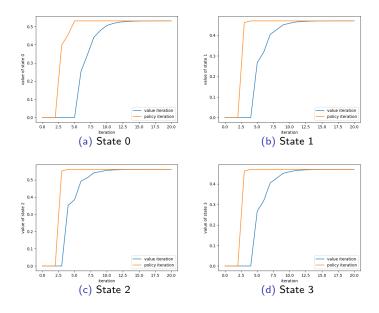
0.531 0.531

0

Value Iteration vs Policy Iteration



Value Iteration vs Policy Iteration



Outline

Infinite-Horizon Optimal Control

Bellman Equations

Policy Evaluation

Value Iteration

Policy Iteration

Linear Programming

Linear Programming Solution to the Bellman Equation

- ightharpoonup Consider a Discounted Problem with finite state space $\mathcal X$
- ightharpoonup Suppose we initialize VI with V_0 that satisfies a relaxed Bellman equation condition:

$$V_0(\mathbf{x}) \leq \min_{\mathbf{u} \in \mathcal{U}} \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_0(\mathbf{x}') \right), \qquad \forall \mathbf{x} \in \mathcal{X}$$

▶ Since \mathcal{B}_* is monotone, applying VI to V_0 leads to:

$$\begin{split} V_1(\mathbf{x}) &= \min_{\mathbf{u} \in \mathcal{U}} \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_0(\mathbf{x}') \right) \geq V_0(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{X} \\ V_2(\mathbf{x}) &= \min_{\mathbf{u} \in \mathcal{U}} \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_1(\mathbf{x}') \right) \\ &\geq \min_{\mathbf{u} \in \mathcal{U}} \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_0(\mathbf{x}') \right) = V_1(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{X} \end{split}$$

Linear Programming Solution to the Bellman Equation

- ▶ The above shows that $V_{k+1}(\mathbf{x}) \geq V_k(\mathbf{x})$ for all k and $\mathbf{x} \in \mathcal{X}$
- ▶ Since VI guarantees that $V_k(\mathbf{x}) \to V^*(\mathbf{x})$ as $k \to \infty$, we also have:

$$V^*(\mathbf{x}) \geq V_0(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{X} \quad \Rightarrow \quad \sum_{\mathbf{x} \in \mathcal{X}} w(\mathbf{x}) V^*(\mathbf{x}) \geq \sum_{\mathbf{x} \in \mathcal{X}} w(\mathbf{x}) V_0(\mathbf{x})$$

for any $w(\mathbf{x}) > 0$ for all $\mathbf{x} \in \mathcal{X}$.

▶ The above holds for **any** V_0 that satisfies:

$$V_0(\mathbf{x}) \leq \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_0(\mathbf{x}') \right), \qquad \forall \mathbf{x} \in \mathcal{X}$$

ightharpoonup Since V^* satisfies this condition with equality (Bellman Equation), it is the maximal V_0 that satisfies the condition

Linear Programming Solution to the Bellman Equation

LP Solution to Bellman Equation (Discounted Problem)

For finite \mathcal{X} , the solution $V^*(\mathbf{x})$ to the linear program with $w(\mathbf{x}) > 0$:

$$\max_{V} \sum_{\mathbf{x} \in \mathcal{X}} w(\mathbf{x}) V(\mathbf{x})$$

s.t.
$$V(\mathbf{x}) \leq \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V(\mathbf{x}')\right), \quad \forall \mathbf{u} \in \mathcal{U}, \forall \mathbf{x} \in \mathcal{X}$$

also solves the Bellman Equation to yield the optimal value function of an infinite-horizon finite-state discounted stochastic optimal control problem.

An equivalent result holds for the First-Exit Problem

LP Solution to Bellman Equation (Proof)

Let J^* be the solution to the linear program so that:

$$J^*(\mathbf{x}) \leq \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} \rho_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) J^*(\mathbf{x}')\right), \qquad \forall \mathbf{u} \in \mathcal{U}, \forall \mathbf{x} \in \mathcal{X}$$

- ▶ Since J^* is feasible, it satisfies $J^*(\mathbf{x}) \leq V^*(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}$
- ▶ By contradiction, suppose that $J^* \neq V^*$
- ▶ Then, there exists a state $\mathbf{y} \in \mathcal{X}$ such that:

$$J^*(\mathbf{y}) < V^*(\mathbf{y}) \quad \Rightarrow \quad \sum_{\mathbf{x} \in \mathcal{X}} w(\mathbf{x}) J^*(\mathbf{x}) < \sum_{\mathbf{x} \in \mathcal{X}} w(\mathbf{x}) V^*(\mathbf{x})$$

for any positive $w(\mathbf{x})$ but since V^* solves the Bellman Equation:

$$V^*(\mathbf{x}) \leq \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V^*(\mathbf{x}')\right), \quad \forall \mathbf{u} \in \mathcal{U}, \forall \mathbf{x} \in \mathcal{X},$$

 V^* is feasible and has higher value than J^* , which is a contradiction.

Dual Linear Program

Dual linear program:

$$\begin{split} & \underset{\lambda \geq 0}{\min} & \sum_{\mathbf{x} \in \mathcal{X}} \sum_{\mathbf{u} \in \mathcal{U}} \ell(\mathbf{x}, \mathbf{u}) \lambda(\mathbf{x}, \mathbf{u}) \\ & \text{s.t.} & \sum_{\mathbf{u}' \in \mathcal{U}} \lambda(\mathbf{x}', \mathbf{u}') = w(\mathbf{x}) + \gamma \sum_{\mathbf{x} \in \mathcal{X}} \sum_{\mathbf{u} \in \mathcal{U}} \lambda(\mathbf{x}, \mathbf{u}) p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}), \qquad \forall \mathbf{x}' \in \mathcal{X} \end{split}$$

If $\sum_{\mathbf{x} \in \mathcal{X}} w(\mathbf{x}) = 1$, the constraint ensures that $\lambda(\mathbf{x}, \mathbf{u})$ is a probability measure on $\mathcal{X} \times \mathcal{U}$ induced by an optimal policy π :

$$\lambda(\mathbf{x}, \mathbf{u}) = \sum_{\mathbf{x}_0 \in \mathcal{X}} w(\mathbf{x}_0) \sum_{t=0}^{\infty} \gamma^t \mathbb{P}^{\pi}(\mathbf{x}_t = \mathbf{x}, \mathbf{u}_t = \mathbf{u} | \mathbf{x}_0)$$

Optimal policy:

$$\pi^*(\mathbf{x}) \in \arg\min_{\mathbf{u} \in \mathcal{U}} \lambda(\mathbf{x}, \mathbf{u})$$