ECE276B: Planning & Learning in Robotics Lecture 12: Model-Free Control

Nikolay Atanasov

natanasov@ucsd.edu

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Outline

Model-Free Policy Iteration

Monte Carlo Policy Iteration

Temporal Difference Policy Iteration

Batch Q-Value Iteration

Model-Free Generalized Policy Iteration

Model-based case: Our main tool for stochastic infinite-horizon problems over MDPs with known models is Generalized Policy Iteration (GPI):

• **Policy Evaluation**: Given
$$\pi$$
, compute V^{π} :

$$V^{\pi}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot \mid \mathbf{x}, \pi(\mathbf{x}))} \left[V^{\pi}(\mathbf{x}')
ight], \quad \forall \mathbf{x} \in \mathcal{X}$$

Policy Improvement: Given V^{π} obtain a new policy π' :

$$\pi'(\mathbf{x}) \in \underset{\mathbf{u} \in \mathcal{U}(\mathbf{x})}{\operatorname{arg\,min}} \underbrace{\left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot | \mathbf{x}, \mathbf{u})} \left[V^{\pi}(\mathbf{x}') \right] \right\}}_{Q^{\pi}(\mathbf{x}, \mathbf{u})}, \quad \forall \mathbf{x} \in \mathcal{X}$$

Model-free case: Is it still possible to implement the GPI algorithm?

- Policy Evaluation: Given π, MC or TD learning from Lecture 11 can be used to estimate V^π or Q^π
- ▶ Policy Improvement: Computing π' based on V^{π} requires access to $\ell(\mathbf{x}, \mathbf{u})$, $p_f(\mathbf{x}', \mathbf{x}, \mathbf{u})$ but based on Q^{π} can be done without knowing $\ell(\mathbf{x}, \mathbf{u})$, $p_f(\mathbf{x}', \mathbf{x}, \mathbf{u})$:

$$\pi'(\mathsf{x}) \in \argmin_{\mathsf{u} \in \mathcal{U}(\mathsf{x})} Q^{\pi}(\mathsf{x},\mathsf{u})$$

Policy Evaluation (Recap)

- Given π, iterate B_π to compute V^π or Q^π via Dynamic Programming (DP), Temporal Difference (TD), or Monte Carlo (MC)
- DP needs the models l(x_t, u_t), p_f(x_{t+1}|x_t, u_t) while MC and TD are model-free and use samples x_t, u_t, l_t, x_{t+1} instead

V^π Policy Evaluation:

$$DP : \mathcal{B}_{\pi}[V](\mathbf{x}_{t}) = \ell(\mathbf{x}_{t}, \pi(\mathbf{x}_{t})) + \gamma \mathbb{E}_{\mathbf{x}_{t+1} \sim p_{f}(\cdot | \mathbf{x}_{t}, \pi(\mathbf{x}_{t}))} [V(\mathbf{x}_{t+1})]$$

$$TD : \mathcal{B}_{\pi}[V](\mathbf{x}_{t}) \approx V(\mathbf{x}_{t}) + \alpha \left[\ell(\mathbf{x}_{t}, \mathbf{u}_{t}) + \gamma V(\mathbf{x}_{t+1}) - V(\mathbf{x}_{t})\right]$$

$$MC : \mathcal{B}_{\pi}[V](\mathbf{x}_{t}) \approx V(\mathbf{x}_{t}) + \alpha \left[\sum_{k=0}^{T-t-1} \gamma^{k} \ell(\mathbf{x}_{t+k}, \mathbf{u}_{t+k}) + \gamma^{T-t} \mathfrak{q}(\mathbf{x}_{T}) - V(\mathbf{x}_{t})\right]$$

Q^π Policy Evaluation:

 $DP: \mathcal{B}_{\pi}[Q](\mathbf{x}_{t}, \mathbf{u}_{t}) = \ell(\mathbf{x}_{t}, \mathbf{u}_{t}) + \gamma \mathbb{E}_{\mathbf{x}_{t+1} \sim p_{f}(\cdot | \mathbf{x}_{t}, \mathbf{u}_{t})} [Q(\mathbf{x}_{t+1}, \pi(\mathbf{x}_{t+1}))]$ $TD: \mathcal{B}_{\pi}[Q](\mathbf{x}_{t}, \mathbf{u}_{t}) \approx Q(\mathbf{x}_{t}, \mathbf{u}_{t}) + \alpha [\ell(\mathbf{x}_{t}, \mathbf{u}_{t}) + \gamma Q(\mathbf{x}_{t+1}, \mathbf{u}_{t+1}) - Q(\mathbf{x}_{t}, \mathbf{u}_{t})]$ $MC: \mathcal{B}_{\pi}[Q](\mathbf{x}_{t}, \mathbf{u}_{t}) \approx Q(\mathbf{x}_{t}, \mathbf{u}_{t}) + \alpha \left[\sum_{k=0}^{T-t-1} \gamma^{k} \ell(\mathbf{x}_{t+k}, \mathbf{u}_{t+k}) + \gamma^{T-t} \mathfrak{q}(\mathbf{x}_{T}) - Q(\mathbf{x}_{t}, \mathbf{u}_{t})\right]$

Model-Free Policy Improvement

- If Q^π, instead of V^π, is estimated via MC or TD, then the policy improvement step can be implemented model-free, i.e., can compute min_u Q^π(x, u) without knowing the motion model p_f or the stage cost l
- Since Q^π(x, u) computed by MC or TD is an approximation to the true Q function, we might not get an improved policy with respect to the true Q function:
 - picking the "best" control according to the current estimate of Q^π might not be the actual best control
 - if a deterministic policy π(x) is used for Evaluation and Improvement, we will observe returns for only one of the possible controls at each state and might not visit many states; estimating Q^π will not be possible at those never-visited states and controls

Example

- There are two doors in front of you
- You open the left door and get reward 0 l(left) = 0
- You open the right door and get reward +1 ℓ(right) = −1
- You open the right door and get reward +3 l(right) = -3
- You open the right door and get reward +2 ℓ(right) = −2
- Which door is the best long-term choice?

"Behind one door is tenure - behind the other is flipping burgers at McDonald's."

Model-Free Control

- Two ideas to ensure that we do not commit to wrong controls due to approximation error in Q^π too early and continue exploring the state and control space:
 - 1. Exploring Starts: in each episode $\rho^{(k)} \sim \pi$, choose initial state-control pairs randomly with non-zero probability among all possible pairs in $\mathcal{X} \times \mathcal{U}$
 - ε-Soft Policy: a stochastic policy π(u|x) under which every control has a non-zero probability of being chosen and hence every reachable state will have non-zero probability of being encountered
- **Deterministic Stationary Policy**: function $\pi : \mathcal{X} \to \mathcal{U}$
- Stochastic Stationary Policy: function π : X → P(U), where P(U) is the set of probability density functions on U:

$$\pi(\mathbf{u}|\mathbf{x}) \geq 0 \qquad \qquad \int_{\mathcal{U}} \pi(\mathbf{u}|\mathbf{x}) d\mathbf{u} = 1$$

Outline

Model-Free Policy Iteration

Monte Carlo Policy Iteration

Temporal Difference Policy Iteration

Batch Q-Value Iteration

First-Visit MC Policy Iteration with Exploring Starts

Algorithm MC Policy Iteration with Exploring Starts

1: Initialize:
$$Q(\mathbf{x}, \mathbf{u}), \pi(\mathbf{x})$$
 for all $\mathbf{x} \in \mathcal{X}$ and $\mathbf{u} \in \mathcal{U}$

2: loop

4:

3: Choose
$$(\mathbf{x}_0, \mathbf{u}_0) \in \mathcal{X} \times \mathcal{U}$$
 randomly

Generate an episode $\rho = \mathbf{x}_0, \mathbf{u}_0, \mathbf{x}_1, \mathbf{u}_1, \dots, \mathbf{x}_{T-1}, \mathbf{u}_{t-1}, \mathbf{x}_T$ from π

- 5: for each \mathbf{x}, \mathbf{u} in ρ do
- 6: $L \leftarrow$ return following the first occurrence of \mathbf{x}, \mathbf{u}

7:
$$Q(\mathbf{x}, \mathbf{u}) \leftarrow Q(\mathbf{x}, \mathbf{u}) + \alpha \left(L - Q(\mathbf{x}, \mathbf{u})\right)$$

8: for each
$$\mathbf{x}$$
 in ρ do

9:
$$\pi(\mathbf{x}) \leftarrow \argmin_{\mathbf{u}} Q(\mathbf{x}, \mathbf{u})$$

▷ exploring starts

ϵ-Greedy Exploration

- An alternative to exploring starts
- To ensure exploration it must be possible to encounter all control U controls with non-zero probability
- Assume $|\mathcal{U}| < \infty$
- ε-Soft Policy: stochastic policy that picks each u with at least *ϵ*-Soft Policy:

$$\pi(\mathbf{u}|\mathbf{x}) = \mathbb{P}(\mathbf{u}_t = \mathbf{u} \mid \mathbf{x}_t = \mathbf{x}) \geq rac{\epsilon}{|\mathcal{U}|} \qquad orall \mathbf{x} \in \mathcal{X}, \mathbf{u} \in \mathcal{U}$$

ε-Greedy Policy: an ε-soft policy that picks the best control according to Q(x, u) in the policy improvement step but ensures that all other controls are selected with at least ^ε/_{|U|} probability:

$$\pi(\mathbf{u} \mid \mathbf{x}) = \mathbb{P}(\mathbf{u}_t = \mathbf{u} \mid \mathbf{x}_t = \mathbf{x}) = \begin{cases} 1 - \epsilon + \frac{\epsilon}{|\mathcal{U}|} & \text{if } \mathbf{u} = \operatorname*{arg\,min}_{\mathbf{u}' \in \mathcal{U}} \\ \frac{\epsilon}{|\mathcal{U}|} & \text{otherwise} \end{cases}$$

Bellman Equations with a Stochastic Policy

Value function of a stochastic policy π :

$$\begin{split} \mathcal{V}^{\pi}(\mathbf{x}) &:= \mathbb{E}_{\mathbf{u}_{0},\mathbf{x}_{1},\mathbf{u}_{1},\mathbf{x}_{2},\dots} \left[\sum_{t=0}^{\infty} \gamma^{t} \ell(\mathbf{x}_{t},\mathbf{u}_{t}) \mid \mathbf{x}_{0} = \mathbf{x} \right] \\ &= \mathbb{E}_{\mathbf{u} \sim \pi(\cdot \mid \mathbf{x})} \left[\ell(\mathbf{x},\mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot \mid \mathbf{x},\mathbf{u})} \left[\mathcal{V}^{\pi}(\mathbf{x}') \right] \right] \\ &= \mathbb{E}_{\mathbf{u} \sim \pi(\cdot \mid \mathbf{x})} \left[Q^{\pi}(\mathbf{x},\mathbf{u}) \right] \end{split}$$

Q function of a stochastic policy π :

$$egin{aligned} Q^{\pi}(\mathbf{x},\mathbf{u}) &:= \ell(\mathbf{x},\mathbf{u}) + \mathbb{E}_{\mathbf{x}_1,\mathbf{u}_1,\ldots}\left[\sum_{t=1}^{\infty} \gamma^t \ell(\mathbf{x}_t,\mathbf{u}_t) \mid \mathbf{x}_0 = \mathbf{x},\mathbf{u}_0 = \mathbf{u}
ight] \ &= \ell(\mathbf{x},\mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot \mid \mathbf{x},\mathbf{u}),\mathbf{u}' \sim \pi(\cdot \mid \mathbf{x}')}\left[Q^{\pi}(\mathbf{x}',\mathbf{u}')
ight] \end{aligned}$$

$\epsilon\text{-}\textbf{Greedy}$ Policy Improvement

Theorem: ϵ -Greedy Policy Improvement

For any ϵ -soft policy π with associated Q^{π} , the ϵ -greedy policy π' with respect to Q^{π} is an improvement, i.e., $V^{\pi'}(\mathbf{x}) \leq V^{\pi}(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}$

Proof:

$$\begin{split} \mathbb{E}_{\mathbf{u}' \sim \pi'(\cdot | \mathbf{x})} \left[Q^{\pi}(\mathbf{x}, \mathbf{u}') \right] &= \sum_{\mathbf{u}' \in \mathcal{U}} \pi'(\mathbf{u}' \mid \mathbf{x}) Q^{\pi}(\mathbf{x}, \mathbf{u}') \\ &= \frac{\epsilon}{|\mathcal{U}|} \sum_{\mathbf{u}' \in \mathcal{U}} Q^{\pi}(\mathbf{x}, \mathbf{u}') + (1 - \epsilon) \min_{\mathbf{u} \in \mathcal{U}} Q^{\pi}(\mathbf{x}, \mathbf{u}) \\ &\leq \frac{\epsilon}{|\mathcal{U}|} \sum_{\mathbf{u}' \in \mathcal{U}} Q^{\pi}(\mathbf{x}, \mathbf{u}') + (1 - \epsilon) \sum_{\mathbf{u} \in \mathcal{U}} \frac{\pi(\mathbf{u} \mid \mathbf{x}) - \frac{\epsilon}{|\mathcal{U}|}}{1 - \epsilon} Q^{\pi}(\mathbf{x}, \mathbf{u}) \\ &= \sum_{\mathbf{u} \in \mathcal{U}} \pi(\mathbf{u} \mid \mathbf{x}) Q^{\pi}(\mathbf{x}, \mathbf{u}) = V^{\pi}(\mathbf{x}) \end{split}$$

*e***-Greedy Policy Improvement**

► Then, similarity to the policy improvement theorem for deterministic policies, for all x ∈ X:

$$\begin{split} V^{\pi}(\mathbf{x}) &\geq \mathbb{E}_{\mathbf{u}_{0} \sim \pi'(\cdot | \mathbf{x})} \left[Q^{\pi}(\mathbf{x}, \mathbf{u}_{0}) \right] \\ &= \mathbb{E}_{\mathbf{u}_{0} \sim \pi'(\cdot | \mathbf{x})} \left[\ell(\mathbf{x}, \mathbf{u}_{0}) + \gamma \mathbb{E}_{\mathbf{x}_{1} \sim \rho_{f}(\cdot | \mathbf{x}, \mathbf{u}_{0})} \left[V^{\pi}(\mathbf{x}_{1}) \right] \right] \\ &\geq \mathbb{E}_{\mathbf{u}_{0} \sim \pi'(\cdot | \mathbf{x})} \left[\ell(\mathbf{x}, \mathbf{u}_{0}) + \gamma \mathbb{E}_{\mathbf{x}_{1} \sim \rho_{f}(\cdot | \mathbf{x}, \mathbf{u}_{0})} \left[\mathbb{E}_{\mathbf{u}_{1} \sim \pi'(\cdot | \mathbf{x}_{1})} \left[Q^{\pi}(\mathbf{x}_{1}, \mathbf{u}_{1}) \right] \right] \right] \\ &= \mathbb{E}_{\mathbf{u}_{0} \sim \pi'(\cdot | \mathbf{x})} \left[\ell(\mathbf{x}, \mathbf{u}_{0}) + \gamma \mathbb{E}_{\mathbf{x}_{1}, \mathbf{u}_{1}} \left[\ell(\mathbf{x}_{1}, \mathbf{u}_{1}) + \gamma \mathbb{E}_{\mathbf{x}_{2}} V^{\pi}(\mathbf{x}_{2}) \right] \right] \\ &\geq \cdots \geq \mathbb{E}_{\rho_{0} \sim \pi'} \left[\sum_{t=0}^{\infty} \gamma^{t} \ell(\mathbf{x}_{t}, \mathbf{u}_{t}) \middle| \mathbf{x}_{0} = \mathbf{x} \right] = V^{\pi'}(\mathbf{x}) \end{split}$$

First-Visit MC Policy Iteration with ϵ -Greedy Improvement

Algorithm First-Visit MC Policy Iteration with *e*-Greedy Improvement

1: Init:
$$Q(\mathbf{x}, \mathbf{u}), \pi(\mathbf{u}|\mathbf{x})$$
 (ϵ -soft policy) for all $\mathbf{x} \in \mathcal{X}$ and $\mathbf{u} \in \mathcal{U}$

2: **loop**

- 3: Generate an episode $\rho := \mathbf{x}_0, \mathbf{u}_0, \mathbf{x}_1, \mathbf{u}_1, \dots, \mathbf{x}_{T-1}, \mathbf{u}_{t-1}, \mathbf{x}_T$ from π
- 4: for each \mathbf{x}, \mathbf{u} in ρ do
- 5: $L \leftarrow$ return following the first occurrence of \mathbf{x}, \mathbf{u}

6:
$$Q(\mathbf{x}, \mathbf{u}) \leftarrow Q(\mathbf{x}, \mathbf{u}) + \alpha \left(L - Q(\mathbf{x}, \mathbf{u})\right)$$

7: for each \mathbf{x} in ρ do

8:
$$\mathcal{U}^* \leftarrow \operatorname*{arg\,min}_{\mathbf{u}} \mathcal{Q}(\mathbf{x}, \mathbf{u})$$

9: $\pi(\mathbf{u}|\mathbf{x}) \leftarrow \begin{cases} \frac{1-\epsilon}{|\mathcal{U}^*|} + \frac{\epsilon}{|\mathcal{U}(\mathbf{x})|} & \text{if } \mathbf{u} \in \mathcal{U}^*\\ \frac{\epsilon}{|\mathcal{U}(\mathbf{x})|} & \text{if } \mathbf{u} \neq \mathbf{u}^* \end{cases}$

Outline

Model-Free Policy Iteration

Monte Carlo Policy Iteration

Temporal Difference Policy Iteration

Batch Q-Value Iteration

Temporal-Difference Control

TD prediction has several advantages over MC prediction:

- works with incomplete episodes
- can perform online updates to Q^{π} after every transition
- TD estimate of Q^{π} has lower variance than the MC one
- ► TD in the policy iteration algorithm:
 - use TD for policy evaluation
 - can update $Q(\mathbf{x}, \mathbf{u})$ after every transition within an episode
 - use an e-greedy policy for policy improvement because we still need to trade off exploration and exploitation

TD Policy Iteration with *e*-Greedy Improvement (SARSA)

SARSA: estimates Q^π using TD updates after every S_t, A_t, R_t, S_{t+1}, A_{t+1} transition:

$$Q(\mathbf{x}_t, \mathbf{u}_t) \leftarrow Q(\mathbf{x}_t, \mathbf{u}_t) + \alpha \left[\ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma Q(\mathbf{x}_{t+1}, \mathbf{u}_{t+1}) - Q(\mathbf{x}_t, \mathbf{u}_t) \right]$$

Ensures exploration via an ϵ -greedy policy in the policy improvement step

Algorithm SARSA

1: Init:
$$Q(\mathbf{x}, \mathbf{u})$$
 for all $\mathbf{x} \in \mathcal{X}$ and all $\mathbf{u} \in \mathcal{U}$

2: **loop**

3:
$$\pi \leftarrow \epsilon$$
-greedy policy derived from Q

4: Generate episode $\rho := \mathbf{x}_0, \mathbf{u}_0, \mathbf{x}_1, \mathbf{u}_1, \dots, \mathbf{x}_{T-1}, \mathbf{u}_{t-1}, \mathbf{x}_T$ from π

5: for
$$(\mathbf{x}, \mathbf{u}, \mathbf{x}', \mathbf{u}') \in \rho$$
 do

6:
$$Q(\mathbf{x}, \mathbf{u}) \leftarrow Q(\mathbf{x}, \mathbf{u}) + \alpha \left[\ell(\mathbf{x}, \mathbf{u}) + \gamma Q(\mathbf{x}', \mathbf{u}') - Q(\mathbf{x}, \mathbf{u}) \right]$$

Convergence of Model-Free Policy Iteration

Greedy in the Limit with Infinite Exploration (GLIE):

- Number of visits to all state-control pairs approach infinity, i.e., all state-control pairs are explored infinitely many times: lim_{k→∞} N_k(x, u) = ∞
- ► The ϵ -greedy policy converges to a greedy policy wrt $\mathbf{u}^* \in \arg\min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} Q(\mathbf{x}, \mathbf{u})$

• Example:
$$\epsilon$$
-greedy is GLIE with $\epsilon_k = \frac{1}{k}$

$$\pi_k(\mathbf{u} \mid \mathbf{x}) = \begin{cases} 1 - \epsilon_k + \frac{\epsilon_k}{|\mathcal{U}|} & \text{if } \mathbf{u} = \mathbf{u}^* \\ \frac{\epsilon_k}{|\mathcal{U}|} & \text{if } \mathbf{u} \neq \mathbf{u}^* \end{cases} \quad \lim_{k \to \infty} \pi_k(\mathbf{u} \mid \mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{u} = \mathbf{u}^* \\ 0 & \text{if } \mathbf{u} \neq \mathbf{u}^* \end{cases}$$

Theorem: Convergence of Model-Free Policy Iteration

Both MC Policy Iteration and SARSA converge to the optimal action-value function, $Q(\mathbf{x}, \mathbf{u}) \rightarrow Q^*(\mathbf{x}, \mathbf{u})$, as the number of episodes $k \rightarrow \infty$ as long as:

- the sequence of ϵ -greedy policies $\pi_k(\mathbf{u} \mid \mathbf{x})$ is GLIE,
- the sequence of step sizes α_k is Robbins-Monro.

On-Policy vs Off-Policy Learning

- **• On-policy prediction**: estimate V^{π} or Q^{π} using episodes from π
- Off-policy prediction: estimate V^{π} or Q^{π} using episodes from μ
- On-policy learning methods:
 - \blacktriangleright evaluate or improve a policy π that is used to both make decisions and collect experience
 - require well-designed exploration functions
 - empirically successful with function approximation
- Off-policy learning methods:
 - \blacktriangleright evaluate or improve a policy π that is different from the policy μ used to generate data
 - \blacktriangleright can use an effective exploration policy μ to generate data while learning an optimal policy π
 - can learn from observing other agents
 - can re-use experience from old policies $\pi_1, \pi_2, \ldots, \pi_{k-1}$
 - can learn about multiple policies while following one policy
 - causes theoretical challenges with function approximation

Importance Sampling for Off-Policy Learning

- ▶ Off-policy learning: use episodes generated from μ to evaluate π
- > The stage costs obtained from μ need to be re-weighted according to the likelihood that the same states would be encountered by π
- ► Importance Sampling: estimates the expectation of a function ℓ(x) with respect to a probability density function p(x) by computing a re-weighted expectation over a different probability density q(x):

$$\begin{split} \mathbb{E}_{\mathbf{x} \sim p(\cdot)}[\ell(\mathbf{x})] &= \int p(\mathbf{x})\ell(\mathbf{x})d\mathbf{x} \\ &= \int q(\mathbf{x})\frac{p(\mathbf{x})}{q(\mathbf{x})}\ell(\mathbf{x})d\mathbf{x} = \mathbb{E}_{\mathbf{x} \sim q(\cdot)}\left[\frac{p(\mathbf{x})}{q(\mathbf{x})}\ell(\mathbf{x})\right] \end{split}$$

Requires that $q(\mathbf{x}) \neq 0$ when $p(\mathbf{x}) \neq 0$.

Importance Sampling for Off-Policy MC Learning

To use returns generated from μ to evaluate π via MC, re-weight the long-term cost L_t via importance-sampling corrections along the whole episode:

$$L_t^{\pi/\mu} = \frac{\pi(\mathbf{u}_t|\mathbf{x}_t)}{\mu(\mathbf{u}_t|\mathbf{x}_t)} \frac{\pi(\mathbf{u}_{t+1}|\mathbf{x}_{t+1})}{\mu(\mathbf{u}_{t+1}|\mathbf{x}_{t+1})} \cdots \frac{\pi(\mathbf{u}_{T-1}|\mathbf{x}_{T-1})}{\mu(\mathbf{u}_{T-1}|\mathbf{x}_{T-1})} L_t$$

- This requires that μ should not be zero for any of state-control pairs along the episode from π
- Update the value estimate towards the corrected long-term cost $L_t^{\pi/\mu}$:

$$V^{\pi}(\mathbf{x}_t) \leftarrow V^{\pi}(\mathbf{x}_t) + \alpha \left(L_t^{\pi/\mu} - V^{\pi}(\mathbf{x}_t) \right)$$

Note: importance sampling in MC can dramatically increase variance

Importance Sampling for Off-Policy TD Learning

To use returns generated from μ to evaluate π via TD, re-weight the TD target ℓ(x, u) + γV(x') by importance sampling:

$$V^{\pi}(\mathbf{x}_t) \leftarrow V^{\pi}(\mathbf{x}_t) + \alpha \left(\frac{\pi(\mathbf{u}_t \mid \mathbf{x}_t)}{\mu(\mathbf{u}_t \mid \mathbf{x}_t)} \left(\ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma V^{\pi}(\mathbf{x}_{t+1}) \right) - V^{\pi}(\mathbf{x}_t) \right)$$

Importance sampling in TD is much lower variance than in MC and the policies need to be similar (i.e., μ should not be zero when π is non-zero) over a single step only

Off-Policy TD Control without Importance Sampling

- Q-Learning (Watkins, 1989): one of the early breakthroughs in reinforcement learning was the development of an off-policy TD algorithm that does not use importance sampling
- Q-Learning approximates $\mathcal{B}_*[Q](\mathbf{x}, \mathbf{u})$ directly using samples:

$$Q(\mathbf{x}_t, \mathbf{u}_t) \leftarrow Q(\mathbf{x}_t, \mathbf{u}_t) + \alpha \left[\ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma \min_{\mathbf{u} \in \mathcal{U}} Q(\mathbf{x}_{t+1}, \mathbf{u}) - Q(\mathbf{x}_t, \mathbf{u}_t) \right]$$

The learned Q function approximates Q* regardless of the policy being followed!

Theorem: Convergence of Q-Learning

Q-Learning converges almost surely to Q^* assuming all state-control pairs continue to be updated and the sequence of step sizes α_k is Robbins-Monro.

C. J. Watkins and P. Dayan. "Q-learning," Machine learning, 1992.

Q-Learning: Off-Policy TD Learning of $Q^*(\mathbf{x}, \mathbf{u})$

Algorithm Q-Learning

- 1: Init: $Q(\mathbf{x}, \mathbf{u})$ for all $\mathbf{x} \in \mathcal{X}$ and all $\mathbf{u} \in \mathcal{U}$
- 2: **loop**

3:
$$\pi \leftarrow \epsilon$$
-greedy policy derived from Q $\triangleright \pi$ can be arbitrary!

- 4: Generate episode $\rho := \mathbf{x}_0, \mathbf{u}_0, \mathbf{x}_1, \mathbf{u}_1, \dots, \mathbf{x}_{T-1}, \mathbf{u}_{t-1}, \mathbf{x}_T$ from π
- 5: for $(\mathbf{x}, \mathbf{u}, \mathbf{x}') \in \rho$ do

6:
$$Q(\mathbf{x}, \mathbf{u}) \leftarrow Q(\mathbf{x}, \mathbf{u}) + \alpha \left[\ell(\mathbf{x}, \mathbf{u}) + \gamma \min_{\mathbf{u}'} Q(\mathbf{x}', \mathbf{u}') - Q(\mathbf{x}, \mathbf{u}) \right]$$

Relationship Between Full and Sample Backups

Full Backups (DP)	Sample Backups (TD)
Policy Evaluation	TD Policy Evaluation
$V(\mathbf{x}) \leftarrow \mathcal{B}_{\pi}[V](\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}'}[V(\mathbf{x}')]$	$V(\mathbf{x}) \leftarrow V(\mathbf{x}) + \alpha(\ell(\mathbf{x}, \mathbf{u}) + \gamma V(\mathbf{x}') - V(\mathbf{x}))$
Policy Q-Evaluation	TD Policy Q-Evaluation (SARSA)
$Q(\mathbf{x}, \mathbf{u}) \leftarrow \mathcal{B}_{\pi}[Q](\mathbf{x}, \mathbf{u}) = \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}'}\left[Q(\mathbf{x}', \pi(\mathbf{x}'))\right]$	$Q(\mathbf{x}, \mathbf{u}) \leftarrow Q(\mathbf{x}, \mathbf{u}) + \alpha(\ell(\mathbf{x}, \mathbf{u}) + \gamma Q(\mathbf{x}', \mathbf{u}') - Q(\mathbf{x}, \mathbf{u}))$
Value Iteration	N/A
$V(\mathbf{x}) \leftarrow \mathcal{B}_{*}[V](\mathbf{x}) = \min_{\mathbf{u}} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}'}\left[V(\mathbf{x}')\right] \right\}$	
Q-Value Iteration	Q-Learning
$Q(\mathbf{x},\mathbf{u}) \leftarrow \mathcal{B}_{*}[Q](\mathbf{x},\mathbf{u}) = \ell(\mathbf{x},\mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}'}\left[\min_{\mathbf{u}'} Q(\mathbf{x}',\mathbf{u}') ight]$	$Q(\mathbf{x}, \mathbf{u}) \leftarrow Q(\mathbf{x}, \mathbf{u}) + \alpha \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \min_{\mathbf{u}'} Q(\mathbf{x}', \mathbf{u}') - Q(\mathbf{x}, \mathbf{u}) \right)$

Outline

Model-Free Policy Iteration

Monte Carlo Policy Iteration

Temporal Difference Policy Iteration

Batch Q-Value Iteration

Batch Sampling-Based Q-Value Iteration

Algorithm Batch Sampling-Based Q-Value Iteration

1: Init:
$$Q_0(\mathbf{x}, \mathbf{u})$$
 for all $\mathbf{x} \in \mathcal{X}$ and all $\mathbf{u} \in \mathcal{U}$
2: loop
3: $\pi \leftarrow \epsilon$ -greedy policy derived from Q_i $\triangleright \pi$ can be arbitrary!
4: Generate episodes $\{\rho^{(k)}\}_{k=1}^{K}$ from π
5: for $(\mathbf{x}, \mathbf{u}) \in \mathcal{X} \times \mathcal{U}$ do
6: $Q_{i+1}(\mathbf{x}, \mathbf{u}) = \frac{1}{K} \sum_{k=1}^{K} \frac{\sum_{t=0}^{T^{(k)}} \mathcal{B}_{*}[Q_{i}](\mathbf{x}_{t}^{(k)}, \mathbf{u}_{t}^{(k)}, \mathbf{x}_{t+1}^{(k)}) \mathbb{1}\{(\mathbf{x}_{t}^{(k)}, \mathbf{u}_{t}^{(k)}) = (\mathbf{x}, \mathbf{u})\}}{\sum_{t=0}^{T^{(k)}} \mathbb{1}\{(\mathbf{x}_{t}^{(k)}, \mathbf{u}_{t}^{(k)}) = (\mathbf{x}, \mathbf{u})\}}$

Batch sampling-based Q-value iteration behaves like Q_{i+1} = B_{*}[Q_i] + noise. Does it actually converge?

Batch Least-Squares Q-Value Iteration

$$Q_{i+1}(\mathbf{x}, \mathbf{u}) = \operatorname{mean} \left\{ \mathcal{B}_{*}[Q_{i}](\mathbf{x}_{t}^{(k)}, \mathbf{u}_{t}^{(k)}, \mathbf{x}_{t+1}^{(k)}), \forall k, t \text{ such that } (\mathbf{x}_{t}^{(k)}, \mathbf{u}_{t}^{(k)}) = (\mathbf{x}, \mathbf{u}) \right\}$$

$$Note that: \operatorname{mean} \left\{ \mathbf{x}^{(k)} \right\} = \arg \min_{\mathbf{x}} \sum_{k=1}^{K} \|\mathbf{x}^{(k)} - \mathbf{x}\|^{2}$$

$$Q_{i+1}(\mathbf{x}, \mathbf{u}) = \arg \min_{q} \sum_{k=1}^{K} \sum_{(\mathbf{x}_{t}^{(k)}, \mathbf{u}_{t}^{(k)}) = (\mathbf{x}, \mathbf{u})} \left\| \mathcal{B}_{*}[Q_{i}](\mathbf{x}_{t}^{(k)}, \mathbf{u}_{t}^{(k)}, \mathbf{x}_{t+1}^{(k)}) - q \right\|^{2}$$

$$Q_{i+1}(\cdot, \cdot) = \arg \min_{Q(\cdot, \cdot)} \sum_{k=1}^{K} \sum_{t=0}^{T^{(k)}} \left\| \mathcal{B}_{*}[Q_{i}](\mathbf{x}_{t}^{(k)}, \mathbf{u}_{t}^{(k)}, \mathbf{x}_{t+1}^{(k)}) - Q(\mathbf{x}_{t}^{(k)}, \mathbf{u}_{t}^{(k)}) \right\|^{2}$$

Algorithm Batch Least-Squares Q-Value Iteration

1: Init:
$$Q_0(\mathbf{x}, \mathbf{u})$$
 for all $\mathbf{x} \in \mathcal{X}$ and all $\mathbf{u} \in \mathcal{U}$

2: **loop**

3:
$$\pi \leftarrow \epsilon$$
-greedy policy derived from Q_i $\triangleright \pi$ can be arbitrary!

4: Generate episodes
$$\{\rho^{(k)}\}_{k=1}^{K}$$
 from π

5:
$$Q_{i+1}(\cdot, \cdot) = \operatorname*{arg\,min}_{Q(\cdot, \cdot)} \sum_{k=1}^{K} \sum_{t=0}^{T^{(k)}} \left\| \mathcal{B}_{*}[Q_{i}](\mathbf{x}_{t}^{(k)}, \mathbf{u}_{t}^{(k)}, \mathbf{x}_{t+1}^{(k)}) - Q(\mathbf{x}_{t}^{(k)}, \mathbf{u}_{t}^{(k)}) \right\|^{2}$$

Small Steps in the Backup Direction

- ▶ Full backup: $Q_{i+1} \leftarrow B_*[Q_i] + \text{noise}$
- ▶ Partial backup: $Q_{i+1} \leftarrow \alpha B_*[Q_i] + (1 \alpha)Q_i + \text{noise}$
- Equivalent to a gradient step on a squared error objective function:

$$\begin{aligned} \mathcal{Q}_{i+1} &\leftarrow \alpha \mathcal{B}_*[\mathcal{Q}_i] + (1-\alpha)\mathcal{Q}_i + \text{noise} \\ &= \mathcal{Q}_i + \alpha \left(\mathcal{B}_*[\mathcal{Q}_i] - \mathcal{Q}_i \right) + \text{noise} \\ &= \mathcal{Q}_i - \alpha \left(\frac{1}{2} \nabla_{\mathcal{Q}} \| \mathcal{B}_*[\mathcal{Q}_i] - \mathcal{Q} \|^2 \Big|_{\mathcal{Q} = \mathcal{Q}_i} + \text{noise} \right) \end{aligned}$$

- ▶ Behaves like stochastic gradient descent for f(Q) := ¹/₂ ||B_{*}[Q_i] Q||² but the objective is changing because B_{*}[Q_i] is a moving target
- Stochastic Approximation Theory: a partial update to ensure contraction + appropriate step size α implies convergence to the contraction fixed point: $\lim_{i\to\infty} Q_i = Q^*$
- T. Jaakkola, M. Jordan, S. Singh, "On the convergence of stochastic iterative dynamic programming algorithms," Neural computation, 1994.

Batch Gradient Least-Squares Q-Value Iteration

Algorithm Batch Gradient Least-Squares Q-Value Iteration

1: Init: $Q_0(\mathbf{x}, \mathbf{u})$ for all $\mathbf{x} \in \mathcal{X}$ and all $\mathbf{u} \in \mathcal{U}$

2: **loop**

3:
$$\pi \leftarrow \epsilon$$
-greedy policy derived from Q_i $\triangleright \pi$ can be arbitrary!
4: Generate episodes $\{\rho^{(k)}\}_{i=1}^{K}$, from π

5:
$$Q_{i+1} \leftarrow Q_i - \frac{\alpha}{2} \nabla_Q \left[\sum_{k=1}^{T} \sum_{t=0}^{T^{(k)}} \|\mathcal{B}_*[Q_i](\mathbf{x}_t^{(k)}, \mathbf{u}_t^{(k)}, \mathbf{x}_{t+1}^{(k)}) - Q(\mathbf{x}_t^{(k)}, \mathbf{u}_t^{(k)}) \|^2 \right] \Big|_{Q=Q_i}$$

• Q-learning is a special case with K = 1