ECE276B: Planning & Learning in Robotics
Lecture 11: Model-Free Prediction

Nikolay Atanasov

natanasov@ucsd.edu

UC San Diego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

mailto:natanasov@ucsd.edu

Outline

Model-Free Policy Evaluation

From Optimal Control To Reinforcement Learning

> Stochastic Optimal Control: MDP with known motion model ps(x’ | x, u)
and cost function £(x, u)
» Model-Based Prediction: compute value function V™ of given policy 7
> Policy Evaluation Theorem

> Model-Based Control: optimize value function V™ to get improved policy 7’
> Policy Improvement Theorem

> Reinforcement Learning: MDP with unknown motion model ps(x’ | x, u)
and cost function £(x,u) but access to samples {(x;,u;,x], {;)}, of system
transitions and incurred costs

» Model-Free Prediction: estimate value function V™ of given policy 7:

»> Monte-Carlo (MC) Prediction
» Temporal-Difference (TD) Prediction

» Model-Free Control: optimize value function V™ to get improved policy 7'

On-policy MC Control: e-greedy

On-policy TD Control: SARSA

Off-policy MC Control: Importance Sampling
Off-policy TD Control: Q-Learning

vVVvyYvYYy

Bellman Operators

» Hamiltonian:
H[X, u, V] = E(Xv u) + VEX’NPf(-\X’u) [\/(X/)]

» Operators for policy value functions:
»> Policy Evaluation Operator:

Br[V](x) = £(x, (X)) + YEx mpp (-5, 7(x) [V(x')] = H[x, 7(x), V()]
»> Policy Q-Evaluation Operator:
BW[Q](Xv u) = E(X7 u) + ’YEx’pr(»\x,u) [Q(x/ﬂr(x/))] = H[X7 u, Q(vﬂ-())]

» Operators for optimal value functions:
»> Value Operator:

B.[V](x) := min {0(x, 1) + VB oy () [V(X)] } = min H[x,u, V()]

» Q-Value Operator:

B[01(x.) = £(x,)+ VB | iy QXt)| = s i Q)

Model-Free Prediction

» Objective: estimate value function V™ of given policy 7

> Approach: approximate Policy Evaluation operators B.[V] and B;[Q] using
samples {(x;,u;,x},£;)}, instead of computing the expectation over x’ exactly:

»> Monte-Carlo (MC) methods:

> expected long-term cost approximated by sample average over whole system
trajectories (applies to First-Exit and Finite-Horizon settings only)

» Temporal-Difference (TD) methods:

> expected long-term cost approximated by a sample average over few system
transitions and an estimate of the expected long-term cost at the reached state
(bootstrapping)

» Sampling: value estimates V7 (x) » Bootstrapping: value estimates
rely on samples {(x;, uj,x},¢;)}: V™ (x) rely on other value
estimates V™ (x’):
» DP bootstraps
» MC does not bootstrap
» TD bootstraps

» DP does not sample
> MC samples
> TD samples

Outline

Monte Carlo Policy Evaluation

Monte-Carlo Policy Evaluation
» Assumption: MC policy evaluation applies to the First-Exit problem

> Episode: a sequence p, of states and controls from initial state x, at initial
time 7, following the stochastic system transitions under policy 7:

Pr =Xy Ury Xrg 1, Urg 1,0, X721, UT 1, XT ~ 70

> Long-Term Cost of episode p,:

T-1
Lo(pr) ==~ Ta(xr) + Z YT (%t ur)
t=71
» Goal: approximate V™(x) from several episodes p(Tk) ~m k=1,...,K

» MC Policy Evaluation: uses the empirical mean of the long-term costs of

the episodes p(Tk) to approximate the value of 7:

K
w 1
14 (X) =]EPN‘,T[LT(p) | Xy = x] ~ ? Z LT(pS_k))
k=1

Monte-Carlo Policy Evaluation

» Goal: approximate VV™(x) from episodes p(¥) ~ 7

» First-Visit MC Policy Evaluation:

> for each state x and episode p(k), find the first time step t that state x is
visited in p(k) and increment:

> the number of visits to x: N(x) + N(x)+1
> the long-term cost starting from x: C(x) + C(x) + L(p(*))
C(x)

> Approximate the value function of m: V™ (x) = NG

» Every-Visit MC Policy Evaluation: same approach but the long-term costs
are accumulated following every time step t that state x is visited in p(¥)

Monte-Carlo Policy Evaluation

Algorithm First-Visit MC Policy Evaluation

1: Initialize 7(x)
2: C(x) < 0 for all x, N(x) < 0 for all x

3: loop

4: Generate p = xg, Ug, X1, U1, ..., X7T_1,Ur_1,XT from 7
5 for x € p do

6: L < return following first appearance of x in p

7: N(X)(*N(X)Jrl

8 C(x) < C(x)+ L

9: return V7 (x) + 52’3

> Every-Visit MC adds to C(x) not a single return L but the returns {L}
following all appearances of x in p

Running Sample Average
» Consider a sequence xi, X, ..., of samples from a random variable

> Sample average:
k41

1
Hk+1 = k—i—ljz_;xj

» Running average:

. 1 K 1
—_— k
k1 = k—i—lE Xj = K1 Xk+1+J§1XJ k+1(Xk+1+ fik)
TR)
= —— X —
Mk K1 k+1 — Hk

> Weighted running average: update i using a step-size cki1 7 717

Pit1 = Pk + 01 (X1 — i)

» Robbins-Monro step size: convergence to the true mean is guaranteed
almost surely under the following conditions:

o o0
independence from _ 2
(initial conditions) E Qp = o0 E o) < 00 (ensures convergence)
k=1

10

First-Visit MC Policy Evaluation (Running Average)

Algorithm First-Visit MC Policy Evaluation (Running Average)

1: Initialize 7(x)
2: V™(x) « 0 for all x

3: loop

4: Generate p = Xp,Up, X1,U1, ..., X7_1,UT_1,XT from 7

5 for x € p do

6: L < return following first appearance of x in p

7 V7™ (x) + V™(x) + a(L — V(x)) > usual choice: o :=

1

N(x)+1

11

Outline

Temporal Difference Policy Evaluation

12

Temporal-Difference Policy Evaluation

> Bootstrapping: the estimate of V™ (x) at state x relies on the estimate
V7 (x') at another state

» TD combines the sampling of MC with the bootstrapping of DP:
V709 = Bpmalle(p) | %, =

q(xr +ny £(x¢,uy) |xT—x]

= Epwrr |:€(X7'7 U.,-) + ’Y(’YT_T_liJ(XT) + Z ’Yt_T_lé(Xt’ ut)) | Xr = X:|

t=7+1

=Eper |7

TD(0)
Epmr [0(xr ur) + 7V (X741) | %7 = x]
bootstrap
TD(n) i
n
Epr § :’Y Uxe,ue) + 7"V (Xpppin) [X = X]
bootstrap

KZ

T+n
T k n T k
Z TU(x;)7 E»)) + vy (XS'—ZH+1)‘|

t=1

13

Temporal-Difference Policy Evaluation

> Goal: approximate V™(x) from episodes p ~ 7

» MC Policy Evaluation: updates the value estimate V™ (x;) towards the
long-term cost L:(p;):

VT (xe) = V7T (xe) + afLe(pr) = VT (xe))

> TD(0) Policy Evaluation: updates the value estimate V7 (x,) towards an
estimated long-term cost ¢(x;,u;) + V™ (X¢11):

VW(Xt) <— Vﬂ(Xt) + CY(E(Xt7 ut) + W/VW(XFFI) — \/W(Xt))
> TD(n) Policy Evaluation: updates the value estimate V™ (x;) towards an
t+n

estimated long-term cost Z VT (X, ur) + AL VT (X¢ynt1):

T=t

t+n
V7 (xe) ¢ V7 (x) +a (Z YT i 7)Y (X) - V’f(xt)>

T=t

14

TD(n) Policy Evaluation

1D (1-step) 2-step

3-step

n-step

Monte Carlo

15

MC and TD Errors

> TD error: measures the difference between the estimated value V™(x;) and
the improved estimate £(x;, u;) + V™ (X41):

5t = E(Xt, ut) + ’YVﬂ(Xt+1) — Vﬂ-(xt)
» MC error: a sum of TD errors:

Le(pe) = VT (xe) = €(xe;ue) + yLera(perr) — V7 (xe)
=0t + 7 (Lesa(pes1) — V7 (Xe41))

=6t + Y0er1 +7° (Lev2(pei2) — VT (Xe42))
T-t-1

= Z 7n6t+n
n=0

» MC and TD converge: V™ (x) approaches the true value function of 7 as
the number of sampled episodes — co as long as ay is a Robbins-Monro
sequence and X is finite (needed for TD convergence)

16

Monte-Carlo Backup

V7(xe) <= V7 (xe) + a(Le(pe) = VT (xt))

Xt ()

17

Temporal-Difference Backup

VT (xe) = VT (xe) + al(xe, ue) + 7V (xer1) = VT (xe))

X
()

O O O o 0 O
\

O 0
QOHEQ O Lgé\; O

’ \ / I 1
’ I
' / . / \ \

18

Dynamic-Programming Backup

V7 (x¢) < £(x¢,ur) + VEx 1 ~opr (- [xe) [V (%e41)]

At

O O O O
QOMQ O H Q ﬁq}:\a O J Q
’ JAEA \
/ \\ : /’ \\ : /, \\ : ’ Ay : !! \ f’ N

19

Comparison of Policy Evaluation Methods
Exhaustive

search

Dynamic
programming

full l
backups !
sample y T | Monte Carlo
backups emporal-
P difference
learning

shallow booIstrapping, A deep
backups backups

O—e see

20

MC vs TD Policy Evaluation

> MC:
>

Must wait until the end of an episode before updating V™ (x)

> Value estimates are zero bias but high variance (long-term cost depends on

many random transitions)

Not sensitive to initialization

> Has good convergence properties even with function approximation (infinite

> TD:

state space)

Can update V7 (x) without complete episodes and hence can learn online after
each transition

Value estimates are biased but low variance (the TD(0) target depends on
one random transition but has bias from bootstrapping)

» More sensitive to initialization than MC

> May not converge with function approximation (infinite state space)

21

Bias-Variance Trade-off

Low Variance High Variance

2

= 3

2

3

“, .

2

=

&

T

22

Batch MC and TD Policy Evaluation

> Batch setting: given set of episodes {p(K)} K |

» Accumulate value function updates according to MC or TD for k =1,..., K
» Update the value estimates only after a complete pass through all data
» Repeat until the value function estimate converges

» Batch MC: converges to V™ that best fits the observed costs:

K Tk

V7 (x) € arg min ZZ (- V)2]l{xgk) = x}

k=1 t=0

> Batch TD(0): converges to V™ of the maximum likelihood MDP model
that best fits the observed data

K T

pr(x' | x,u) = =Xx,u —ux+1fx}
k 1t=1
K Tk

(x,u) = Zzﬂ{xt = x,ul®) = u}¢(x¥, ul?)
k 1t=1

23

Averaged-Return TD
» Define the n-step return:

Li")(p) = l(x¢, up) + YO(Xeg1,Upr1) + oo+ YR, Uprn) + 7"“ V™ (Xt4nt1) TD(n)
LO(p) = U(xesue) + 4V (xe11) 7D(0)
LO(p) = €xe, ue) + Y0(Xes1, 1) + 72V (Xer2) TD(1)

L (p) = 0(xe) + YU(xes1,0e41) + 47T (xr_,uro1) + 97 fa(xr) MC

> TD(n):
VT (xe) < V7 (x.) + (LY (p) — V7 (xe))

> Averaged-Return TD: combines bootstrapping from several states:

V(xe) © V() + o (iL‘P(p) 210 - vw(xt))

» Can we combine the information from all time-steps?

24

Forward-View TD(\)

P>)\-return: combines all n-step returns: TD(A), A-return

T—t—2
(1-)) AL (p) ATt L() E
Z)+ (n) &
> Forward-View TD()\): (1= %
VT (xe) ¢ V™ (xe) + (L (p) — VT (x¢)) (o ?
> Like MC, the L return can only be T i
computed from complete episodes - e
- 1::?2@;?;:; total area = 1
} % decay by h
Welghi 1-a é weight given to
// actual, final retum

25

Backward-View TD()\)

» Forward-View TD(\) is equivalent to TD(0) for A = 0 and to every-visit MC
for A=1

> Backward-View TD()) allows online updates from incomplete episodes

» Credit assignment problem: did the bell or the light cause the shock?

N
l?’ g l;) g ’A
> Frequency heuristic: assigns credit to the most frequent states

> Recency heuristic: assigns credit to the most recent states
> Eligibility trace: combines both heuristics

er(x) = yAer—1(x) + 1{x = x¢}

> Backward-View TD()\): updates in proportion to the TD error §; and the
eligibility trace e;(x):

V7T(x;) V7™ (x¢) + a (U(xe,up) + 7V (xe11) — V(X)) er(x¢)

26

	Model-Free Policy Evaluation
	Monte Carlo Policy Evaluation
	Temporal Difference Policy Evaluation

