ECE276B: Planning & Learning in Robotics Lecture 13: Value Function Approximation

Nikolay Atanasov natanasov@ucsd.edu

Outline

Value Function Approximation

Incremental Methods

Batch Methods

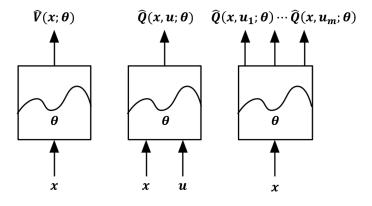
Optimal Control in Large and Infinite Spaces

- ▶ So far we have been using a vector to represent the value function:
 - every state x has an entry $V^{\pi}(x)$
 - every state-control pair (x, u) has an entry $Q^{\pi}(x, u)$
- In very large and continuous state and control spaces:
 - there are too many states and controls to store in memory
 - it is too slow to approximate the value of each state individually
- Key idea:
 - ightharpoonup represent the value function using function approximation with parameters heta:

$$V^{\pi}(\mathbf{x}) pprox \hat{V}(\mathbf{x}; \boldsymbol{\theta})$$
 $Q^{\pi}(\mathbf{x}, \mathbf{u}) pprox \hat{Q}(\mathbf{x}, \mathbf{u}; \boldsymbol{\theta})$

- \triangleright update the parameters θ using MC or TD learning
- this allows generalization from seen to unseen states and controls

Value Function Approximation



Value Function Approximation

- Many function approximators are possible:
 - Linear combination of features (differentiable)
 - Neural network (differentiable)
 - Fourier / wavelet base (differentiable)
 - Nearest neighbor
 - Decision tree
- A differentiable function approximator is necessary to allow parameter updates
- ▶ A training method for non-stationary non-iid data is required

Value Approximation via Unconstrained Optimization

- Main idea:
 - define a function $J(\theta)$ measuring the error between $V^{\pi}(\mathbf{x})$ and $\hat{V}(\mathbf{x};\theta)$
 - determine the parameters through an optimization problem:

$$oldsymbol{ heta}^* \in rg\min_{oldsymbol{ heta}} J(oldsymbol{ heta})$$

- ▶ Two approaches to solving $\min_{\theta} J(\theta)$:
 - ► Incremental: use a (stochastic) descent method:

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \alpha_k \delta \boldsymbol{\theta}_k$$

where $\delta \boldsymbol{\theta}_k$ is a valid descent direction with $\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_k)^{\top} \delta \boldsymbol{\theta}_k < 0$

Batch: obtain θ^* from the optimality conditions:

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = 0$$

Optimality Conditions

First-order Necessary Condition

Suppose $J(\theta)$ is differentiable at $\bar{\theta}$. If $\bar{\theta}$ is a local minimizer, then $\nabla J(\bar{\theta}) = 0$.

Second-order Necessary Condition

Suppose $J(\theta)$ is twice-differentiable at $\bar{\theta}$. If $\bar{\theta}$ is a local minimizer, then $\nabla J(\bar{\theta}) = 0$ and $\nabla^2 J(\bar{\theta}) \succeq 0$.

Second-order Sufficient Condition

Suppose $J(\theta)$ is twice-differentiable at $\bar{\theta}$. If $\nabla J(\bar{\theta}) = 0$ and $\nabla^2 J(\bar{\theta}) \succ 0$, then $\bar{\theta}$ is a local minimizer.

Necessary and Sufficient Condition

Suppose $J(\theta)$ is differentiable at $\bar{\theta}$. If J is **convex**, then $\bar{\theta}$ is a global minimizer **if** and only if $\nabla J(\bar{\theta}) = 0$.

Descent Optimization Methods

Descent Direction Theorem

Suppose $J(\theta)$ is differentiable at $\bar{\theta}$. If $\exists \ \delta \theta$ such that $\nabla J(\bar{\theta})^T \delta \theta < 0$, then $\exists \ \epsilon > 0$ such that $J(\bar{\theta} + \alpha \delta \theta) < J(\bar{\theta})$ for all $\alpha \in (0, \epsilon)$.

- ▶ The vector $\delta \theta$ is called a **descent direction**
- The theorem states that if a descent direction exists at $\bar{\theta}$, then it is possible to move to a new point that has a lower J value.
- **Descent method**: given an initial guess θ_k , take a step of size $\alpha_k > 0$ along a descent direction $\delta \theta_k$:

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \alpha_k \delta \boldsymbol{\theta}_k$$

Descent Optimization Methods

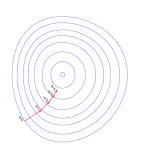
- Methods differ in the way $\delta \theta_k$ and α_k are chosen:
 - ▶ $\delta \theta_k$ should be a descent direction: $\nabla J(\theta_k)^T \delta \theta_k < 0$ for all $\theta_k \neq \theta^*$
 - $ightharpoonup lpha_k$ needs to ensure sufficient decrease in J to guarantee convergence:

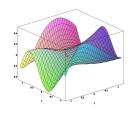
$$\alpha_k^* \in \operatorname*{arg\,min}_{\alpha>0} J(\boldsymbol{\theta}_k + \alpha \delta \boldsymbol{\theta}_k)$$

usually obtained via line search

- ▶ Steepest descent direction: $\delta \theta_k := -\frac{\nabla J(\theta_k)}{\|\nabla J(\theta_k)\|}$
- ▶ Gradient descent: $\delta\theta_k := -\nabla_{\theta}J(\theta_k)$ points in the direction of steepest local descent and we can iterate:

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \alpha_k \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_k)$$





Min Square Error Value Function Approximation

Find parameters θ minimizing the mean-square error (MSE) between the true and approximate value function of policy π :

$$J(\boldsymbol{\theta}) = \frac{1}{2} \mathbb{E} \left[\left(V^{\pi}(\mathbf{x}) - \hat{V}(\mathbf{x}; \boldsymbol{\theta}) \right)^{2} \right] \quad \text{OR} \quad J(\boldsymbol{\theta}) = \frac{1}{2} \mathbb{E} \left[\left(Q^{\pi}(\mathbf{x}, \mathbf{u}) - \hat{Q}(\mathbf{x}, \mathbf{u}; \boldsymbol{\theta}) \right)^{2} \right]$$

where the expectation is over the state-control distribution induced by $\boldsymbol{\pi}$

- Need to choose:
 - an incremental or batch optimization approach
 - ightharpoonup a representation for $\hat{V}(\mathbf{x}; oldsymbol{ heta})$ or $\hat{Q}(\mathbf{x}, \mathbf{u}; oldsymbol{ heta})$

Incremental vs Batch optimization

- ► Incremental optimization:
 - Gradient descent:

$$\begin{split} \delta \boldsymbol{\theta} &= -\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}\left[\left(V^{\pi}(\mathbf{x}) - \hat{V}(\mathbf{x}; \boldsymbol{\theta})\right) \nabla_{\boldsymbol{\theta}} \hat{V}(\mathbf{x}, \boldsymbol{\theta})\right] \\ \delta \boldsymbol{\theta} &= -\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}\left[\left(Q^{\pi}(\mathbf{x}, \mathbf{u}) - \hat{Q}(\mathbf{x}, \mathbf{u}; \boldsymbol{\theta})\right) \nabla_{\boldsymbol{\theta}} \hat{Q}(\mathbf{x}, \mathbf{u}; \boldsymbol{\theta})\right] \end{split}$$

▶ Stochastic gradient descent: uses samples \mathbf{x}_t , \mathbf{u}_t from π rather than computing the exact expectation:

$$\begin{split} \delta \boldsymbol{\theta}_t &= \left(V^{\pi}(\mathbf{x}_t) - \hat{V}(\mathbf{x}_t; \boldsymbol{\theta}) \right) \nabla_{\boldsymbol{\theta}} \hat{V}(\mathbf{x}_t; \boldsymbol{\theta}) \\ \delta \boldsymbol{\theta}_t &= \left(Q^{\pi}(\mathbf{x}_t, \mathbf{u}_t) - \hat{Q}(\mathbf{x}_t, \mathbf{u}_t; \boldsymbol{\theta}) \right) \nabla_{\boldsymbol{\theta}} \hat{Q}(\mathbf{x}_t, \mathbf{u}_t; \boldsymbol{\theta}) \end{split}$$

The stochastic gradient equals the true gradient in expectation $\mathbb{E}[\delta m{ heta}_t] = \delta m{ heta}$

Batch optimization: the expected update $\mathbb{E}[\delta\theta_t]$ must be zero at the minimizer θ^* of $J(\theta)$. Determine θ^* directly by solving:

$$\mathbb{E}[\delta\boldsymbol{\theta}_t] = 0$$

Linear Value Function Approximation

- Associate state **x** with feature vector $\phi(\mathbf{x})$ or state-control pair (\mathbf{x}, \mathbf{u}) with feature vector $\phi(\mathbf{x}, \mathbf{u})$, e.g.:
 - kernel distance to *n* landmarks: $\phi(\mathbf{x}) = [k(\mathbf{x}, \mathbf{x}_1), \dots, k(\mathbf{x}, \mathbf{x}_n)]^{\top}$
 - piece and pawn configurations in chess
- Represent the value function by a linear combination of features:

$$\hat{V}(\mathbf{x}; \boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \phi(\mathbf{x}) = \sum_{j} \theta_{j} \phi_{j}(\mathbf{x})$$

 $\hat{Q}(\mathbf{x}, \mathbf{u}; \boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \phi(\mathbf{x}, \mathbf{u}) = \sum_{j} \theta_{j} \phi_{j}(\mathbf{x}, \mathbf{u})$

Example: finite-space representation of $V^{\pi}(\mathbf{x})$ over $\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}$ is a special case of linear function approximation with $\phi(\mathbf{x}) = [\mathbbm{1}_{\{\mathbf{x}=\mathbf{x}_1\}},\ldots,\mathbbm{1}_{\{\mathbf{x}=\mathbf{x}_n\}}]^{\top}$ and $\boldsymbol{\theta}$ stores the values of the n points: $\hat{V}(\mathbf{x};\boldsymbol{\theta}) = \sum_j \theta_j \mathbbm{1}_{\{\mathbf{x}=\mathbf{x}_j\}}$

Outline

Value Function Approximation

Incremental Methods

Batch Methods

Incremental Prediction for Linear Approximation

When the value function is represented by a linear combination of features, the objective function $J(\theta)$ is quadratic in θ :

$$J(\boldsymbol{\theta}) = \frac{1}{2} \mathbb{E} \left[\left(V^{\pi}(\mathbf{x}) - \boldsymbol{\theta}^{\top} \phi(\mathbf{x}) \right)^{2} \right] \qquad J(\boldsymbol{\theta}) = \frac{1}{2} \mathbb{E} \left[\left(Q^{\pi}(\mathbf{x}, \mathbf{u}) - \boldsymbol{\theta}^{\top} \phi(\mathbf{x}, \mathbf{u}) \right)^{2} \right]$$

- Stochastic gradient descent converges to a global optimum
- ▶ A descent direction $\delta \theta_t$ is easy to obtain:

$$\delta \boldsymbol{\theta}_t = \underbrace{\left(V^{\pi}(\mathbf{x}_t) - \hat{V}(\mathbf{x}_t; \boldsymbol{\theta})\right)}_{\text{prediction error}} \underbrace{\frac{\phi(\mathbf{x}_t)}{\phi(\mathbf{x}_t)}}_{\text{feature value}}$$

$$\delta \boldsymbol{\theta}_t = \underbrace{\left(Q^{\pi}(\mathbf{x}_t, \mathbf{u}_t) - \hat{Q}(\mathbf{x}_t, \mathbf{u}_t; \boldsymbol{\theta})\right)}_{\text{prediction error}} \underbrace{\frac{\phi(\mathbf{x}_t, \mathbf{u}_t)}{\phi(\mathbf{x}_t, \mathbf{u}_t)}}_{\text{feature value}}$$

Incremental Prediction Algorithms

- The (stochastic) gradient descent for optimizing θ can be performed only if $V^{\pi}(\mathbf{x})$ is available to compute the prediction error
- In practice, we substitute a *target* for $V^{\pi}(\mathbf{x})$ obtained from noisy samples along an episode $\rho = \mathbf{x}_0, \mathbf{u}_0, \mathbf{x}_1, \mathbf{u}_1, \ldots \sim \pi$:
 - ▶ MC: uses a dataset $\mathcal{D} := \{(\mathbf{x}_t, L_t(\rho_t))\}$
 - lacksquare TD: uses a dataset $\mathcal{D} := \left\{ (\mathbf{x}_t, \ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma \hat{V}(\mathbf{x}_{t+1}; oldsymbol{ heta})
 ight\}$
 - ▶ TD(λ): uses a dataset $\mathcal{D} := \{(\mathbf{x}_t, L_t^{\lambda}(\rho_t))\}$

Incremental Prediction Algorithms

▶ **MC**: the target is the return $L_t(\rho_t)$:

$$\delta oldsymbol{ heta}_t = \left(oldsymbol{L_t(
ho_t)} - \hat{V}(\mathbf{x}_t; oldsymbol{ heta}) \right)
abla_{oldsymbol{ heta}} \hat{V}(\mathbf{x}_t; oldsymbol{ heta})$$

▶ **TD**: the target is the TD target:

$$\delta\boldsymbol{\theta}_{t} = \left(\ell(\mathbf{x}_{t}, \mathbf{u}_{t}) + \gamma \hat{V}(\mathbf{x}_{t+1}; \boldsymbol{\theta}) - \hat{V}(\mathbf{x}_{t}; \boldsymbol{\theta})\right) \nabla_{\boldsymbol{\theta}} \hat{V}(\mathbf{x}_{t}; \boldsymbol{\theta})$$

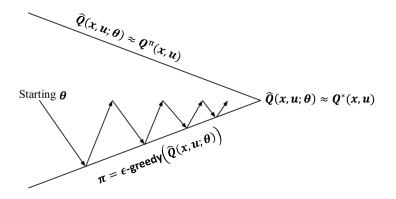
Forward-view TD(λ): the target is the λ -return $L_t^{\lambda}(\rho_t)$:

$$\delta oldsymbol{ heta}_t = \left(oldsymbol{L}_t^{\lambda}(
ho_t) - \hat{V}(\mathbf{x}_t; oldsymbol{ heta})
ight)
abla_{oldsymbol{ heta}} \hat{V}(\mathbf{x}_t; oldsymbol{ heta})$$

▶ Backward-view $TD(\lambda)$:

$$\begin{aligned} \delta_t &= \ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma \hat{V}(\mathbf{x}_{t+1}; \boldsymbol{\theta}) - \hat{V}(\mathbf{x}_t; \boldsymbol{\theta}) \\ \mathbf{e}_t &= \gamma \lambda \mathbf{e}_{t-1} + \nabla_{\boldsymbol{\theta}} \hat{V}(\mathbf{x}_t; \boldsymbol{\theta}) \\ \delta \boldsymbol{\theta}_t &= \delta_t \mathbf{e}_t \end{aligned}$$

Control with Value Function Approximation



- ▶ Policy Evaluation: approximate $Q^{\pi}(\mathbf{x}, \mathbf{u}) \approx \hat{Q}(\mathbf{x}, \mathbf{u}; \boldsymbol{\theta})$ via stochastic gradient descent
- ▶ **Policy Improvement**: ϵ -greedy policy improvement based on $\hat{Q}(\mathbf{x}, \mathbf{u}; \theta)$

Incremental Control Algorithms

- ▶ Q-Prediction: we must substitute a *target* for $Q^{\pi}(\mathbf{x}, \mathbf{u})$
- ► MC:

$$\delta \boldsymbol{\theta}_t = \left(\boldsymbol{L_t(\rho)} - \hat{\boldsymbol{Q}}(\mathbf{x}_t, \mathbf{u}_t; \boldsymbol{\theta}) \right) \nabla_{\boldsymbol{\theta}} \hat{\boldsymbol{Q}}(\mathbf{x}_t, \mathbf{u}_t; \boldsymbol{\theta})$$

► TD:

$$\delta\theta_t = \left(\ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma \hat{Q}(\mathbf{x}_{t+1}, \mathbf{u}_{t+1}; \boldsymbol{\theta}) - \hat{Q}(\mathbf{x}_t, \mathbf{u}_t; \boldsymbol{\theta})\right) \nabla_{\boldsymbol{\theta}} \hat{Q}(\mathbf{x}_t, \mathbf{u}_t; \boldsymbol{\theta})$$

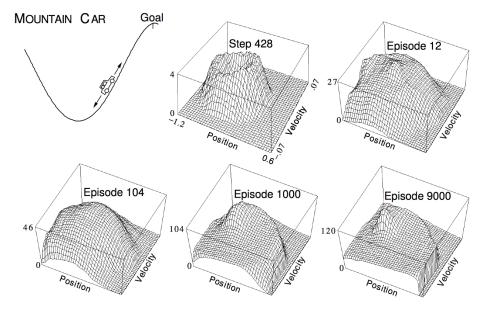
Forward-view TD(λ):

$$\delta \boldsymbol{\theta}_t = \left(\boldsymbol{L}_t^{\lambda}(\boldsymbol{\rho}) - \hat{Q}(\mathbf{x}_t, \mathbf{u}_t; \boldsymbol{\theta}) \right) \nabla_{\boldsymbol{\theta}} \hat{Q}(\mathbf{x}_t, \mathbf{u}_t; \boldsymbol{\theta})$$

Backward-view TD(λ):

$$\begin{aligned} \delta_t &= \ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma \hat{Q}(\mathbf{x}_{t+1}, \mathbf{u}_{t+1}; \boldsymbol{\theta}) - \hat{Q}(\mathbf{x}_t, \mathbf{u}_t; \boldsymbol{\theta}) \\ \mathbf{e}_t &= \gamma \lambda \mathbf{e}_{t-1} + \nabla_{\boldsymbol{\theta}} \hat{Q}(\mathbf{x}_t, \mathbf{u}_t; \boldsymbol{\theta}) \\ \delta \boldsymbol{\theta}_t &= \delta_t \mathbf{e}_t \end{aligned}$$

Linear SARSA with Coarse Coding in Mountain Car



Convergence of Prediction and Control Algorithms

► Model-free Prediction:

Algorithm	Finite Space	Linear	Non-Linear
On-Policy MC	✓	√	✓
On-Policy TD	✓	\checkmark	×
Off-Policy MC	✓	✓	✓
Off-Policy TD	✓	X	X

- ► There is a version of TD that follows the gradient of the projected Bellman error and converges in all cases
- ► Model-free Control:

Algorithm	Finite Space	Linear	Non-Linear
MC Control	✓	(√)	Х
SARSA	✓	(\checkmark)	X
Q-learning	✓	X	X

- $ightharpoonup (\checkmark) = \text{chatters around a near-optimal value function}$
- ▶ There is a gradient Q-learning version that converges in the linear case

Outline

Value Function Approximation

Incremental Methods

Batch Methods

Batch Prediction

- Given:
 - ▶ Value function approximation $\hat{V}(\mathbf{x}; \theta) \approx V^{\pi}(\mathbf{x})$
 - $\blacktriangleright \text{ Experience } \mathcal{D} := \{(\mathbf{x}_t, V^{\pi}(\mathbf{x}_t))\}$
- ▶ **Goal**: find the best fitting value function approximation:

$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) := \frac{1}{2} \mathbb{E} \left[\left(V^{\pi}(\mathbf{x}) - \hat{V}(\mathbf{x}; \boldsymbol{\theta}) \right)^{2} \right] \approx \frac{1}{2} \sum_{\mathbf{x}_{t} \in \mathcal{D}} \left(V^{\pi}(\mathbf{x}_{t}) - \hat{V}(\mathbf{x}_{t}; \boldsymbol{\theta}) \right)^{2}$$

- Stochastic gradient descent (SGD) with experience replay:
 - 1. Sample: $(\mathbf{x}_t, V^{\pi}(\mathbf{x}_t)) \sim \mathcal{D}$
 - 2. Apply SGD update with $\delta \boldsymbol{\theta}_t = \left(V^{\pi}(\mathbf{x}_t) \hat{V}(\mathbf{x}_t; \boldsymbol{\theta})\right) \nabla_{\boldsymbol{\theta}} \hat{V}(\mathbf{x}_t, \boldsymbol{\theta})$
 - SGD with experience replay finds the least-squares solution but it may take many iterations
- **Batch method**: the expected update must be zero at the min of $J(\theta)$:

$$0 = \mathbb{E}[\delta \boldsymbol{\theta}_t] \approx \sum_{\mathbf{x}_t \in \mathcal{D}} \left(V^{\pi}(\mathbf{x}_t) - \hat{V}(\mathbf{x}_t; \boldsymbol{\theta}) \right) \nabla_{\boldsymbol{\theta}} \hat{V}(\mathbf{x}_t, \boldsymbol{\theta})$$

lacktriangle Obtain $m{ heta}^*$ directly by solving the above equation

Batch Prediction for Linear Approximation

When the value function is represented by a linear combination of features $\hat{V}(\mathbf{x}; \boldsymbol{\theta}) = \boldsymbol{\theta}^{\top} \phi(\mathbf{x})$, the function $J(\boldsymbol{\theta})$ is quadratic in $\boldsymbol{\theta}$:

$$J(\boldsymbol{\theta}) = \frac{1}{2} \mathbb{E} \left[\left(V^{\pi}(\mathbf{x}) - \boldsymbol{\theta}^{\top} \phi(\mathbf{x}) \right)^{2} \right] \approx \frac{1}{2} \sum_{\mathbf{x}_{t} \in \mathcal{D}} \left(V^{\pi}(\mathbf{x}_{t}) - \boldsymbol{\theta}^{\top} \phi(\mathbf{x}_{t}) \right)^{2}$$

lacktriangle We can obtain the least squares solution $m{ heta}^*$ directly:

$$0 = \mathbb{E}\left[\delta\theta_{t}\right] = \sum_{\mathbf{x}_{t} \in \mathcal{D}} (V^{\pi}(\mathbf{x}_{t}) - \boldsymbol{\theta}^{\top}\phi(\mathbf{x}_{t}))\phi(\mathbf{x}_{t})$$
$$\left(\sum_{\mathbf{x}_{t} \in \mathcal{D}} \phi(\mathbf{x}_{t})\phi(\mathbf{x}_{t})^{\top}\right)\boldsymbol{\theta} = \sum_{\mathbf{x}_{t} \in \mathcal{D}} V^{\pi}(\mathbf{x}_{t})\phi(\mathbf{x}_{t})$$

Linear Least Squares Prediction Algorithms

- lackbox We do not know the true values $V^\pi(\mathbf{x}_t)$ and must use noisy samples instead
- ► Least-Squares Monte Carlo (LSMC):

$$V^{\pi}(\mathbf{x}_t) pprox \mathbf{L}_t(
ho)$$

Least-Squares Temporal Difference (LSTD):

$$V^{\pi}(\mathbf{x}_t) pprox \ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma \hat{V}(\mathbf{x}_{t+1}; \boldsymbol{\theta})$$

▶ Least-Squares $TD(\lambda)$ (LSTD(λ)):

$$V^{\pi}(\mathbf{x}_t) \approx L_t^{\lambda}(\rho)$$

lacktriangle In each case, we can solve directly for the fixed point $oldsymbol{ heta}^*$

Linear Least-Squares Prediction Algorithms

$$0 = \sum_{t=0}^{T} \alpha \left(L_t(\rho) - \hat{V}(\mathbf{x}_t; \boldsymbol{\theta}) \right) \phi(\mathbf{x}_t)$$

LSMC:

$$\boldsymbol{\theta}^* = \left(\sum_{t=0}^T \phi(\mathbf{x}_t) \phi(\mathbf{x}_t)^T\right)^{-1} \sum_{t=0}^T \phi(\mathbf{x}_t) L_t(\rho)$$

$$0 = \sum_{t=0}^{T} \alpha \left(\ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma \hat{V}(\mathbf{x}_{t+1}; \boldsymbol{\theta}) - \hat{V}(\mathbf{x}_t; \boldsymbol{\theta}) \right) \phi(\mathbf{x}_t)$$

LSTD

$$\boldsymbol{\theta}^* = \left(\sum_{t=0}^T \phi(\mathbf{x}_t) \left(\phi(\mathbf{x}_t) - \gamma \phi(\mathbf{x}_{t+1})\right)^\top\right)^{-1} \sum_{t=0}^T \phi(\mathbf{x}_t) \ell(\mathbf{x}_t, \mathbf{u}_t)$$

$$0 = \sum_{t=0}^{T} \alpha \left(\ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma \hat{V}(\mathbf{x}_{t+1}; \boldsymbol{\theta}) - \hat{V}(\mathbf{x}_t; \boldsymbol{\theta}) \right) \mathbf{e}_t$$

▶ LSTD(λ)

$$\boldsymbol{\theta}^* = \left(\sum_{t=0}^T \mathbf{e}_t \left(\phi(\mathbf{x}_t) - \gamma \phi(\mathbf{x}_{t+1})\right)^\top\right)^{-1} \sum_{t=0}^T \mathbf{e}_t \ell(\mathbf{x}_t, \mathbf{u}_t)$$

Convergence of Linear-Least Squares Prediction Algorithms

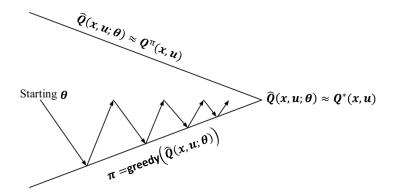
► On-Policy:

Algorithm	Finite Space	Linear	Non-Linear
MC	✓	√	✓
LSMC	✓	\checkmark	_
TD	✓	\checkmark	X
LSTD	✓	✓	_

Off-Policy:

Algorithm	Finite Space	Linear	Non-Linear
MC	✓	√	✓
LSMC	✓	\checkmark	_
TD	✓	X	X
LSTD	✓	\checkmark	_

Least Squares Policy Iteration



- ▶ **Policy Evaluation**: least-squares *Q* estimation using data from old policies
- **Policy Improvement**: does not have to be ϵ -greedy since data from old policies is stored

Least Squares Policy Iteration

- ▶ Policy Evaluation: efficiently use all experience $\mathcal{D} := \{(\mathbf{x}_t, \mathbf{u}_t, V^{\pi}(\mathbf{x}_t))\}$ to compute $\hat{Q}(\mathbf{x}, \mathbf{u}; \theta) = \theta^{\top} \phi(\mathbf{x}, \mathbf{u})$
- Since the policy in PI is changing, the experience is generated from many different policies and we must approximate Q^{π} using **off-policy** learning
- ▶ Instead of importance sampling, use an idea from *Q*-learning:
 - Use experience: $\mathbf{x}_t, \mathbf{u}_t, \ell(\mathbf{x}_t, \mathbf{u}_t), \mathbf{x}_{t+1} \sim \pi_{old}$
 - With new action: $\mathbf{u}_{t+1} = \pi_{new}(\mathbf{x}_{t+1})$
 - ▶ Update $\hat{Q}(\mathbf{x}_t, \mathbf{u}_t; \boldsymbol{\theta})$ towards new action value: $\ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma \hat{Q}(\mathbf{x}_t, \mathbf{u}_{t+1}; \boldsymbol{\theta})$

Least Squares Policy Iteration

- ► Experience: $\mathbf{x}_t, \mathbf{u}_t, \ell(\mathbf{x}_t, \mathbf{u}_t), \mathbf{x}_{t+1} \sim \pi_{old}$
- ► Incremental update:

$$\delta \boldsymbol{\theta}_t = \left(\ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma \hat{Q}(\mathbf{x}_{t+1}, \boldsymbol{\pi}(\mathbf{x}_{t+1}); \boldsymbol{\theta}) - \hat{Q}(\mathbf{x}_t, \mathbf{u}_t; \boldsymbol{\theta}) \right) \phi(\mathbf{x}_t, \mathbf{u}_t)$$

▶ **LSTDQ**: least-squares TD Q estimation algorithm using the fact that the expected update must be zero at the minimum of $J(\theta)$:

$$0 = \sum_{t=0}^{T} \alpha \left(\ell(\mathbf{x}_t, \mathbf{u}_t) + \gamma \hat{Q}(\mathbf{x}_{t+1}, \pi(\mathbf{x}_{t+1}); \boldsymbol{\theta}) - \hat{Q}(\mathbf{x}_t, \mathbf{u}_t; \boldsymbol{\theta}) \right) \phi(\mathbf{x}_t, \mathbf{u}_t)$$

$$\boldsymbol{\theta}^* = \left(\sum_{t=0}^{T} \phi(\mathbf{x}_t, \mathbf{u}_t) \left(\phi(\mathbf{x}_t, \mathbf{u}_t) - \gamma \phi(\mathbf{x}_{t+1}, \pi(\mathbf{x}_{t+1})) \right)^T \right)^{-1} \sum_{t=0}^{T} \phi(\mathbf{x}_t, \mathbf{u}_t) \ell(\mathbf{x}_t, \mathbf{u}_t)$$

Algorithm LSPI-TD

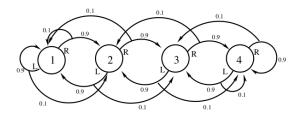
- 1: Input: experience \mathcal{D} and base policy π
- 2: **loop**
- 3: $\theta^* \leftarrow \mathsf{LSTDQ}(\pi, \mathcal{D})$
- 4: $\pi(\mathbf{x}) \leftarrow \underset{\mathbf{u} \in \mathcal{U}(\mathbf{x})}{\arg \min} \hat{Q}(\mathbf{x}, \mathbf{u}; \theta^*)$

Convergence of Control Algorithms

Algorithm	Finite Space	Linear	Non-Linear
MC Control	✓	(√)	Х
SARSA	✓	(\checkmark)	X
Q-learning	✓	X	X
LSPI-TD	✓	(✓)	_

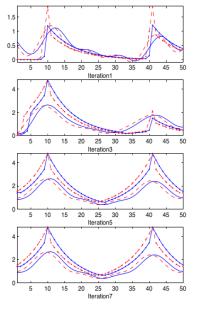
 $ightharpoonup (\checkmark) = \text{chatters around a near-optimal value function}$

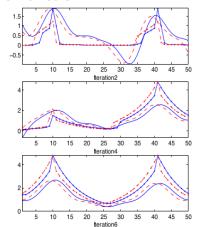
Example: Chain Walk



- Consider a 50 state version of the problem
- ▶ Cost: −1 in states 10 and 41 and 0 elsewhere
- Optimal policy: $\pi(x) = \begin{cases} R & \text{if } x \in \{1, \dots, 9\} \cup \{26, \dots, 41\} \\ L & \text{if } x \in \{10, \dots, 25\} \cup \{42, \dots, 50\} \end{cases}$
- lacktriangle Features: 10 evenly spaced Gaussians ($\sigma=4$) for each control
- Experience: 10,000 steps from a random walk policy

Chain Walk LSPI: Action-Value Function





- ► True (dotted) and approximate (smooth) action-value function
- ► Left (blue) and right (red) control

Chain Walk LSPI: Policy

