ECE276B: Planning & Learning in Robotics
Lecture 13: Value Function Approximation

Nikolay Atanasov

natanasov@ucsd.edu

UC San Diego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

mailto:natanasov@ucsd.edu

Outline

Value Function Approximation

Optimal Control in Large and Infinite Spaces

» So far we have been using a vector to represent the value function:
> every state x has an entry V" (x)

> every state-control pair (x,u) has an entry Q™(x, u)
» In very large and continuous state and control spaces:
> there are too many states and controls to store in memory
> it is too slow to approximate the value of each state individually
> Key idea:
> represent the value function using function approximation with parameters 6:
V™ (x) ~ V(x;0) Q™ (x,u) ~ Q(x,u; §)
» update the parameters @ using MC or TD learning

> this allows generalization from seen to unseen states and controls

Value Function Approximation

V(x;0)

I

Q(x,u; 0)

I

L~

=

1

Q(x,ug;0) - Q(x, up; 6)

Pt
N

(7]

f

X

Value Function Approximation

» Many function approximators are possible:
» Linear combination of features (differentiable)
» Neural network (differentiable)
> Fourier / wavelet base (differentiable)
» Nearest neighbor
» Decision tree

» A differentiable function approximator is necessary to allow parameter
updates

» A training method for non-stationary non-iid data is required

Value Approximation via Unconstrained Optimization

> Main idea:
> define a function J(@) measuring the error between V™ (x) and V/(x; 6)

> determine the parameters through an optimization problem:
0" ¢ argemin J(6)
> Two approaches to solving ming J(8):
> Incremental: use a (stochastic) descent method:
Oit1 = 0 + b0y
where 36, is a valid descent direction with Vg J(0x) " 66, < 0
»> Batch: obtain 8" from the optimality conditions:

VeJ(6) =0

Optimality Conditions

First-order Necessary Condition
Suppose J(0) is differentiable at 6. If @ is a local minimizer, then VJ(8) = 0.

Second-order Necessary Condition

Suppose J(0) is twice-differentiable at 0. If @ is a local minimizer, then
VJ(8) = 0 and V2J(8) = 0.

Second-order Sufficient Condition

Suppose J(8) is twice-differentiable at 6. If VJ(0) = 0 and V2J(0) > 0, then 8
is a local minimizer.

Necessary and Sufficient Condition

Suppose J(0) is differentiable at 0. If J is convex, then 0 is a global minimizer if
and only if VJ(8) = 0.

Descent Optimization Methods

Descent Direction Theorem

Suppose J(0) is differentiable at 6. If 36 such that VJ(8)766 < 0, then
3 e > 0 such that J(0 + @) < J(O) for all a € (0, ¢).

» The vector 40 is called a descent direction

> The theorem states that if a descent direction exists at 8, then it is possible
to move to a new point that has a lower J value.

» Descent method: given an initial guess 8y, take a step of size ax > 0 along
a descent direction 60 :
9k+1 = Bk + ak59k

Descent Optimization Methods

» Methods differ in the way 60, and ay are chosen:

> 560, should be a descent direction: VJ(8x)" 604 < 0
for all 6, # 6"

» 4 needs to ensure sufficient decrease in J to
guarantee convergence:

ay € argmin J(0x + adby)
a>0

usually obtained via line search

> Steepest descent direction: 60, := —%
> Gradient descent: 50, := —VJ(0) points in the

direction of steepest local descent and we can iterate:

01 =6k — ' VeJ(0y)

Min Square Error Value Function Approximation

» Find parameters @ minimizing the mean-square error (MSE) between the true
and approximate value function of policy :

1 . . 2 1 _ . 2
J(0) = 5E [(v (x) — V(x,e)) } OR J(0) = 3E {(o (x,u) — Q(x,u,e))]
where the expectation is over the state-control distribution induced by 7

» Need to choose:
» an incremental or batch optimization approach

> a representation for V(x; 8) or Q(x,u; 6)

10

Incremental vs Batch optimization

» Incremental optimization:
> Gradient descent:

50 = —VeJ(0) =E [(v”(x) —V(x; 0)) Vo V(x, 9)]
00 = —VeJ(0) =E [(Qﬁ(x, u) — Q(x, u; 9)) Vo Q(x, u; 9)]

» Stochastic gradient descent: uses samples x;, u; from 7 rather than
computing the exact expectation:

50, = (V’T(xt) — V(xe; 9)) Vo V(xe; 0)
66: = (Q(xe,u) — Q(x:,u1;0)) VoQ(x:,ur;)
The stochastic gradient equals the true gradient in expectation E[00:] = 60

> Batch optimization: the expected update E[06;] must be zero at the
minimizer 8* of J(0). Determine 6" directly by solving:

E[60,] = 0

11

Linear Value Function Approximation

> Associate state x with feature vector ¢(x) or state-control pair (x,u) with
feature vector ¢(x,u), e.g.:

> kernel distance to n landmarks: ¢(x) = [k(x,x1), ..., k(x,x,)]"
> piece and pawn configurations in chess

» Represent the value function by a linear combination of features:
V(x;0) = Z 0;¢;(x

Q(x,u;0) = 0" ¢(x,u) = Zejqu(x, u)
J
> Example: finite-space representation of V™(x) over {xi,...,x,} is a special

case of linear function approximation with ¢(x) = [Ljxex,},- - Lixex,}]
and 6 stores the values of the n points: V/(x;) = 20 071 =iy

12

Outline

Incremental Methods

13

Incremental Prediction for Linear Approximation

» When the value function is represented by a linear combination of features,
the objective function J(@) is quadratic in 6:

1) = %E [(Vﬂ(x) B 0T¢(x))2:| J(0) = %]E {(Q”(x, u) — 07 ¢(x, u))z}

» Stochastic gradient descent converges to a global optimum

» A descent direction §6; is easy to obtain:

50, = (V”(xt) ~ VU (xe; 9)) olxe)

feature value

prediction error

50 = (Q(xe,) — Qxe,uei 0)) Hlxc,)

L feature value
prediction error

14

Incremental Prediction Algorithms

> The (stochastic) gradient descent for optimizing 0 can be performed only if
V7™ (x) is available to compute the prediction error

> In practice, we substitute a target for V™(x) obtained from noisy samples
along an episode p = xg, ug, X1, Uy, ... ~ 7

> MC: uses a dataset D := {(x:, Le(pt))}
» TD: uses a dataset D := {(xt,f(xt, u) + YV (xer1; 0)}

> TD()): uses a dataset D := {(x:, L' (p))}

15

Incremental Prediction Algorithms

» MC: the target is the return L;(p;):
50, = (Lt(pt) — V(xe; 0)) VoV/(x:;0)
> TD: the target is the TD target:
00, = (Z(xt, u) + YV (xes1; 0) — V(xe; 0)) Vo V(x:; 0)
» Forward-view TD()\): the target is the A-return L} (p;):
50, = (L;\(pt) ~ V(xe: 0)) VoV(x:;0)
> Backward-view TD()\):

0r = £(X¢,up) + 7\7(xt+1; 0) — \7(xt; 0)
e =y\e;_1+ Vy \A/(Xt; 0)
601’ = 6tet

16

Control with Value Function Approximation

Starting @ Q(x,u;0) ~ Q*(x,u)

N

> Policy Evaluation: approximate Q7 (x,u) &~ Q(x, u; 8) via stochastic
gradient descent

> Policy Improvement: e-greedy policy improvement based on Q(x, u; 6)

17

Incremental Control Algorithms

> Q-Prediction: we must substitute a target for Q™(x,u)

> MC: . A
60, = (Lt(p) — Q(xe, ug; 0)) Ve Q(xt,ut; 0)

> TD:
56, = (é’(xt, u;) + A/(f)(xtﬂ, us1;0) — @(xt, u; 9)) Veé(xt, us; 0)
> Forward-view TD()\):
50, = (L}(p) = Qxe,ue; 8)) VoQlxe,uc; 0)
> Backward-view TD()\):

0 = L(x¢,ue) + ’YQ(XHL u;1;0) — @(Xu u;; 0)
e; = yXle;_1+ Vg é(xt, u;; 9)
601» = (5tet

18

Linear SARSA with Coarse Coding in Mountain Car

MOUNTAIN CAR Goal P
/,/ Step 428 - / / ~
Dy S } /
_ y /l
/ 4 / / ’ e a
@3 $ 2T |

HL

/ f 4
\ 4
0 ing) i ‘.‘\

/\\‘\

/ L T
/ . S . gy
Episode 104 y, Episode 9000)
/ 5 / 4
wcl ﬂ'ﬁ%@aiﬁg& / / e/
R
g -
SRS :.
ke o
S

19

Convergence of Prediction and Control Algorithms

» Model-free Prediction:

Algorithm Finite Space Linear Non-Linear
On-Policy MC v v v
On-Policy TD v v X
Off-Policy MC v v v
Off-Policy TD v X X

» There is a version of TD that follows the gradient of the projected Bellman

error and converges in all cases

» Model-free Control:

Algorithm | Finite Space Linear Non-Linear

MC Control v (v) X
SARSA v (v) X

Q-learning v X X

» (v') = chatters around a near-optimal value function

» There is a gradient Q-learning version that converges in the linear case

20

Outline

Batch Methods

21

Batch Prediction
» Given:

> Value function approximation V(x; 8) ~ V" (x)
> Experience D := {(x¢, V™ (x¢))}

» Goal: find the best fitting value function approximation:

inJ(0) = 2E | (v - V(x0) | = 3 3 (Vi(xe) - V(x:0))
min == x) — V(x; ~ = x:) — V(x¢;
o 2 2 ! ‘
x: €D
> Stochastic gradient descent (SGD) with experience replay:
1. Sample: (x¢, V™(x¢)) ~ D
2. Apply SGD update with 66, = (V"(xt) — V(xe; 9)) Vo V(xe,)
» SGD with experience replay finds the least-squares solution but it may take

many iterations

> Batch method: the expected update must be zero at the min of J(0):

0=E[s0]~ > (V”(xt) — V(xe; a)) VoV(x:,0)

x: €D

> Obtain 8" directly by solving the above equation
22

Batch Prediction for Linear Approximation

> When the value function is represented by a linear combination of features
V(x;0) = 0" ¢(x), the function J(0) is quadratic in 6:

) = 3| (V00 - 67600) | = 5 3 (vetx) - 07otx)

x: €D

> We can obtain the least squares solution 8™ directly:

0=E[0] =D (V(xe) — 0 6(x))d(xe)

x: €D

(Z ¢(xt)¢(xt)T> 0= Z V7 (xe)(x¢)

x:€D x: €D

23

Linear Least Squares Prediction Algorithms

> We do not know the true values V™(x;) and must use noisy samples instead
> Least-Squares Monte Carlo (LSMC):
VT(xe) = Le(p)
> Least-Squares Temporal Difference (LSTD):
V™ (xe) & U(xe, up) + 7V (xei1; 0)

> Least-Squares TD()\) (LSTD())):

> In each case, we can solve directly for the fixed point 6*

24

Linear Least-Squares Prediction Algorithms

> LSMC:

T 1T
0" = (Z ¢(Xt)¢(xt)T> Z B(x¢)Le(p)
t=0 t=0
;
— Za (Xe,Up) + 7V (xer1;0) — V(x ?‘9)> $(xt)
> st ° 1
= | D dxe) (6(xe) — 7¢(Xt+1))T> D dlxe)l(xe, ue)
t=0 0
T N N
= Z « (ug) + 7V (Xer1;0) — V(x; 0)) €
> LSTD()) - g

0= 3 (lo) - Vs 0)) ox0

t=0

]
= Xetat W(xtm)*) D> _ecllxi,ur)
t=0

25

Convergence of Linear-Least Squares Prediction Algorithms

> On-Policy:

> Off-Policy:

Algorithm | Finite Space Linear Non-Linear
MC v v v
LSMC v v —
TD v v X
LSTD v v —

Algorithm | Finite Space Linear Non-Linear
MC v v v
LSMC v v —
TD v X X
LSTD v v —

26

Least Squares Policy Iteration

Starting @ Q(x,u;0) ~ Q"(x,u)

» Policy Evaluation: least-squares @ estimation using data from old policies

» Policy Improvement: does not have to be e-greedy since data from old
policies is stored

27

Least Squares Policy Iteration

> Policy Evaluation: efficiently use all experience D := {(x, ur, V™(x¢))} to
compute Q(x,u;8) = 0" ¢(x,u)

» Since the policy in Pl is changing, the experience is generated from many
different policies and we must approximate Q™ using off-policy learning

» Instead of importance sampling, use an idea from Q-learning:

> Use experience: X, Ug, £(X¢, Ut), Xer1 ~ Told
> With new action: U1 = Tnew(Xet1)

» Update Q(xt,ut; 0) towards new action value: £(x, u;) —|—fy(:?(xt, us1; 0)

28

Least Squares Policy Iteration
> Experience: x¢, ug, £(X¢, Ur), Xer1 ~ Told

» Incremental update:
00; = (E(Xh Ut) + ’Y@(Xt+17ﬂ'(xt+1); 9) - @(Xtv ug; 9)) ¢(Xt, Ut)

> LSTDQ: least-squares TD Q estimation algorithm using the fact that the
expected update must be zero at the minimum of J(6):

T
0= Za (f(xt, ue) +7Q(xer1, m(xe41);) — Qxe, ur;)) ¢(xe, ur)

t=0

T 1T
= (Z B(xe,ur) ((Xe, ue) — YP(Xer1, 7T(XtJrl)))T> Z B(xe, ue)l(xe, ue)
t=0 t=0

Algorithm LSPI-TD

1: Input: experience D and base policy 7
2: loop
3: 6* + LSTDQ(m, D)
4: w(x) < argmin Q(x, u; 0*)
ucl(x)

29

Convergence of Control Algorithms

Algorithm | Finite Space Linear Non-Linear

MC Control v (v) X
SARSA v (v) X

Q-learning v X X
LSPI-TD v (v) —

> (V') = chatters around a near-optimal value function

30

Example: Chain Walk

v

Consider a 50 state version of the problem

v

Cost: —1 in states 10 and 41 and O elsewhere

R ifxe{l,...,9}U{26,...,41}
L ifxe{10,...,25} U{42,...,50}

v

Optimal policy: 7(x) = {

v

Features: 10 evenly spaced Gaussians (o = 4) for each control

» Experience: 10,000 steps from a random walk policy

31

Walk LSPI: Action-Value Function

15

1

Chain

20 25 30
Iteration1

05
0
5
4
2t
i
v
o .
5

20 25 30
Iteration3

20 25 30 35 40 45 50

lterations

20 25 30 35 40 45 50

lteration?

5 10 15 20 25 30 35 40 45 50
terationd

5 10 15 20 25 30 35 40 45 50
teration

» True (dotted) and approximate

(smooth) action-value function

> Left (blue) and right (red) control

Chain Walk LSPI: Policy

0 30
Heration1

0 30
narations

0 30
eralions

0 30
Heration7

30
Heration2

30
Herationa

30 50
Herations

> Left (blue) and right (red) control

33

	Value Function Approximation
	Incremental Methods
	Batch Methods

