ECE276B: Planning & Learning in Robotics Lecture 11: Model-Free Prediction

Nikolay Atanasov

natanasov@ucsd.edu

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Outline

Model-Free Policy Evaluation

Monte Carlo Policy Evaluation

Temporal Difference Policy Evaluation

From Optimal Control To Reinforcement Learning

- Stochastic Optimal Control: MDP with known motion model p_f(x' | x, u) and cost function l(x, u)
 - Model-Based Prediction: compute value function V^{π} of given policy π
 - Policy Evaluation Theorem
 - **Model-Based Control**: optimize value function V^{π} to get improved policy π'
 - Policy Improvement Theorem
- Reinforcement Learning: MDP with <u>unknown</u> motion model p_f(x' | x, u) and cost function l(x, u) but access to samples {(x_i, u_i, x'_i, l_i)}_i of system transitions and incurred costs
 - Model-Free Prediction: estimate value function V^{π} of given policy π :
 - Monte-Carlo (MC) Prediction
 - Temporal-Difference (TD) Prediction
 - Model-Free Control: optimize value function V^{π} to get improved policy π' :
 - On-policy MC Control: e-greedy
 - On-policy TD Control: SARSA
 - Off-policy MC Control: Importance Sampling
 - Off-policy TD Control: Q-Learning

Bellman Operators

Hamiltonian:

$$H[\mathbf{x}, \mathbf{u}, V] = \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim \rho_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V(\mathbf{x}') \right]$$

Operators for policy value functions:

Policy Evaluation Operator:

 $\mathcal{B}_{\pi}[V](\mathbf{x}) := \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \pi(\mathbf{x}))} \left[V(\mathbf{x}') \right] = H[\mathbf{x}, \pi(\mathbf{x}), V(\cdot)]$

Policy Q-Evaluation Operator:

$$\mathcal{B}_{\pi}[Q](\mathbf{x},\mathbf{u}) := \ell(\mathbf{x},\mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot | \mathbf{x},\mathbf{u})} \left[Q(\mathbf{x}',\pi(\mathbf{x}')) \right] = H[\mathbf{x},\mathbf{u},Q(\cdot,\pi(\cdot))]$$

Operators for optimal value functions:

Value Operator:

$$\mathcal{B}_{*}[V](\mathbf{x}) := \min_{\mathbf{u} \in \mathcal{U}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot | \mathbf{x}, \mathbf{u})} \left[V(\mathbf{x}') \right] \right\} = \min_{\mathbf{u} \in \mathcal{U}} H[\mathbf{x}, \mathbf{u}, V(\cdot)]$$

Q-Value Operator:

$$\mathcal{B}_{*}[Q](\mathbf{x},\mathbf{u}) := \ell(\mathbf{x},\mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot | \mathbf{x},\mathbf{u})} \left[\min_{\mathbf{u}' \in \mathcal{U}} Q(\mathbf{x}',\mathbf{u}') \right] = H[\mathbf{x},\mathbf{u},\min_{\mathbf{u}' \in \mathcal{U}} Q(\cdot,\mathbf{u}')]$$

Model-Free Prediction

- Objective: estimate value function V^{π} of given policy π
- Approach: approximate Policy Evaluation operators B_π[V] and B_π[Q] using samples {(x_i, u_i, x'_i, ℓ_i)}_i instead of computing the expectation over x' exactly:
 - Monte-Carlo (MC) methods:
 - expected long-term cost approximated by sample average over whole system trajectories (applies to First-Exit and Finite-Horizon settings only)
 - Temporal-Difference (TD) methods:
 - expected long-term cost approximated by a sample average over few system transitions and an estimate of the expected long-term cost at the reached state (bootstrapping)
- Sampling: value estimates V^π(x) rely on samples {(x_i, u_i, x'_i, ℓ_i)}_i:
 - DP does not sample
 - MC samples
 - TD samples

- Bootstrapping: value estimates
 V^π(x) rely on other value
 estimates V^π(x'):
 - DP bootstraps
 - MC does not bootstrap
 - TD bootstraps

Outline

Model-Free Policy Evaluation

Monte Carlo Policy Evaluation

Temporal Difference Policy Evaluation

Monte-Carlo Policy Evaluation

- Assumption: MC policy evaluation applies to the First-Exit problem
- Episode: a sequence ρ_τ of states and controls from initial state x_τ at initial time τ, following the stochastic system transitions under policy π:

 $\rho_{\tau} := \mathbf{x}_{\tau}, \mathbf{u}_{\tau}, \mathbf{x}_{\tau+1}, \mathbf{u}_{\tau+1}, \dots, \mathbf{x}_{T-1}, \mathbf{u}_{T-1}, \mathbf{x}_{T} \sim \pi$

Long-Term Cost of episode ρ_τ:

$$\mathcal{L}_{\tau}(\rho_{\tau}) := \gamma^{T-\tau} \mathfrak{q}(\mathbf{x}_{T}) + \sum_{t=\tau}^{T-1} \gamma^{t-\tau} \ell(\mathbf{x}_{t}, \mathbf{u}_{t})$$

- Goal: approximate $V^{\pi}(\mathbf{x})$ from several episodes $\rho_{\tau}^{(k)} \sim \pi$, $k = 1, \dots, K$
- MC Policy Evaluation: uses the empirical mean of the long-term costs of the episodes ρ^(k)_τ to approximate the value of π:

$$V^{\pi}(\mathbf{x}) = \mathbb{E}_{
ho \sim \pi}[L_{ au}(
ho) \mid \mathbf{x}_{ au} = \mathbf{x}] pprox rac{1}{K} \sum_{k=1}^{K} L_{ au}(
ho_{ au}^{(k)})$$

Monte-Carlo Policy Evaluation

• Goal: approximate $V^{\pi}(\mathbf{x})$ from episodes $\rho^{(k)} \sim \pi$

First-Visit MC Policy Evaluation:

- for each state x and episode ρ^(k), find the first time step t that state x is visited in ρ^(k) and increment:
 - the number of visits to x: $N(x) \leftarrow N(x) + 1$
 - the long-term cost starting from **x**: $C(\mathbf{x}) \leftarrow C(\mathbf{x}) + L_t(\rho^{(k)})$

• Approximate the value function of π : $V^{\pi}(\mathbf{x}) \approx \frac{C(\mathbf{x})}{N(\mathbf{x})}$

Every-Visit MC Policy Evaluation: same approach but the long-term costs are accumulated following every time step t that state x is visited in ρ^(k)

Monte-Carlo Policy Evaluation

Algorithm First-Visit MC Policy Evaluation

1: Initialize
$$\pi(\mathbf{x})$$

2: $C(\mathbf{x}) \leftarrow 0$ for all \mathbf{x} , $N(\mathbf{x}) \leftarrow 0$ for all \mathbf{x}
3: **loop**
4: Generate $\rho = \mathbf{x}_0, \mathbf{u}_0, \mathbf{x}_1, \mathbf{u}_1, \dots, \mathbf{x}_{T-1}, \mathbf{u}_{T-1}, \mathbf{x}_T$ from π
5: **for** $\mathbf{x} \in \rho$ **do**
6: $L \leftarrow$ return following first appearance of \mathbf{x} in ρ
7: $N(\mathbf{x}) \leftarrow N(\mathbf{x}) + 1$
8: $C(\mathbf{x}) \leftarrow C(\mathbf{x}) + L$
9: **return** $V^{\pi}(\mathbf{x}) \leftarrow \frac{C(\mathbf{x})}{N(\mathbf{x})}$

Every-Visit MC adds to C(x) not a single return L but the returns {L} following all appearances of x in ρ

Running Sample Average

- Consider a sequence x_1, x_2, \ldots , of samples from a random variable
- Sample average:

$$\mu_{k+1} = \frac{1}{k+1} \sum_{j=1}^{k+1} x_j$$

Running average:

$$\mu_{k+1} = \frac{1}{k+1} \sum_{j=1}^{k+1} x_j = \frac{1}{k+1} \left(x_{k+1} + \sum_{j=1}^k x_j \right) = \frac{1}{k+1} \left(x_{k+1} + k\mu_k \right)$$
$$= \mu_k + \frac{1}{k+1} \left(x_{k+1} - \mu_k \right)$$

• Weighted running average: update μ_k using a step-size $\alpha_{k+1} \neq \frac{1}{k+1}$:

$$\mu_{k+1} = \mu_k + \alpha_{k+1} (x_{k+1} - \mu_k)$$

Robbins-Monro step size: convergence to the true mean is guaranteed almost surely under the following conditions:

$$\begin{array}{ll} (\substack{ \text{independence from} \\ \text{initial conditions} }) & \sum_{k=1}^{\infty} \alpha_k = \infty & \sum_{k=1}^{\infty} \alpha_k^2 < \infty \end{array} \text{ (ensures convergence)}$$

First-Visit MC Policy Evaluation (Running Average)

Algorithm First-Visit MC Policy Evaluation (Running Average)

1: Initialize $\pi(\mathbf{x})$ 2: $V^{\pi}(\mathbf{x}) \leftarrow 0$ for all \mathbf{x} 3: **loop** 4: Generate $\rho = \mathbf{x}_0, \mathbf{u}_0, \mathbf{x}_1, \mathbf{u}_1, \dots, \mathbf{x}_{T-1}, \mathbf{u}_{T-1}, \mathbf{x}_T$ from π 5: **for** $\mathbf{x} \in \rho$ **do** 6: $L \leftarrow$ return following first appearance of \mathbf{x} in ρ 7: $V^{\pi}(\mathbf{x}) \leftarrow V^{\pi}(\mathbf{x}) + \alpha(L - V^{\pi}(\mathbf{x}))$ \triangleright usual choice: $\alpha := \frac{1}{N(\mathbf{x}) + 1}$

Outline

Model-Free Policy Evaluation

Monte Carlo Policy Evaluation

Temporal Difference Policy Evaluation

Temporal-Difference Policy Evaluation

- Bootstrapping: the estimate of V^π(x) at state x relies on the estimate V^π(x') at another state
- ► TD combines the sampling of MC with the bootstrapping of DP:

$$\begin{split} \mathcal{V}^{\pi}(\mathbf{x}) &= \mathbb{E}_{\rho \sim \pi} [L_{\tau}(\rho) \mid \mathbf{x}_{\tau} = \mathbf{x}] \\ &= \mathbb{E}_{\rho \sim \pi} \left[\gamma^{T-\tau} \mathfrak{q}(\mathbf{x}_{T}) + \sum_{t=\tau}^{T-1} \gamma^{t-\tau} \ell(\mathbf{x}_{t}, \mathbf{u}_{t}) \mid \mathbf{x}_{\tau} = \mathbf{x} \right] \\ &= \mathbb{E}_{\rho \sim \pi} \left[\ell(\mathbf{x}_{\tau}, \mathbf{u}_{\tau}) + \gamma \left(\gamma^{T-\tau-1} \mathfrak{q}(\mathbf{x}_{T}) + \sum_{t=\tau+1}^{T-1} \gamma^{t-\tau-1} \ell(\mathbf{x}_{t}, \mathbf{u}_{t}) \right) \mid \mathbf{x}_{\tau} = \mathbf{x} \right] \\ &\frac{TD(0)}{\text{bootstrap}} \mathbb{E}_{\rho \sim \pi} \left[\ell(\mathbf{x}_{\tau}, \mathbf{u}_{\tau}) + \gamma \mathcal{V}^{\pi}(\mathbf{x}_{\tau+1}) \mid \mathbf{x}_{\tau} = \mathbf{x} \right] \\ &\frac{TD(n)}{\text{bootstrap}} \mathbb{E}_{\rho \sim \pi} \left[\sum_{t=\tau}^{\tau+n} \gamma^{t-\tau} \ell(\mathbf{x}_{t}, \mathbf{u}_{t}) + \gamma^{n+1} \mathcal{V}^{\pi}(\mathbf{x}_{\tau+n+1}) \mid \mathbf{x}_{\tau} = \mathbf{x} \right] \\ &\frac{MC}{\approx} \quad \frac{1}{K} \sum_{k=1}^{K} \left[\sum_{t=\tau}^{\tau+n} \gamma^{t-\tau} \ell(\mathbf{x}_{t}^{(k)}, \mathbf{u}_{t}^{(k)}) + \gamma^{n+1} \mathcal{V}^{\pi}(\mathbf{x}_{\tau+n+1}^{(k)}) \right] \end{split}$$

Temporal-Difference Policy Evaluation

- Goal: approximate $V^{\pi}(\mathbf{x})$ from episodes $\rho \sim \pi$
- MC Policy Evaluation: updates the value estimate V^π(x_t) towards the long-term cost L_t(ρ_t):

$$V^{\pi}(\mathbf{x}_t) \leftarrow V^{\pi}(\mathbf{x}_t) + \alpha(\underline{L_t}(\rho_t) - V^{\pi}(\mathbf{x}_t))$$

TD(0) Policy Evaluation: updates the value estimate V^π(x_t) towards an estimated long-term cost ℓ(x_t, u_t) + γV^π(x_{t+1}):

$$V^{\pi}(\mathbf{x}_t) \leftarrow V^{\pi}(\mathbf{x}_t) + \alpha(\ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma V^{\pi}(\mathbf{x}_{t+1}) - V^{\pi}(\mathbf{x}_t))$$

► **TD(n) Policy Evaluation**: updates the value estimate $V^{\pi}(\mathbf{x}_t)$ towards an *estimated* long-term cost $\sum_{\tau=t}^{t+n} \gamma^{\tau-t} \ell(\mathbf{x}_{\tau}, \mathbf{u}_{\tau}) + \gamma^{n+1} V^{\pi}(\mathbf{x}_{t+n+1})$:

$$V^{\pi}(\mathbf{x}_{t}) \leftarrow V^{\pi}(\mathbf{x}_{t}) + \alpha \left(\sum_{\tau=t}^{t+n} \gamma^{\tau-t} \ell(\mathbf{x}_{\tau}, \mathbf{u}_{\tau}) + \gamma^{n+1} V^{\pi}(\mathbf{x}_{t+n+1}) - V^{\pi}(\mathbf{x}_{t}) \right)$$

TD(n) Policy Evaluation

MC and TD Errors

TD error: measures the difference between the estimated value V^π(x_t) and the improved estimate ℓ(x_t, u_t) + γV^π(x_{t+1}):

$$\delta_t := \ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma V^{\pi}(\mathbf{x}_{t+1}) - V^{\pi}(\mathbf{x}_t)$$

MC error: a sum of TD errors:

$$L_{t}(\rho_{t}) - V^{\pi}(\mathbf{x}_{t}) = \ell(\mathbf{x}_{t}, \mathbf{u}_{t}) + \gamma L_{t+1}(\rho_{t+1}) - V^{\pi}(\mathbf{x}_{t})$$

= $\delta_{t} + \gamma (L_{t+1}(\rho_{t+1}) - V^{\pi}(\mathbf{x}_{t+1}))$
= $\delta_{t} + \gamma \delta_{t+1} + \gamma^{2} (L_{t+2}(\rho_{t+2}) - V^{\pi}(\mathbf{x}_{t+2}))$
= $\sum_{n=0}^{T-t-1} \gamma^{n} \delta_{t+n}$

MC and TD converge: V^π(x) approaches the true value function of π as the number of sampled episodes → ∞ as long as α_k is a Robbins-Monro sequence and X is finite (needed for TD convergence) Monte-Carlo Backup

 $V^{\pi}(\mathbf{x}_t) \leftarrow V^{\pi}(\mathbf{x}_t) + \alpha(\underline{L_t(\rho_t)} - V^{\pi}(\mathbf{x}_t))$

Temporal-Difference Backup

т

Í,X

Т

т

Т

Dynamic-Programming Backup

Comparison of Policy Evaluation Methods

MC vs TD Policy Evaluation

MC:

- Must wait until the end of an episode before updating $V^{\pi}(\mathbf{x})$
- Value estimates are zero bias but high variance (long-term cost depends on many random transitions)
- Not sensitive to initialization
- Has good convergence properties even with function approximation (infinite state space)
- ► TD:
 - Can update V^π(x) without complete episodes and hence can learn online after each transition
 - Value estimates are biased but low variance (the TD(0) target depends on one random transition but has bias from bootstrapping)
 - More sensitive to initialization than MC
 - May not converge with function approximation (infinite state space)

Bias-Variance Trade-off

Batch MC and TD Policy Evaluation

• Batch setting: given set of episodes $\{\rho^{(k)}\}_{k=1}^{K}$

- Accumulate value function updates according to MC or TD for k = 1, ..., K
- Update the value estimates only after a complete pass through all data
- Repeat until the value function estimate converges

Batch MC: converges to V^{π} that best fits the observed costs:

$$V^{\pi}(\mathbf{x}) \in \operatorname*{arg\,min}_{V} \sum_{k=1}^{K} \sum_{t=0}^{T_{k}} \left(L_{t}(\rho^{(k)}) - V \right)^{2} \mathbb{1}\{\mathbf{x}_{t}^{(k)} = \mathbf{x}\}$$

Batch TD(0): converges to V^π of the maximum likelihood MDP model that best fits the observed data

$$\hat{p}_{f}(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) = \frac{1}{N(\mathbf{x}, \mathbf{u})} \sum_{k=1}^{K} \sum_{t=1}^{T_{k}} \mathbb{1}\{\mathbf{x}_{t}^{(k)} = \mathbf{x}, \mathbf{u}_{t}^{(k)} = \mathbf{u}, \mathbf{x}_{t+1}^{(k)} = \mathbf{x}'\}$$
$$\hat{\ell}(\mathbf{x}, \mathbf{u}) = \frac{1}{N(\mathbf{x}, \mathbf{u})} \sum_{k=1}^{K} \sum_{t=1}^{T_{k}} \mathbb{1}\{\mathbf{x}_{t}^{(k)} = \mathbf{x}, \mathbf{u}_{t}^{(k)} = \mathbf{u}\}\ell(\mathbf{x}_{t}^{(k)}, \mathbf{u}_{t}^{(k)})$$

Averaged-Return TD

Define the *n*-step return:

$$\begin{aligned} L_t^{(n)}(\rho) &:= \ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma \ell(\mathbf{x}_{t+1}, \mathbf{u}_{t+1}) + \ldots + \gamma^n \ell(\mathbf{x}_{t+n}, \mathbf{u}_{t+n}) + \gamma^{n+1} V^{\pi}(\mathbf{x}_{t+n+1}) & TD(n) \\ L_t^{(0)}(\rho) &= \ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma V^{\pi}(\mathbf{x}_{t+1}) & TD(0) \end{aligned}$$

$$L_t^{(1)}(\rho) = \ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma \ell(\mathbf{x}_{t+1}, \mathbf{u}_{t+1}) + \gamma^2 V^{\pi}(\mathbf{x}_{t+2})$$

$$TD(1)$$

$$\mathcal{L}_t^{(\infty)}(\rho) = \ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma \ell(\mathbf{x}_{t+1}, \mathbf{u}_{t+1}) + \ldots + \gamma^{T-t-1} \ell(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) + \gamma^{T-t} \mathfrak{q}(\mathbf{x}_T) \quad MC$$

► TD(n):

$$V^{\pi}(\mathbf{x}_t) \leftarrow V^{\pi}(\mathbf{x}_t) + \alpha(\mathcal{L}_t^{(n)}(\rho) - V^{\pi}(\mathbf{x}_t))$$

Averaged-Return TD: combines bootstrapping from several states:

$$V^{\pi}(\mathbf{x}_t) \leftarrow V^{\pi}(\mathbf{x}_t) + \alpha \left(\frac{1}{2}L_t^{(2)}(\rho) + \frac{1}{2}L_t^{(4)}(\rho) - V^{\pi}(\mathbf{x}_t)\right)$$

Can we combine the information from all time-steps?

Forward-View $TD(\lambda)$

λ-return: combines all *n*-step returns:

$$L_t^{\lambda}(\rho) = (1-\lambda) \sum_{n=0}^{T-t-2} \lambda^n L_t^{(n)}(\rho) + \lambda^{T-t-1} L_t^{(\infty)}(\rho) \stackrel{\bullet}{\underset{\scriptstyle 1-\lambda}{\bigcirc}}$$

Forward-View TD(λ):

$$V^{\pi}(\mathbf{x}_t) \leftarrow V^{\pi}(\mathbf{x}_t) + \alpha \left(L_t^{\lambda}(\rho) - V^{\pi}(\mathbf{x}_t) \right)$$

 Like MC, the L^λ_t return can only be computed from complete episodes

Backward-View $TD(\lambda)$

- Forward-View TD(λ) is equivalent to TD(0) for λ = 0 and to every-visit MC for λ = 1
- **b** Backward-View $TD(\lambda)$ allows online updates from incomplete episodes
- Credit assignment problem: did the bell or the light cause the shock?

- Frequency heuristic: assigns credit to the most frequent states
- Recency heuristic: assigns credit to the most recent states
- Eligibility trace: combines both heuristics

$$e_t(\mathbf{x}) = \gamma \lambda e_{t-1}(\mathbf{x}) + \mathbb{1}\{\mathbf{x} = \mathbf{x}_t\}$$

Backward-View TD(λ): updates in proportion to the TD error δ_t and the eligibility trace e_t(x):

$$V^{\pi}(\mathbf{x}_t) \leftarrow V^{\pi}(\mathbf{x}_t) + \alpha \left(\ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma V^{\pi}(\mathbf{x}_{t+1}) - V^{\pi}(\mathbf{x}_t) \right) e_t(\mathbf{x}_t)$$