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Continuous-Time Optimal Control



Continuous-Time Motion Model

> time: t € [0, T]
> state: x(t) € X CR" vVt € [0, T]
» control: u(t) eY CR™, Vt e [0, T]
> motion model: a stochastic differential equation (SDE):
X(£) = F(x(£), u(£)) + C(x(t), u(H))w(t)
defined by functions f : X xU — R" and C : X x U — R"*9

» white noise: w(t) € R?, Vt € [0, T]



Gaussian Process

> A Gaussian Process with mean function p(t) and covariance function
k(t,t') is an R9%valued continuous-time stochastic process {g(t)}, such that

every finite set g(t1),...,g(t,) of random variables has a joint Gaussian
distribution:
g(t1) w(ty) k(ty, t1) ... k(t1,ty,)
N N Y I
8(tn) w(tn) k(tn,t1) -+ k(tn, tn)

> Short-hand notation: g(t) ~ GP(u(t), k(t,t"))

» Intuition: a GP is a Gaussian distribution for a function g(t)



Brownian Motion

» Robert Brown made microscopic observations in 1827 that small particles in
plant pollen, when immersed in liquid, exhibit highly irregular motion

> Brownian Motion is an R%valued continuous-time stochastic process
{B(t)};>( with the following properties:

> 3(t) has stationary independent increments, i.e., for 0 < tp < t1 < ... < tn,

B(to), B(t1) — B(to), - - ., B(tn) — B(ta—1) are independent
B(t) — B(s) ~ N(0,(t — s)Q) for 0 < s < t and diffusion matrix Q
B(

t) is almost surely continuous (but nowhere differentiable)

> Standard Brownian Motion: 3(0) =0and Q =/

» Brownian motion is a Gaussian process 3(t) ~ GP(0, min {t,t'} Q)



White Noise

> White Noise is an R9-valued continuous-time stochastic process {w(t)},
with the following properties:
> w(t1) and w(tz) are independent if t; # t

> w(t) is a Gaussian process GP(0,(t — t')Q) with spectral density Q, where §
is the Dirac delta function.

» The sample paths of w(t) are discontinuous almost everywhere

» White noise is unbounded: it takes arbitrarily large positive and negative
values at any finite interval

» White noise can be considered the derivative of Brownian motion:
dB(t) = w(t)dt, where 3(t) ~ GP(0, min {t,t'} Q)

» White noise is used to model motion noise in continuous-time systems of
ordinary differential equations
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Continuous-Time Stochastic Optimal Control

» Problem statement:

min V™ (1,%0) := IE{ x(T)) / (x(t), m(t,x(t))) dt| x(7) = xo}
terminal cost stage cost
st x(t) = F(x(t), (¢, x(t))) + C(x(¢), w(¢,x(2)))w(t).
x(t) € X, 7(t,x(t)) € PCO([0, T], U)
» Admissible policies: set PC°([0, T],U) of piecewise continuous functions
from [0, T] to U

> Problem variations:
> x(7) can be given or free for optimization
» x(T) can be in a given target set 7 or free for optimization
» T can be given (finite-horizon) or free for optimization (first-exit)

> State and control constraints can be imposed via X and U



Assumptions

> Motion model f(x,u) is continuously differentiable wrt to x and continuous
wrt u

» Existence and uniqueness: for any admissible policy 7 and initial state
x(7) € X, T € [0, T], the noise-free system, x(t) = f(x(t), 7(¢t,x(t))), has a
unique state trajectory x(t), t € [r, T].

> Stage cost £(x,u) is continuously differentiable wrt x and continuous wrt u

» Terminal cost q(x) is continuously differentiable wrt x



Example: Existence and Uniqueness

» Example: Existence in not guaranteed

x(t) = x(t)?, x(0) =1

1
A solution does not exist forT > 1: x(t) = -
» Example: Uniqueness in not guaranteed

x(t) = x(t)3, x(0) =0
x(t) =0, Vt

Infinite number of solutions : 0 foro<t<r
X(t = 2 3/2

(3(t—1)) fort > 1
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Special Case: Calculus of Variations

» Let C([a, b],R™) be the set of continuously differentiable functions from
[a, b] to R™

> Calculus of Variations: find a curve y(x) for x € [a, b] from yg to yr that
minimizes a cumulative cost function:

. b v
yec1?[1al,rt]:],Rm) q(y(b))+/a Hy(),¥x))ex

st y(a) =yo, y(b) = yr

» The cost may be curve length or travel time for a particle accelerated by
gravity (Brachistochrone Problem)

» Special case of continuous-time deterministic optimal control:

» fully-actuated system: x = u
> notation: t < x, x(t) < y(x), u(t) = x(t) + y(x)
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Sufficient Condition for Optimality
» Optimal value function:

V*(t,x) < V™(t,x), Vrxe PC([0, TL,U), xe X

Sufficient Optimality Condition: HJB PDE

Suppose that V/(t,x) is continuously differentiable in t and x and solves the
Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE):

V(T,x) =q(x), VxeX
_oV(t,x)

9 = lr‘nelbr} [ﬁ(x, u) + Vi V(t,x) " f(x,u) + %tr (Z(x,u) [VaV(t, x)])]

for all t € [0, T] and x € X and where ¥(x,u) := C(x,u)C " (x,u).

Then, under the assumptions on Slide 9, V/(t, x) is the unique solution of the HJB
PDE and is equal to the optimal value function V*(t,x) of the continuous-time
stochastic optimal control problem.

The policy 7*(t,x) that attains the minimum in the HJB PDE for all t and x is an
optimal policy.
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Existence and Uniqueness of HJB PDE Solutions

» The HJB PDE is the continuous-time analog of the Bellman Equation

» The HJB PDE has at most one classical solution — a function which satisfies
the PDE everywhere

» When the optimal value function is not smooth, the HJB PDE does not have
a classical solution. It has a unique viscosity solution which is the optimal
value function.

» Approximation of the HIB PDE based on MDP discretization is guaranteed
to converge to the unique viscosity solution

> Most continuous function approximation schemes (which scale better) are
unable to represent non-smooth value functions

» All examples of non-smooth value functions seem to be deterministic, i.e.,
noise smooths the optimal value function
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HJB PDE Derivation

» A discrete-time approximation of the continuous-time optimal control
problem can be used to derive the HJB PDE from the DP algorithm

> Motion model: x = f(x,u) + C(x, u)w with x(0) = xg

» Euler Discretization of the SDE with time step 7:

>

>

| 2

Discretize [0, T] into N pieces of width 7 :=
Define x, := x(k7) and u, := u(k7) for k =0,..., N
Discretized motion model:
Xk41 = Xk + TF(Xk, uk) + C(Xk, uk)ex, €x ~N(0,71)
=xk +di, di ~N(TF(xk,ur), TZ(Xk, ug))
where X(x,u) = C(x,u)C " (x,u) as before

Gaussian motion model: pr(x’ | x,u) = ¢(x'; x + 7F(x,u), 7Z(x,u)), where ¢
is the Gaussian probability density function

Discretized stage cost: 7¢(x, u)
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HJB PDE Derivation

» Consider the Bellman Equation of the discrete-time problem and take the
limit as 7 — 0 to obtain a “continuous-time Bellman Equation”

» Bellman Equation: finite-horizon problem with t := k7
V(t, X) = rTéIZQ {7‘€(X7 u) + Exlwpf(.‘x)u) [V(t + 7, X/)]}
u
> Note that X’ = x +d where d ~ N(7f(x,u), 7Z(x, u))

> Taylor-series expansion of V(t + 7,x’) around (t,x):

V(t+7,x+d)=V(t,x) + T%—\t/(t,x) + o(7?)

+ [V V(t,x)] d+ %dT [V2V(t,x)] d + o(d®)
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HJB PDE Derivation

> Note that E [d"Md] = pu" Mp + tr(EM) for d ~ N (p, ¥) so that:

3%
Exmopr (- oy [V (t+ 7,%)] = V(t,%) + Ta(r, x) + o(7?)

+ 7 [VV ()] F(x0) + 2 tr (E(x,u) [VEV(E0)])
» Substituting in the Bellman Equation and simplifying, we get:

72
0= lrjnellg {E(x7 u) + %—\{(t,x) + [VuV(£,x)] " F(x,u) + %tr (Z(x,u) [V2V(t,x)]) + M}

T

> Taking the limit as 7 — 0 (assuming it can be exchanged with minygy) leads
to the HJB PDE:

0= iy {1000 e o) ¢ 3o (5l V)
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Example 1: Guessing a Solution for the HJB PDE

>

>

>

System: x(t) = u(t), |u(t)| <1,0<t<1
Cost: £(x,u) =0 and q(x) = $x? for all x € X and u € U

Since we only care about the square of the terminal state, we can construct a
candidate optimal policy that drives the state towards 0 as quickly as possible
and maintains it there:

-1 ifx>0
7(t,x) = —sgn(x) =<0 ifx=0
1 ifx<0

The value in not smooth: V7(t,x) = 1 (max {0, x| — (1 - t)})?

We will verify that this function satisfies the HJB and is therefore indeed the
optimal value function
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Example 1: Partial Derivative wrt x

» Value function and its partial derivative wrt x for fixed t:

V™ (t,x) = % (max {0, |x| — (1 — £)})?
J(t,x)
—(1—-¢t) O (1-¢t) x

VT (t,x)
ox

= sgn(x) max{0, |x| — (1 —t)}

aJ(t,x)

/

(1-¢) x
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Example 1: Partial Derivative wrt t

» Value function and its partial derivative wrt t for fixed x:

1 4
V(£:x) = 5 (max{0,]x]| = (1 - 1)}’ ‘967(:’)‘)
aJ(,
(%) o
x| =1 x| 1

0 1— x| o 1—x]
—|xl>1
—[xl <1

— max{0, x| — (1 - )}
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Example 1: Guessing a Solution for the HJB PDE

> Boundary condition: V™(1,x) = $x* = q(x)

» The minimum in the HIB PDE is obtained by u = —sgn(x):

min VT (t,x) n 8V"(t,x)u
Ju|<1 ot Ox

= min ((1 + sgn(x)u) (max{0, |x| — (1 —t)})) =0

lu]<1

» Conclusion: V7(t,x) = V*(t,x) and 7*(t,x) = —sgn(x) is an optimal policy
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Example 2: HJB PDE without a Classical Solution

> System: x(t) = x(t)u(t), |u(t)] <1,0<t<1
» Cost: {(x,u)=0and gq(x) =xforall x€ X and u e U
-1 ifx>0

» Optimal policy: 7(t,x) =<0 ifx=0
if x <0 X

» Optimal value function:
e Ix x>0
VT(t,x) =<0 x=0
el”tx x<0

w
@
ol

» The value function is not differentiable wrt x at x = 0 and hence does not
satisfy the HIJB PDE in the classical sense



Inf-Horizon Continuous-Time Stochastic Optimal Control

> V™(x):=E [ 000 e\ii L(x(t), m(t,x(t)))dt| with v € [0, 00)

discount

HJB PDEs for the Optimal Value Function

Hamiltonian: H(x,u,p) = £(x,u) + p' f(x,u) + %tr (C(x,u)C " (x,u)[Vyp])

V*
Finite Horizon: _aat (t,x) = mibn{ H(x,u, Vi V*(t,x)), V*(T,x)=q(x)
ue
First Exit: 0=minH(x,u, VxV*(x)),  V*(x)=q(x), VxeT
UIS
Discounted LV (x) = min H(x, u, Vx V()
: — = mi X
Y ueld e
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Tractable Problems
> Control-affine motion model: x = a(x) + B(x)u + C(x)w

> Stage cost quadratic in u: {(x,u) = g(x) + Ju’ R(x)u, R(x) = 0

» The Hamiltonian can be minimized analytically wrt u (suppressing the
dependence on x for clarity):

H(x,u,p) = q + %UTRU +p' (a+ Bu)+ %tr(CCTpx)
VuH(x,u,p) = Ru+ BTp VﬁH(x,u7 p)=R>0
> Optimal policy for t € [0, T] and x € X
7 (t,x) = arg min H(x, u, Vi (t,x)) = —R7(x)B " (x) Vi(t, x)
u

» The HJB PDE becomes a second-order quadratic PDE, no longer involving
the min operator:

V(T,x) = q(x),
1 1
—Vi(t,x) = qg+a' Vi(t,x)+ 5tr(ccT Vi (t,X)) — EVx(t,x)TBR’lBT Vi(t, x)
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Example: Pendulum

» Pendulum dynamics (Newton's second law for
rotational systems):

mL?0 = u — mglL sin 6 + noise
> Noise: cw(t) with w(t) ~ GP(0,5(t — t'))

> State-space form with x = (x1,x2) = (6, 6):

= ks (1] (0 o)

> Stage cost: {(x, u) = q(x) + §u?

mg cosl

» Optimal value and policy for a discounted problem formulation:

T™(x) = —= V* " (x)

iV*(X) = q(x) + 0 V5, (x) + ksin(a) Vi (x) + = VX’ZXZ(X) r(VQZ(X))z

24



Example: Pendulum
> Parameters: k =0 =r=1, v =0.3, q(6,6) = 1 — exp(—26?)

» Discretize the state space, approximate derivatives via finite differences, and
iterate:

Vit (x) = VO(x) + (’y min H(x, u, Vx V() — v(’)(x)), a=0.01

q(x) V(x) m(x)

+8
2
20
2

-8

-7t 0 tn
position
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Outline

Continuous-Time PMP
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Continuous-Time Deterministic Optimal Control

> Problem statement:

min  V7(0,%0) = q(x(T)) /é (£, x(1)))dt

s.t. x(t) = f(x(t),u(t)), ) = Xo,
x(t) € X,
7(t,x(t)) € PC°([0, T],U)

» Admissible policies: PCO([0, T],i) is the set of piecewise continuous
functions from [0, T] to U

» Optimal value function: V*(t,x) = min, V7 (t,x)

27



Relationship to Mechanics

> Costate p(t) is the gradient (sensitivity) of the optimal value function
V*(t,x(t)) with respect to the state x(t).

» Hamiltonian: captures the total energy of the system:
H(x,u,p) = £(x,u) +p' f(x,u)

» Hamilton’s principle of least action: trajectories of mechanical systems
minimize the action integral foT £(x(t),x(t))dt, where the Lagrangian
£(x,%) := K(x) — U(x) is the difference between kinetic and potential energy

> |f the stage cost is the Lagrangian of a mechanical system, the Hamiltonian is
the (negative) total energy (kinetic plus potential)

28



Lagrangian Mechanics

» Consider a point mass m with position x and velocity x

> Kinetic energy K(x) := $m||x|3 and momentum p := mx

_9U(x)
ox

> Potential energy U(x) and conservative force F =

> Newtonian equations of motion: F = mx

> Note that 2% — F — mx = dp— 4 <0K(_>‘<)>

> Note that ag)(.(x) =0 and ag)((x) =0

> Lagrangian: £(x,x) := K(x) — U(x)

d [ 96(xx) oL(x,x) _
xx) 8):(x -0

» Euler-Lagrange equation: a( Ox

29



Conservation of Energy

> Total energy E(x,x) = K(x) + U(x) = 2K(x) — £(x,x) = p x — £(x, )

» Note that:
d (67%) d 6Z(x,x)TX _ ([ d 0(x,%) THaz(x,x)Tx
dt dr \ ox dt ox %
d . 9% . 9x,x) . D, .
Eé(x,x) = o X + P + aé(x,x)

» Conservation of energy using the Euler-Lagrange equation:

d o d [ox,x) ", d, .. 9, .
th(x,x)—dt< o x)—dtf(x,x)——atﬁ(xm)—o

» In our formulation, the costate is the negative momentum and the
Hamiltonian is the negative total energy
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> Optimal open-loop trajectories (local minima) can be computed by solving
a boundary-value ODE with initial state x(0) = xo and terminal costate

p(T) = Vxa(x(T))

Theorem: Pontryagin's Minimum Principle (PMP)

> Let u*(t): [0, T] — U be an optimal control trajectory
> Let x*(t) : [0, T] — X be the associated state trajectory from xg

> Then, there exists a costate trajectory p*(t) : [0, T] — X satisfying:
1. Canonical equations with boundary conditions:

X(t) = VpH(X'(1),u™(1),p™(8)), x7(0) =x0
p'(t) = —VxH(x"(1),u”(2),p" (1)), P (T) = Vxa(x"(T))

2. Minimum principle with constant (holonomic) constraint:

u™(t) € arg min H(x"(t),u, p*(t)), Vvt € [0, T]
H(x"(t),u"(t),p"(t)) = constant, vVt € [0, T]

» Proof: Liberzon, Calculus of Variations & Optimal Control, Ch. 4.2
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HJB PDE vs PMP

» The HJB PDE provides a lot of information — the optimal value function and
an optimal policy for all time and all states!

» Often, we only care about the optimal trajectory for a specific initial
condition xq. Exploiting that we need less information, we can arrive at
simpler conditions for optimality — the PMP

» The HJB PDE is a sufficient condition for optimality: it is possible that the
optimal solution does not satisfy it but a solution that satisfies it is
guaranteed to be optimal

» The PMP is a necessary condition for optimality: it is possible that
non-optimal trajectories satisfy it so further analysis is necessary to determine
if a candidate PMP policy is optimal

» The PMP requires solving an ODE with split boundary conditions (not easy
but easier than the nonlinear HJB PDE!)

» The PMP does not apply to infinite horizon problems, so one has to use
the HJB PDE in that case
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Proof of PMP (Step 0: Preliminaries)

Lemma: V-min Exchange

Let F(t,x,u) be continuously differentiable in t € R, x € R”, u € R™ and let

U C R™ be a convex set. Assume 7*(t,x) = arg min F(t,x, u) exists and is
ueld
continuously differentiable. Then, for all t and x:

0 . 0
o (Lnelzg F(t,x, u)> = aF(t,x,u)

Vx (.’2’3 F(t,x, u)> = VXF(t,x,u)’

u=m*(t,x
u=m*(t,x) (&%)

v

> Proof: Let G(t,x) := minyeys F(t,x,u) = F(t,x,7*(t,x)). Then:

0 0 or*(t,x)
aG(t,x) = 8tl-_(t7x,u)

0
+ %F(LX,U) ot

u=m*(t,x) u=m*(t,x)

=0 by 1st order optimality condition

A similar derivation can be used for the partial derivative wrt x.
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Proof of PMP (Step 1: HJB PDE gives V*(t,x))

> Extra Assumptions: V*(t,x) and 7*(t,x) are continuously differentiable in
t and x and U is convex. These assumptions can be avoided in a more
general proof.

» With a continuously differentiable value function, the HJB PDE is also a
necessary condition for optimality:

V*(T,x)=q(x), VxelX

0 =min <£(x,u) + %V*(t, x) + Ve V*(t, x)Tf(x7u)), Vte[0, T],xe X

ucl

:=F(t,x,u)

with a corresponding optimal policy 7*(t, x).
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Proof of PMP (Step 2: V-min Exchange Lemma)

» Apply the V-min Exchange Lemma to the HJB PDE:
2

0= (minF(t.xu)) = 2 vi(e.x)+ | Lvvi(e )Tf( “(£,%))
T ot \uy B W T 5 X ot~ X X mARX

0=Vy <min F(t,x, u))
ueld

= Vi l(x,u*) + VXQV*(t, x) 4 [V2V*(t, )] (x,u*) + [Vyf(x, u*)] TV, V*(t, x)

ot
where u* := 7*(t, x)
> Evaluate these along the trajectory x*(t) resulting from 7*(t,x*(t)):

x*(t) = F(x*(8),u™(1)) = VpH(x"(2),u”(t),p),  x7(0) = xo
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Proof of PMP (Step 3: Evaluate along x*(t), u*(t))

> Evaluate the results of Step 2 along x*(t):

0?V*(t,x)
ot?

0

0= VV*tx

X=X

.
1 x*(t)
=x*(1)

8
== a J r(t) = r(t) = const. Vt
(1)

d
0 = V,l(X,u") [x=x=(¢) + p tx|xx ()

Jr[vxf(x,u |x x* (t)]T[v V*( )|x X*(t)]
= Vil (%, )iz (1) + P () + [Vif (%, 0%) e ()] T P (2)
=P (t) + ViH(x (t),U*(t),P (1))
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Proof of PMP (Step 4: Done)

» The boundary condition V*(T,x) = g(x) implies that V4 V*(T,x) = Vyq(x)
for all x € X and thus p*(T) = Viq(x*(T))

» From the HJB PDE we have:

0 * . *
—EV (t,x) = min H(x,u, V4 V*(t,-))

which along the optimal trajectory x*(t), u*(t) becomes:
—r(t) = H(x*(t),u"(t), p*(t)) = const
» Finally, note that

u*(t) = argmin F(t,x*(t),u)
ueld

= arfenglin {é(x*(t), u) + [V V*(t, X)|x:x*(t)]Tf(x*(t)7 u)}
= ar§€n;in {e(x*(t),u) + p*(t) T F(x*(t),u) }

= argmin H(x"(t), u, p*(1))
ucel
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Example: Resource Allocation for a Martian Base
> A fleet of reconfigurable general purpose robots is sent to Mars at t =0
» The robots can 1) replicate or 2) make human habitats

» The number of robots at time t is x(t), while the number of habitats is z(t)
and they evolve according to:

x(t) = u(t)x(t), x(0)=x>0
z(t) = (1 —u(t))x(t), z(0)=0

0<u(t)<1
where u(t) denotes the percentage of the x(t) robots used for replication

» Goal: Maximize the size of the Martian base by a terminal time T, i.e.:

max 2(T) :/O (1 — u(t))x(t)dt
with f(x,u) = ux, {(x,u) = —(1 — u)x and q(x) =0
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Example: Resource Allocation for a Martian Base

» Hamiltonian: H(x, u,p) = —(1 — u)x + pux
» Apply the PMP:
X*(t) = VpH(x™, u™, p*) = x*(t)u*(t), x*(0)=x,

pr(t) = =ViH(", u", p") = (1 = u(t)) — p(8)u™(¢), p*(T) =0,

u*(t) = aorguniiln H(x*(t), u, p*(t)) = aor;gurziln(x*(t)(p*(t) + 1)u)

> Since x*(t) > 0 for t € [0, T]:
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Example: Resource Allocation for a Martian Base

» Work backwards from t = T to determine p*(t):

» Since p*(T) =0 for t close to T, we have u*(t) = 0 and the costate
dynamics become p*(t) =1

> Attimet =T — 1, p*(t) = —1 and the control input switches to u™(t) =1
> Fort<T-1:

pr(t)=—p"(t), p(T—-1)=-1
=p(t)=e T V(T 1)< -1 fort < T—1

» Optimal control:

- 1 ifo<t<T-1
u =
0 fT-1<t<T

40



Example: Resource Allocation for a Martian Base

» Optimal trajectories for the Martian resource allocation problem:

u*(t) p(t)

» Conclusions:

> All robots replicate themselves from t =0 to t = T — 1 and then all robots
build habitats
> If T <1, then the robots should only build habitats

» If the Hamiltonian is linear in u, its min can only be attained on the boundary
of U, known as bang-bang control
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PMP with Fixed Terminal State

> Suppose that in addition to x(0) = xo, a final state x(T) = x, is given.

» The terminal cost q(x(T)) is not useful since V*(T,x) = oo if x(T) # x;.
The terminal boundary condition for the costate p(T) = Vxq(x(T)) does not
hold but as compensation we have a different boundary condition x(T) = x,.

» We still have 2n ODEs with 2n boundary conditions:

x(t) = f(x(t),u(t)),  x(0) =x0, x(T) =x;
p(t) = —VXH(X(t),U(t),p(t))

» If only some terminal state are fixed x;(T) = x, for j € [, then:
x(t) = f(x(t),u(t)),  x(0) =x0, x{(T)=xrj, Vjel

p(t) = —VxH(x(t),u(t),p(t)),  pi(T) = %q(X(T)% Vi¢l

J
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PMP with Fixed Terminal Set

» Terminal set: a k dim surface in R” requiring:
xX(T)eT={xeR"|hj(x)=0, j=1,...,n—k}

> The costate boundary condition requires that p(T) is orthogonal to the
tangent space D = {d € R" | V,hj(x(T))'d =0, j=1,...,n— k}:

x(t) = f(x(t),u(t)),  x(0)=x0, h(x(T))=0,j=1,....n—k
p(t) = —VxH(x(t), u(t), p(t)), P(T) € span{Vyh;(x(T)), v}
or d'p(T)=0,vdecD
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PMP with Free Initial State

Suppose that xg is free and subject to optimization with additional cost term
£o(xo)

The total cost becomes £5(xg) + V/(0,x0) and the necessary condition for an
optimal initial state xq is:

Vilo(X)|x=x, + VxV(0,X)|x=x, =0 = p(0) = —Vyxlo(x0)
—_———
=p(0)

We lose the initial state boundary condition but gain an adjoint state
boundary condition:

x(t) = f(x(t),u(t))
p(t) = =VxH(x(t), u(t),p(t)), p(0) = =Vxlo(x0), P(T) = Vxa(x(T))

Similarly, we can deal with some parts of the initial state being free and some
not
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PMP with Free Terminal Time

>

Suppose that the initial and/or terminal state are given but the terminal time

T is free and subject to optimization (first-exit formulation)

We can compute the total cost of optimal trajectories for various terminal
times T and look for the best choice, i.e.:

0 V*(t,x)

ot =0

t=T,x=x(T)
Recall that on the optimal trajectory:

HO (1), u% (0.7 () = — 2 V*(£,%)

- = const. V't
ot

x=x*(t)

Hence, in the free terminal time case, we gain an extra degree of freedom
with free T but lose one degree of freedom by the constraint:

H(x*(t),u*(t), p*(t)) = 0, vVt € [0, T]
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PMP with Time-Varying System and Cost

» Suppose that the system and stage cost vary with time:

x = f(x(t),u(t),t) (x(t),u(t), t)
» Convert the problem to a time-invariant one by making t part of the state,
i.e., let y(t) = t with dynamics:
y(t)=1, y(0)=0
,y(1))

> Augmented state z(t) := (x(t), y(t)) and system:

a(t) =F(z(2), u()) = | - u(0:-(0)

U(z,u) :==l(x,u,y) §(z) :=aq(x)
» The Hamiltonian need not to be constant along the optimal trajectory:
H(x,u,p, t) = {(x,u,t) +p' f(x,u,t)

x*(t) = F(x"(t),u"(t), ), x*(0) = xo

p*(t) = —VxH(x*(t),u"(t),p"(t), 1), p*(T) = Via(x*(T))
u*(t) € argmin H(x*(t),u, p*(t), t)

H(x* (£), 0™ (£), p*(£), ) # const
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Singular Problems

» The minimum condition u(t) € arg m|n H(x*(t),u, p*(t), t) may be

insufficient to determine u*(t) for aII t when x*(t) and p*(t) are such that
H(x*(t),u, p*(t), t) is independent of u over a nontrivial interval of time

> Optimal trajectories consist of portions where u*(t) can be determined from
the minimum condition (regular arcs) and where u*(t) cannot be
determined from the minimum condition since the Hamiltonian is
independent of u (singular arcs)
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Example: Fixed Terminal State

> System: x(t) = u(t), x(0) =0, x(1) =1, u(t) eR
> Cost: min i fol(x(t)2 + u(t)?)dt

> Want x(t) and u(t) to be small but need to meet x(1) =1

x(t)
1

0 1t

» Approach: use PMP to find a locally optimal open-loop policy
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Example: Fixed Terminal State

» Pontryagin's Minimum Principle
» Hamiltonian: H(x, u,p) = 2(x* + v®) + pu
» Minimum principle: u(t) = argmin {1(x(t)*> + v*) + p(t)u} = —p(t)
ueR

» Canonical equations with boundary conditions:

x(t) = VpH(x(t), u(t), p(t)) = u(t) = —p(t), x(0) =0, x(1) =1
p(t) = =VxH(x(t), u(t), p(t)) = —x(t)

t

. . . . _ _ t 7t _ t7 -
> Candidate trajectory: X(t) = x(t) = x(t) =ae'+be "= ="+
> x(0)=0 = a+b=0
> x(1)=1 = ae+bel=1

x(t)
1
> Open-loop control: u(t) = x(t) = £+&;
0 1t
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Example: Free Initial State
> System: x(t) = u(t), x(0) = free, x(1) =1, u(t) €R
» Cost: min % fo (x(t)? + u(t)?)dt
> Picking x(0) = 1 will allow u(t) = 0 but we will accumulate cost due to x(t).

On the other hand, picking x(0) = 0 will accumulate cost due to u(t) having
to drive the state to x(1) = 1.

0 1 7

» Approach: use PMP to find a locally optimal open-loop policy
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Example: Free Initial State
» Pontryagin's Minimum Principle
> Hamiltonian: H(x,u,p) = 1(x* + u )eru
» Minimum principle: u(t) = arg mln{ 2+ u?) + p(t)u} = —p(t)
» Canonical equations with boundary conditions:
x(t) = VpH(x(t), u(t), p(t)) = u(t) = —p(t), x(1) =1
p(t) = =ViH(x(t), u(t), p(t)) = —x(t), p(0) =0

» Candidate trajectory:

. et+et
t)=x(t) = t)=ae' + be t=—"—
x(t) = x(t) x(t) = ae’ + be e
ot —t
p(t) = —x(t) = —aet + bet= = €

et+el

> x(1)=1 = aet+bel=1
» p(0)=0 = —-a+b=0
> x(0) ~ 0.65

el—et

> Open-loop control: u(t) = x(t) =

e+e_1



Example: Free Terminal Time

v

System: x(t) = u(t), x(0) =0, x(T) =1, u(t) eR

v

Cost: min [, 14 1(x(£)? + u(t)?)dt

v

Free terminal time: T = free

> Note: if we do not include 1 in the stage-cost (e.g., use the same cost as in
the previous example), we would get T* = co (see next slide for details)

v

Approach: use PMP to find a locally optimal open-loop policy
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Example: Free Terminal Time
» Pontryagin's Minimum Principle
> Hamiltonian: H(x(t), u(t), p(t)) = 1+ 3(x(t)* + u(t)®) + p(t)u(t)
» Minimum principle: u(t) = argmin {3(x(t)* 4+ v*) + p(t)u} = —p(t)
ueR

» Canonical equations with boundary conditions:
x(t) = VpH(x(t), u(t), p(t)) = u(t) = —p(t), x(0) =0, x(T) =1
p(t) = =VxH(x(t), u(t), p(t)) = —x(t)

—t

> Candidate trajectory: %(t) = x(t) = x(t) =ae' + be ' = :;:Z_T
> x(0)=0 = a+b=0
> x(T)=1 = ae +be T =1

» Free terminal time:
0= H(x(t), u(t), p(t)) = 1 + 5 (x(t)* = p(t)?)
1<(et—e_t2—(ef+e_t)2>:1_ 2
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Example: Time-Varying Singular Problem

> System: x(t) = u(t), x(0) = free, x(1) = free, u(t) € [-1,1]
> Time-varying cost: min 3 fol(x(t) — z(t))?dt for z(t) =1 — t?

> Example feasible state trajectory that tracks the desired z(t) until the slope
of z(t) becomes less than —1 and the input u(t) saturates:

1

0

» Approach: use PMP to find a locally optimal open-loop policy
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Example: Time-Varying Singular Problem

» Pontryagin's Minimum Principle
> Hamiltonian: H(x,u,p,t) = (x — z(t))* + pu
»> Minimum principle:

-1 if p(t) > 0
u(t) = arg min H(x(t), u, p(t), t) = < undetermined if p(t) =0
=t 1 if p(t) <0

» Canonical equations with boundary conditions:
x(t) = VpH(x(t), u(t), p(t)) = u(t),
p(t) = =ViH(x(t), u(t), p(t)) = —(x(t) — z(t)), p(0) =0, p(1) =0

» Singular arc: when p(t) = 0 for a non-trivial time interval, the control
cannot be determined from PMP

» In this example, the singular arc can be determined from the costate ODE.
For p(t) = 0:



Example: Time-Varying Singular Problem

> Since p(0) = 0, the state trajectory follows a singular arc until t; < 3 (since
u(t) = —2t € [—1,1]) when it switches to a regular arc with u(t) = —1
(since z(t) is decreasing and we are trying to track it)
> For0<t<t <l x(t) = z(t) p(t) =0
» Fort;<t<1:
t
x(t)=-1 = x(t):z(ts)—/ ds=1—t2—t+t
Jts
pt) = —(x(t) = 2(t)) =t —t. > +t,  p(ts)=p(1)=0
= p(s) = p(ts) +/ (2 —ts — 2+ t)dt, sets1]
ts

1 1 3 2
O=p(l)=t2—ti—-+-—t2+t2+2 -2 : .
= p(l) =1t —ts 3+2 S+5+3 5 |
= 0= (t — 1)%(1 - 4t;) 0/ 0.25 t
1
:>t5:Z
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Outline

Continuous-Time LQR
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Globally Optimal Closed-Loop Control
» Finite-horizon continuous-time deterministic optimal control:
T
min  V™(0,x0) := q(x(T))+/ (x(t), m(t,x(t)))dt
& 0

s.t. x(t) = f(x(t),u(t)), x(0) =x¢
x(t) € &, n(t,x(t)) € PC([0, T],U)

» Hamiltonian: H(x,u,p) := {(x,u) +p' f(x,u)

HJB PDE: Sufficient Condition for Optimality
If V/(t,x) satisfies the HJB PDE:

V(T,x) = q(x), Vx e X
0
T V(t,x) = lrjngﬂ H(x,u, VxV(t,x)), Vx e X, te[0,T]
then it is the optimal value function and the policy 7(t,x) that attains the
minimum is an optimal policy.
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Locally Optimal Open-Loop Control
» Finite-horizon continuous-time deterministic optimal control:
min  V™(0,xo) x(T)) / 0(x (t)))dt

st. x(t) = f(x(t),u(t)), x(0)=xo
x(t) € &, n(t,x(t)) € PC([0, T],U)

» Hamiltonian: H(x,u,p) := £(x,u) +p ' f(x,u)

PMP ODE: Necessary Condition for Optimality

If (x*(t),u*(t)) for t € [0, T] is a trajectory from an optimal policy 7*(t, x), then
it satisfies:

x*(t) = f(x*(t), u™(t)), x*(0) = xo

P (1) = = Vil (x*(£),u" (1)) — [Vf (x* (1), w™ ()] TP (1), p*(T) = Via(x*(T))
u(t) = argenb‘n[in H(x*(t), u, p*(t)), vVt e [0, T]
H(x*(t),u*(t), p*(t)) = constant, vVt € [0, T]
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Tractable Problems

» Control-affine dynamics and quadratic-in-control cost:

x = a(x) + B(x)u £(x,u) = g(x) + %UTR(X)U R(x) =0

» Hamiltonian:

H(x,u,p) = q(x) + %UTR(X)U +p ' (a(x) + B(x)u)
VuH(x,u,p) = R(x)u+ B(x)"p V2H(x,u,p) = R(x)
» HJB PDE: obtains the globally optimal value function and policy:
7*(t,x) = arg min H(x, u, Vy(t,x)) = —R(x) "1 B(x) " V(t, x),
V(T,x) = q(x),

—Vi(t,x) = q(x) +a(x) " Vi(t,x) — %V,((t7x)TB(x),‘i’(x)_lB(x)—r Vi(t, x).



Tractable Problems

» Control-affine dynamics and quadratic-in-control cost:
x = a(x) + B(x)u £(x,u) = q(x) + %UTR(X)U R(x) >0
»> Hamiltonian:
H(x,u,p) = gq(x) + %UTR(X)U +p ' (a(x) + B(x)u)
VuH(x,u,p) = R(x)u+ B(x)"p V2H(x,u,p) = R(x)

» PMP: both necessary and sufficient for a local minimum:

u = argmin H(x,u,p) = —R(x)"*B(x) p,

x = a(x) — B(x)R7(x)B" (x)p, x(0) = xo

b=~ (80) + VxBO) P — () — 5 Vil RGJul,  p(T) = au(x(T))
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Example: Pendulum
» Optimal value from HJB:

x = {ksi):‘&xl)] + m u, x(0) = xo

2(x) = [k co(s)(xl) (1)]

» Cost:

lx,u)=1— e 24 4 £u2 and q(x) =0

) ) ) » Optimal policy from HJB:
» PMP locally optimal trajectories:

u(t) = —rp(t), tel0,T]
Xl = X2, X1(0) =0
xp = ksin(x)) — r tp,  x(0)=0
pr = —de Pixg — py, pi(T)=0
p2 = —k cos(x1)pu, p2(T)=0
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Linear Quadratic Regulator

» Key assumptions that allowed minimizing the Hamiltonian analytically:

» The system dynamics are linear in the control u
» The stage-cost is quadratic in the control u

> Linear Quadratic Regulator (LQR): deterministic time-invariant linear
system needs to minimize a quadratic cost over a finite horizon:

T
mTjn V7(0,x%0) := %x( ) Qx(T) +/0 %x(t)TQx(t) + %u(t)TRu(t) dt

a(x(7)) £(x(t),u(t))
s.t. x=Ax+ Bu, x(0) = xo,
x(t) € R”, u(t) = n(t,x(t)) € R"

where Q=QT =0, Q=Q" >0,and R=R" ~0
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Linear ODE System

» Linear time-invariant ODE System:

x(t) = Ax(t) + Bu(t), x(tp) = xo

> Transition matrix for LTI ODE system: ®(t,s) = eAlt=s)
> ot t)=1
> &It s) = d(s, t)
> d(t,s) = d(t, to)P(to, 5)
> d)(tl + t2, S) = ¢(t1, $)<1>(1.“27 S) = ¢(t2, $)¢(t1, s)
> 2o(t,s) = Ad(t,s)

» Solution to LTI ODE system:

x(t) = ®(t, to)x(to) +/ ®(t, s)Bu(s)ds

to
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LQR via the PMP

» Hamiltonian: H(x,u,p) = %XT @x + %uTRu +p'Ax+p'Bu
» Canonical equations with boundary conditions:

x= VpH(x,u,p) Ax + Bu, x(0) = xg
p=-ViH(x,up)=—-Qx—A'p,  p(T)=Qx(T)

> PMP:
VuH(x,u,p) = Ru+BTp =0 = u(t)=-R'BTp(t)
V2H(x,u,p) =R >0 = u(t) is a minimum

» Hamiltonian matrix: the canonical equations can be simplified to a linear
time-invariant (LTI) system with two-point boundary conditions:

et R e
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LQR via the PMP

» Claim: There exists a matrix M(t) = M(t)T = 0 such that p(t) = M(t)x(t)
for all t € [0, T]

» Solve the LTI system described by the Hamiltonian matrix backwards in time:

A -BRBT|
[xa)} _ J—o —AT } ) [ x(T) ]
p(t) Qx(T)
&(t,T)
X(t) = (q>11(t'7 T) —+ ¢12(t, T)Q)X( T)
p(t) = (¢21(ta T) + ¢22(ta T)Q)X( T)

» Since D(t, T) := ®11(¢t, T) + $12(t, T)Q is invertible for ¢t € [0, T]:

p(t) - (¢21(t7 T) + cl)22(’: T)Q)Dil(t’ T) X(t)7 vt € [Ov T]

=:M(t)
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LQR via the PMP

» From x(0) = D(0, T)x(T), we obtain an open-loop control policy:
u(t) = _RilBT(¢21(t7 T) + ¢22(t’ T)Q)D(Ov T)71X0

> From p(t) = M(t)x(t), however, we can also obtain a closed-loop control
policy:
u(t) = —R BT M(t)x(t)

» We can obtain a better description of M(t) by differentiating
p(t) = M(t)x(t) and using the canonical equations:
p(t) = M(t)x(t) + M(t)x(t)
—Qx(t) — ATp(t) = M(t)x(t) + M(t)Ax(t) — M(t)BR™1Bp(t)
—M(t)x(t) = Qx(t) + AT M(t)x(t) + M(t)Ax(t) — M(t)BR™1BT M(t)x(t)

which needs to hold for all x(t) and t € [0, T] and satisfy the boundary
condition p(T) = M(T)x(T) = Qx(T)
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LQR via the PMP (Summary)

» A unique candidate satisfies the necessary conditions of the PMP for
optimality:

u(t) = —R1BTp(t)
= R IBT(dn(t, T) + do(t, T)Q)D(0, T) *xo (open-loop)
= —R7'BTM(t)x(t) (closed-loop)

» The candidate policy is linear in the state and the matrix M(t) satisfies a
quadratic Riccati differential equation (RDE):

—M(t) = Q + ATM(t) + M(t)A — M(t)BR*BTM(t), M(T)=Q

» The HJB PDE is needed to decide whether u(t) is globally optimal
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LQR via the HJB PDE
> Hamiltonian: H(x,u,p) = ix"Qx+ ju'Ru+p'Ax+p'Bu
» HJB PDE for t € [0, T] and x € A"

7*(t,x) = argmin H(x, u, Vi (t,x)) = —R7*BT V,(t,x),
ueld

1 1
—Vi(t,x) = 5xT Qx+x"ATV,(t,x) — 5 Vit x) " BRTIBTV,(t,x),

1
—x"Qx

V(T,x) = 5

» Guess a solution to the HJB PDE based on the intuition from the PMP:
m(t,x) = —R71BT M(t)x
V(t,x) = *XT/V’( t)x
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LQR via the HJB PDE

> Substituting the candidate V/(t,x) into the HJB PDE leads to the same RDE
as before and we know that M(t) satisfies it!

1 1
ExT M(T)x = EXTQX

. 1 1
—Zx"M(t)x = 5xT Qx+x AT M(t)x — 5xT/\/l(t)B/rlBTM(r)x
> Conclusion: since M(t) satisfies the RDE, V/(t,x) = 2x' M(t)x is the

unique solution to the HJB PDE and is the optimal value function for the
LQR problem with associated optimal policy 7(t,x) = —R™1BT M(t)x
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Continuous-Time Finite-Horizon LQG
> Linear Quadratic Gaussian (LQG) regulation problem:

min V’f(o,xo)—iE{eJx(T)TQx(m / Tt () uT(o) [g PRT} Hg} dt}

s.t. x=Ax+ Bu+ Cw, x(0) = xo,
x(t) € R”, u(t) = w(t,x(t)) € R™

» Discount factor: v € [0, x]
> Optimal value: V*(t,x) = 2x" M(t)x + m(t)
» Optimal policy: 7*(t,x) = —R™}(P + BT M(t))x
» Riccati Equation:
—M(t) = Q+ ATM(t) + M(t)A— (P + BT M(t)) T R™H(P + BT M(t)) — %M(t), M(T)
= 3 tr(CCTM(1)) - %m(t) m(T) =0
> M(t) is independent of the noise amplitude C, which implies that the optimal

policy *(t, x) is the same for the stochastic LQG and deterministic
LQR problems!
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Continuous-Time Infinite-Horizon LQG

> Linear Quadratic Gaussian (LQG) regulation problem:

min V7 (x0) := ;E{/Ooo e 7 [xT(t) uT(t)] [g PRT] [38} dt}

st. x=Ax+ Bu+ Cw, x(0) =xg
x(t) € R", u(t) = n(x(t)) € R™

v

Discount factor: «y € [0, c0)

v

Optimal value: V*(x) = Ix"Mx + m

v

Optimal policy: 7*(x) = —R7(P + BT M)x

v

Riccati Equation (‘care’ in Matlab):
1
“M=Q+A"M+MA—(P+B"M)TR™YP+B"M)
~

m = %tr(CCT/\/I)

v

M is independent of the noise amplitude C, which implies that the optimal
policy 7*(x) is the same for LQG and LQR!
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Relation Between Continuous-Time and Discrete-Time LQR

» The continuous-time system:
x = Ax + Bu

1 1
(x,u) = §xTQx + EuTRu

can be discretized with time step 7:
Xe+1 = (I + TA)x¢ + 7Buy
Tl(x,u) = ngQx + guTRu

» In the limit as 7 — 0, the discrete-time Riccati equation reduces to the
continuous one:

M=71Q+ (I +7A)" M(I +TA)
— (I +7A)"MTB(rR + 7B M7B) BT M(I + 7A)
M=71Q+M+7ATM+7MA—7MB(R+7B"MB)"'B"M + o(?)

1
0=Q+A"M+MA— MB(R+7B"MB)'B"M+ =o(?)
T
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