
ECE276B: Planning & Learning in Robotics
Lecture 13: Value Function Approximation

Nikolay Atanasov

natanasov@ucsd.edu

1

mailto:natanasov@ucsd.edu


Outline

Value Function Approximation

Incremental Methods

Batch Methods

2



Optimal Control in Large and Infinite Spaces

▶ So far we have been using a vector to represent the value function:
▶ every state x has an entry V π(x)

▶ every state-control pair (x, u) has an entry Qπ(x, u)

▶ In very large and continuous state and control spaces:
▶ there are too many states and controls to store in memory

▶ it is too slow to approximate the value of each state individually

▶ Key idea:
▶ represent the value function using function approximation with parameters θ:

V π(x) ≈ V̂ (x;θ) Qπ(x, u) ≈ Q̂(x, u;θ)

▶ update the parameters θ using MC or TD learning

▶ this allows generalization from seen to unseen states and controls

3



Value Function Approximation

4



Value Function Approximation

▶ Many function approximators are possible:
▶ Linear combination of features (differentiable)
▶ Neural network (differentiable)
▶ Fourier / wavelet base (differentiable)
▶ Nearest neighbor
▶ Decision tree

▶ A differentiable function approximator is necessary to allow parameter
updates

▶ A training method for non-stationary non-iid data is required

5



Value Approximation via Unconstrained Optimization

▶ Main idea:
▶ define a function J(θ) measuring the error between V π(x) and V̂ (x;θ)

▶ determine the parameters through an optimization problem:

θ∗ ∈ argmin
θ

J(θ)

▶ Two approaches to solving minθ J(θ):
▶ Incremental: use a (stochastic) descent method:

θk+1 = θk + αkδθk

where δθk is a valid descent direction with ∇θJ(θk)
⊤δθk < 0

▶ Batch: obtain θ∗ from the optimality conditions:

∇θJ(θ) = 0

6



Optimality Conditions

First-order Necessary Condition

Suppose J(θ) is differentiable at θ̄. If θ̄ is a local minimizer, then ∇J(θ̄) = 0.

Second-order Necessary Condition

Suppose J(θ) is twice-differentiable at θ̄. If θ̄ is a local minimizer, then
∇J(θ̄) = 0 and ∇2J(θ̄) ⪰ 0.

Second-order Sufficient Condition

Suppose J(θ) is twice-differentiable at θ̄. If ∇J(θ̄) = 0 and ∇2J(θ̄) ≻ 0, then θ̄
is a local minimizer.

Necessary and Sufficient Condition

Suppose J(θ) is differentiable at θ̄. If J is convex, then θ̄ is a global minimizer if
and only if ∇J(θ̄) = 0.

7



Descent Optimization Methods

Descent Direction Theorem

Suppose J(θ) is differentiable at θ̄. If ∃ δθ such that ∇J(θ̄)T δθ < 0, then
∃ ϵ > 0 such that J(θ̄ + αδθ) < J(θ̄) for all α ∈ (0, ϵ).

▶ The vector δθ is called a descent direction

▶ The theorem states that if a descent direction exists at θ̄, then it is possible
to move to a new point that has a lower J value.

▶ Descent method: given an initial guess θk , take a step of size αk > 0 along
a descent direction δθk :

θk+1 = θk + αkδθk

8



Descent Optimization Methods

▶ Methods differ in the way δθk and αk are chosen:
▶ δθk should be a descent direction: ∇J(θk)

T δθk < 0
for all θk ̸= θ∗

▶ αk needs to ensure sufficient decrease in J to
guarantee convergence:

α∗
k ∈ argmin

α>0
J(θk + αδθk)

usually obtained via line search

▶ Steepest descent direction: δθk := − ∇J(θk )
∥∇J(θk )∥

▶ Gradient descent: δθk := −∇θJ(θk) points in the
direction of steepest local descent and we can iterate:

θk+1 = θk − αk∇θJ(θk)

9



Min Square Error Value Function Approximation

▶ Find parameters θ minimizing the mean-square error (MSE) between the true
and approximate value function of policy π:

J(θ) =
1

2
E
[(

V π(x)− V̂ (x;θ)
)2]

OR J(θ) =
1

2
E
[(

Qπ(x,u)− Q̂(x,u;θ)
)2]

where the expectation is over the state-control distribution induced by π

▶ Need to choose:
▶ an incremental or batch optimization approach

▶ a representation for V̂ (x;θ) or Q̂(x, u;θ)

10



Incremental vs Batch optimization

▶ Incremental optimization:
▶ Gradient descent:

δθ = −∇θJ(θ) = E
[(

V π(x)− V̂ (x;θ)
)
∇θV̂ (x,θ)

]
δθ = −∇θJ(θ) = E

[(
Qπ(x, u)− Q̂(x, u;θ)

)
∇θQ̂(x, u;θ)

]
▶ Stochastic gradient descent: uses samples xt , ut from π rather than

computing the exact expectation:

δθt =
(
V π(xt)− V̂ (xt ;θ)

)
∇θV̂ (xt ;θ)

δθt =
(
Qπ(xt , ut)− Q̂(xt , ut ;θ)

)
∇θQ̂(xt , ut ;θ)

The stochastic gradient equals the true gradient in expectation E[δθt ] = δθ

▶ Batch optimization: the expected update E[δθt ] must be zero at the
minimizer θ∗ of J(θ). Determine θ∗ directly by solving:

E[δθt ] = 0

11



Linear Value Function Approximation

▶ Associate state x with feature vector ϕ(x) or state-control pair (x,u) with
feature vector ϕ(x,u), e.g.:
▶ kernel distance to n landmarks: ϕ(x) = [k(x, x1), . . . , k(x, xn)]

⊤

▶ piece and pawn configurations in chess

▶ Represent the value function by a linear combination of features:

V̂ (x;θ) = θ⊤ϕ(x) =
∑
j

θjϕj(x)

Q̂(x,u;θ) = θ⊤ϕ(x,u) =
∑
j

θjϕj(x,u)

▶ Example: finite-space representation of V π(x) over {x1, . . . , xn} is a special
case of linear function approximation with ϕ(x) = [1{x=x1}, . . . ,1{x=xn}]

⊤

and θ stores the values of the n points: V̂ (x;θ) =
∑

j θj1{x=xj}

12



Outline

Value Function Approximation

Incremental Methods

Batch Methods

13



Incremental Prediction for Linear Approximation

▶ When the value function is represented by a linear combination of features,
the objective function J(θ) is quadratic in θ:

J(θ) =
1

2
E
[(

V π(x)− θ⊤ϕ(x)
)2]

J(θ) =
1

2
E
[(

Qπ(x,u)− θ⊤ϕ(x,u)
)2]

▶ Stochastic gradient descent converges to a global optimum

▶ A descent direction δθt is easy to obtain:

δθt =
(
V π(xt)− V̂ (xt ;θ)

)
︸ ︷︷ ︸

prediction error

ϕ(xt)︸ ︷︷ ︸
feature value

δθt =
(
Qπ(xt ,ut)− Q̂(xt ,ut ;θ)

)
︸ ︷︷ ︸

prediction error

ϕ(xt ,ut)︸ ︷︷ ︸
feature value

14



Incremental Prediction Algorithms

▶ The (stochastic) gradient descent for optimizing θ can be performed only if
V π(x) is available to compute the prediction error

▶ In practice, we substitute a target for V π(x) obtained from noisy samples
along an episode ρ = x0,u0, x1,u1, . . . ∼ π:

▶ MC: uses a dataset D := {(xt , Lt(ρt))}

▶ TD: uses a dataset D :=
{
(xt , ℓ(xt , ut) + γV̂ (xt+1;θ)

}
▶ TD(λ): uses a dataset D :=

{
(xt , L

λ
t (ρt))

}

15



Incremental Prediction Algorithms

▶ MC: the target is the return Lt(ρt):

δθt =
(
Lt(ρt)− V̂ (xt ;θ)

)
∇θV̂ (xt ;θ)

▶ TD: the target is the TD target:

δθt =
(
ℓ(xt ,ut) + γV̂ (xt+1;θ)− V̂ (xt ;θ)

)
∇θV̂ (xt ;θ)

▶ Forward-view TD(λ): the target is the λ-return Lλt (ρt):

δθt =
(
Lλt (ρt)− V̂ (xt ;θ)

)
∇θV̂ (xt ;θ)

▶ Backward-view TD(λ):

δt = ℓ(xt ,ut) + γV̂ (xt+1;θ)− V̂ (xt ;θ)

et = γλet−1 +∇θV̂ (xt ;θ)

δθt = δtet

16



Control with Value Function Approximation

▶ Policy Evaluation: approximate Qπ(x,u) ≈ Q̂(x,u;θ) via stochastic
gradient descent

▶ Policy Improvement: ϵ-greedy policy improvement based on Q̂(x,u;θ)

17



Incremental Control Algorithms

▶ Q-Prediction: we must substitute a target for Qπ(x,u)

▶ MC:
δθt =

(
Lt(ρ)− Q̂(xt ,ut ;θ)

)
∇θQ̂(xt ,ut ;θ)

▶ TD:

δθt =
(
ℓ(xt ,ut) + γQ̂(xt+1,ut+1;θ)− Q̂(xt ,ut ;θ)

)
∇θQ̂(xt ,ut ;θ)

▶ Forward-view TD(λ):

δθt =
(
Lλt (ρ)− Q̂(xt ,ut ;θ)

)
∇θQ̂(xt ,ut ;θ)

▶ Backward-view TD(λ):

δt = ℓ(xt ,ut) + γQ̂(xt+1,ut+1;θ)− Q̂(xt ,ut ;θ)

et = γλet−1 +∇θQ̂(xt ,ut ;θ)

δθt = δtet

18



Linear SARSA with Coarse Coding in Mountain Car

19



Convergence of Prediction and Control Algorithms

▶ Model-free Prediction:

Algorithm Finite Space Linear Non-Linear
On-Policy MC ✓ ✓ ✓
On-Policy TD ✓ ✓ ✗

Off-Policy MC ✓ ✓ ✓
Off-Policy TD ✓ ✗ ✗

▶ There is a version of TD that follows the gradient of the projected Bellman
error and converges in all cases

▶ Model-free Control:

Algorithm Finite Space Linear Non-Linear
MC Control ✓ (✓) ✗
SARSA ✓ (✓) ✗

Q-learning ✓ ✗ ✗

▶ (✓) = chatters around a near-optimal value function
▶ There is a gradient Q-learning version that converges in the linear case

20



Outline

Value Function Approximation

Incremental Methods

Batch Methods

21



Batch Prediction
▶ Given:

▶ Value function approximation V̂ (x;θ) ≈ V π(x)
▶ Experience D := {(xt ,V π(xt))}

▶ Goal: find the best fitting value function approximation:

min
θ

J(θ) :=
1

2
E
[(

V π(x)− V̂ (x;θ)
)2]

≈ 1

2

∑
xt∈D

(
V π(xt)− V̂ (xt ;θ)

)2
▶ Stochastic gradient descent (SGD) with experience replay:

1. Sample: (xt ,V
π(xt)) ∼ D

2. Apply SGD update with δθt =
(
V π(xt)− V̂ (xt ;θ)

)
∇θV̂ (xt ,θ)

▶ SGD with experience replay finds the least-squares solution but it may take
many iterations

▶ Batch method: the expected update must be zero at the min of J(θ):

0 = E[δθt ] ≈
∑
xt∈D

(
V π(xt)− V̂ (xt ;θ)

)
∇θV̂ (xt ,θ)

▶ Obtain θ∗ directly by solving the above equation

22



Batch Prediction for Linear Approximation

▶ When the value function is represented by a linear combination of features
V̂ (x;θ) = θ⊤ϕ(x), the function J(θ) is quadratic in θ:

J(θ) =
1

2
E
[(

V π(x)− θ⊤ϕ(x)
)2]

≈ 1

2

∑
xt∈D

(
V π(xt)− θ⊤ϕ(xt)

)2

▶ We can obtain the least squares solution θ∗ directly:

0 = E [δθt ] =
∑
xt∈D

(V π(xt)− θ⊤ϕ(xt))ϕ(xt)(∑
xt∈D

ϕ(xt)ϕ(xt)
⊤

)
θ =

∑
xt∈D

V π(xt)ϕ(xt)

23



Linear Least Squares Prediction Algorithms

▶ We do not know the true values V π(xt) and must use noisy samples instead

▶ Least-Squares Monte Carlo (LSMC):

V π(xt) ≈ Lt(ρ)

▶ Least-Squares Temporal Difference (LSTD):

V π(xt) ≈ ℓ(xt ,ut) + γV̂ (xt+1;θ)

▶ Least-Squares TD(λ) (LSTD(λ)):

V π(xt) ≈ Lλt (ρ)

▶ In each case, we can solve directly for the fixed point θ∗

24



Linear Least-Squares Prediction Algorithms

▶ LSMC:

0 =
T∑
t=0

α
(
Lt(ρ)− V̂ (xt ;θ)

)
ϕ(xt)

θ∗ =

(
T∑
t=0

ϕ(xt)ϕ(xt)
T

)−1 T∑
t=0

ϕ(xt)Lt(ρ)

▶ LSTD:

0 =
T∑
t=0

α
(
ℓ(xt ,ut) + γV̂ (xt+1;θ)− V̂ (xt ;θ)

)
ϕ(xt)

θ∗ =

(
T∑
t=0

ϕ(xt) (ϕ(xt)− γϕ(xt+1))
⊤

)−1 T∑
t=0

ϕ(xt)ℓ(xt ,ut)

▶ LSTD(λ):

0 =
T∑
t=0

α
(
ℓ(xt ,ut) + γV̂ (xt+1;θ)− V̂ (xt ;θ)

)
et

θ∗ =

(
T∑
t=0

et (ϕ(xt)− γϕ(xt+1))
⊤

)−1 T∑
t=0

etℓ(xt ,ut)

25



Convergence of Linear-Least Squares Prediction Algorithms

▶ On-Policy:

Algorithm Finite Space Linear Non-Linear
MC ✓ ✓ ✓

LSMC ✓ ✓ −
TD ✓ ✓ ✗

LSTD ✓ ✓ −

▶ Off-Policy:

Algorithm Finite Space Linear Non-Linear
MC ✓ ✓ ✓

LSMC ✓ ✓ −
TD ✓ ✗ ✗

LSTD ✓ ✓ −

26



Least Squares Policy Iteration

▶ Policy Evaluation: least-squares Q estimation using data from old policies

▶ Policy Improvement: does not have to be ϵ-greedy since data from old
policies is stored

27



Least Squares Policy Iteration

▶ Policy Evaluation: efficiently use all experience D := {(xt ,ut ,V π(xt))} to
compute Q̂(x,u;θ) = θ⊤ϕ(x,u)

▶ Since the policy in PI is changing, the experience is generated from many
different policies and we must approximate Qπ using off-policy learning

▶ Instead of importance sampling, use an idea from Q-learning:
▶ Use experience: xt , ut , ℓ(xt , ut), xt+1 ∼ πold

▶ With new action: ut+1 = πnew (xt+1)

▶ Update Q̂(xt , ut ;θ) towards new action value: ℓ(xt , ut) + γQ̂(xt , ut+1;θ)

28



Least Squares Policy Iteration
▶ Experience: xt ,ut , ℓ(xt ,ut), xt+1 ∼ πold

▶ Incremental update:

δθt =
(
ℓ(xt ,ut) + γQ̂(xt+1, π(xt+1); θ)− Q̂(xt ,ut ;θ)

)
ϕ(xt ,ut)

▶ LSTDQ: least-squares TD Q estimation algorithm using the fact that the
expected update must be zero at the minimum of J(θ):

0 =
T∑
t=0

α
(
ℓ(xt ,ut) + γQ̂(xt+1, π(xt+1);θ)− Q̂(xt ,ut ;θ)

)
ϕ(xt ,ut)

θ∗ =

(
T∑
t=0

ϕ(xt ,ut) (ϕ(xt ,ut)− γϕ(xt+1, π(xt+1)))
T

)−1 T∑
t=0

ϕ(xt ,ut)ℓ(xt ,ut)

Algorithm LSPI-TD

1: Input: experience D and base policy π
2: loop
3: θ∗ ← LSTDQ(π,D)
4: π(x)← argmin

u∈U(x)
Q̂(x, u; θ∗)

29



Convergence of Control Algorithms

Algorithm Finite Space Linear Non-Linear
MC Control ✓ (✓) ✗
SARSA ✓ (✓) ✗

Q-learning ✓ ✗ ✗
LSPI-TD ✓ (✓) −

▶ (✓) = chatters around a near-optimal value function

30



Example: Chain Walk

▶ Consider a 50 state version of the problem

▶ Cost: −1 in states 10 and 41 and 0 elsewhere

▶ Optimal policy: π(x) =

{
R if x ∈ {1, . . . , 9} ∪ {26, . . . , 41}
L if x ∈ {10, . . . , 25} ∪ {42, . . . , 50}

▶ Features: 10 evenly spaced Gaussians (σ = 4) for each control

▶ Experience: 10, 000 steps from a random walk policy

31



Chain Walk LSPI: Action-Value Function

▶ True (dotted) and approximate
(smooth) action-value function

▶ Left (blue) and right (red) control

32



Chain Walk LSPI: Policy

▶ Left (blue) and right (red) control

33


	Value Function Approximation
	Incremental Methods
	Batch Methods

