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What Is This Class About?

> ECE276A: sensing and estimation in robotics:

» how to model robot motion and observations
> how to estimate (distribution of) robot/environment state x; from history of
observations zg.; and control inputs ug.t—1

> ECE276B: planning and decision making in robotics:
> how to select control inputs ug.;—1 to accomplish a task

> References (optional):
» Dynamic Programming and Optimal Control: Bertsekas
» Planning Algorithms: LaValle (https://lavalle.pl/planning/)

> Reinforcement Learning: Sutton & Barto
(http://incompleteideas.net/book/the-book.html)

» Calculus of Variations and Optimal Control Theory: Liberzon
(http://liberzon.csl.illinois.edu/teaching/cvoc.pdf)


https://lavalle.pl/planning/
http://incompleteideas.net/book/the-book.html
http://liberzon.csl.illinois.edu/teaching/cvoc.pdf

Teaching Team

Instructor: Teaching Assistant:
» Nikolay Atanasov » Brian Lee
» Associate Professor, » Postdoc, ECE
ECE Department Department
. » Email: » Email:
natanasov@ucsd.edu kmblee@ucsd.edu

Teaching Assistant: Teaching Assistant:

» Yinzhuang Yi » Tianji Tang
» PhD Student, ECE » MS Student, ECE
Department Department

“ > Email: yiyi@ucsd.edu > Email: tit006@ucsd.edu




Prerequisites

>

Probability theory: random variables, probability density function,
expectation, covariance, total probability, conditional probability, Bayes rule

Linear algebra and systems: eigenvalues, symmetric positive definite
matrices, linear equations, linear systems of ODEs, matrix exponential

Optimization: unconstrained optimization, gradient descent

Programming: extensive experience with at least one language
(python/C++/Matlab), classes/objects, data structures (e.g., queue, list),
data input/output processing, plotting

It is up to you to judge if you are ready for this course!

» Consult with your classmates who took ECE276A

> Take a look at the material from last year:
https://natanaso.github.io/ece276b2024

> If the first assignment seems hard, the rest will be hard as well


https://natanaso.github.io/ece276b2024

Website, Assignments, Grading

» Course website: https://natanaso.github.io/ece276b

» Includes links to:

» Canvas: lecture recordings

» Piazza: course announcement, Q&A, discussion — check Piazza regularly

» Gradescope: homework submission and grades

» Assignments:
» 3 theoretical homeworks (16% of grade)
» 3 programming assignments in python + project report:

» Project 1: Dynamic Programming (18% of grade)
> Project 2: Motion Planning (18% of grade)
> Project 3: Optimal Control (18% of grade)

> Final exam (30% of grade)

» Grading:
> standard grade scale (93%+ = A) plus curve based on class performance
(e.g., if the top students have grades in the 86% - 89% range, then this will
correspond to letter grade A)
> no late submissions: work submitted past the deadline receives 0 credit


https://natanaso.github.io/ece276b

Collaboration and Academic Integrity

» Every assignment in this course is individual

» You are encouraged to discuss the assignments with other students in general
terms but the work you do and turn in should be completely your own

» An important element of academic integrity is fully and correctly
acknowledging any materials taken from the work of others. You should
provide references for papers and acknowledge in writing people you
discuss the assignments with in your submissions.

» Cheating will not be tolerated

» Instances of academic dishonesty will be penalized via grade reduction and
may be referred to the Office of Student Conduct for adjudication



Project Report: Examples

https://natanaso.github.io/ref/
Lauri_MonteCarloTreeSearch_
ICRA15_Workshop.pdf

https://natanaso.github.
io/ref/Schlotfeldt_
AdversarialInfoAcquisition_
RSS18_Workshop.pdf

Active Object Recognition via Monte Carlo Tree Search
Adversarial Information Acquisition

Mikico Lausi, Nikolay Atsnascw, George 1. Pappas, and Risto Ritals

Breot Schlotfeldt Nikolay Atanssor George J. Pappas
Dept. of Elsctrical and ¢ Enginsoring GRASP Liberstory
University of Pennsylvaia
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Course Schedule (Tentative)

Date Lecture Materials Assignments
Mar 31 | Introduction

Apr 02 | Markov Chains Grinstead-Snell Ch. 11

Apr 07 | Catch-up

Apr 09 | Markov Decision Processes Bertsekas 1.1-1.2 HW1, PR1
Apr 14 | Dynamic Programming Bertsekas 1.3-1.4

Apr 16 | Deterministic Shortest Path Bertsekas 2.1-2.3

Apr 21 | Configuration Space LaValle 4.3, 6.2-6.3

Apr 23 | Search-based Planning LaValle 2.1-2.3, JPS

Apr 28 | Catch-up

Apr 30 | Anytime Incremental Search RTAA*, ARA*, AD*, Anytime Search HW2, PR2
May 05 | Sampling-based Planning LaValle 5.5-5.6

May 07 | Catch-up
May 12 | Infinite-Horizon Optimal Control | Bertsekas 7.1-7.3, Sutton-Barto Ch 4
May 14 | Infinite-Horizon Optimal Control | Bertsekas 7.1-7.3, Sutton-Barto Ch 4
May 19 | Catch-up

May 21 | Model-Free Prediction Sutton-Barto 6.1-6.3 HW3, PR3
May 26 | Model-Free Control Sutton-Barto 6.4-6.7

May 28 | Value Function Approximation Sutton-Barto Ch. 9

Jun 02 | Linear Quadratic Control Bertsekas 4.1

Jun 04 | Continuous-Time Optimal Control | Bertsekas Ch. 3, Liberzon Ch. 2.4 and Ch. 4
Jun 11 | Final Exam

» Check website for updates: https://natanaso.github.io/ece276b


https://natanaso.github.io/ece276b
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Markov Chain and Markov Decision Process

» Markov Chain: probabilistic model of
system transitions
»> The state x; can be discrete or continuous

» The state transitions are random,
determined by a transition matrix or a
transition kernel

» Markov Decision Process: Markov chain
whose transition probabilities are decided by
control inputs u; p

» Motion planning, optimal control, and
reinforcement learning problems are
formalized using a Markov decision process

0.6 02 0.2
03 04 03
0.0 03 0.7

=P(xes1 = | xe = i)

11



Motion Planning

R.0.B.0.T. Comics

"HIS PATH-PLANNING MAY BE
SUB-OPTIMAL, BUT IT'S 60T FLAIR.,"
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A* Search

» Developed by Hart, Nilsson and
Raphael of Stanford Research
Institute in 1968 for the Shakey
robot

» MDP with deterministic transitions,
i.e., directed graph

» Minimize cumulative transition
costs subject to a goal constraint

» Graph search using a specific node
visitation rule

» Video: https://youtu.be/ casTen
qXdn6ynwpil?t=3mb5s



https://youtu.be/qXdn6ynwpiI?t=3m55s
https://youtu.be/qXdn6ynwpiI?t=3m55s
https://youtu.be/qXdn6ynwpiI?t=3m55s

Search-Based Motion Planning

» CMU'’s autonomous car used search-based motion planning in the DARPA
Urban Challenge in 2007

P> Video: https://www.youtube.com/watch?v=4hFh100i8KI
» Video: https://www.youtube.com/watch?v=qXZt-B7iUyw

» Paper: Likhachev and Ferguson, “Planning Long Dynamically Feasible
Maneuvers for Autonomous Vehicles,” [JRR, 2009,
http://journals.sagepub.com/doi/pdf/10.1177/0278364909340445

14


https://www.youtube.com/watch?v=4hFhl0Oi8KI
https://www.youtube.com/watch?v=4hFhl0Oi8KI
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http://journals.sagepub.com/doi/pdf/10.1177/0278364909340445

Sampling-Based Motion Planning

> RRT* algorithm on a high-fidelity car model — 270 degree turn
> Video: https://www.youtube.com/watch?v=p3nZHnOWhrg
» Video: https://www.youtube.com/watch?v=LKL5qRBiJaM

» Karaman and Frazzoli, "Sampling-based algorithms for optimal motion
planning,” 1JRR, 2011,
http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761

15


https://www.youtube.com/watch?v=p3nZHnOWhrg
https://www.youtube.com/watch?v=p3nZHnOWhrg
https://www.youtube.com/watch?v=LKL5qRBiJaM
http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761

» RRT algorithm on the PR2 — planning with both arms (12 DOF)
P> Video: https://www.youtube.com/watch?v=vW74bC-Ygb4

» Karaman and Frazzoli, “Sampling-based algorithms for optimal motion

planning,” 1JRR, 2011,
http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761
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https://www.youtube.com/watch?v=vW74bC-Ygb4
https://www.youtube.com/watch?v=vW74bC-Ygb4
http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761

Optimal Control using Dynamic Programming

> Video: https://www.youtube.com/watch?v=tCQSSkBH2NI

» Tassa, Mansard and Todorov, “Control-limited Differential Dynamic
Programming,” ICRA, 2014,

http://ieeexplore.ieee.org/document/6907001/
17


https://www.youtube.com/watch?v=tCQSSkBH2NI
https://www.youtube.com/watch?v=tCQSSkBH2NI
http://ieeexplore.ieee.org/document/6907001/

Model-Free Reinforcement Learning

» A robot learns to flip pancakes
P> Video: https://www.youtube.com/watch?v=W_gxLKSsSIE

» Kormushev, Calinon and Caldwell, “Robot Motor Skill Coordination with
EM-based Reinforcement Learning,” IROS, 2010,
http://www.dx.doi.org/10.1109/IR0S.2010.5649089

18


https://www.youtube.com/watch?v=W_gxLKSsSIE
https://www.youtube.com/watch?v=W_gxLKSsSIE
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http://www.dx.doi.org/10.1109/IROS.2010.5649089

Applications of Optimal Control & Reinforcement Learning
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Model

v

discrete time t € {0, ..., T} with finite or infinite horizon T
state x; € X and state space X
control u; € U and control space U

motion noise w;: random vector with known probability density function
(pdf), independent of w,. for 7 # t conditioned on x; and u;

motion model: a function f or equivalently a pdf ps describing the change
in the state x; when a control input u; is applied:

Xer1 = F(Xe, Up, We) or  Xe1 ~ Pr(- | Xe, ug)

» Markov assumption: x;;; conditioned on u; and x; is independent of all other
variables

21



Control Policy

» control policy: function 7, : X — U that maps state x at time t to control
input u

> A policy defines fully at any time ¢ and any state x which control u to apply
» A policy can be:

> stationary (7o = 7 = ---) or non-stationary (mo Z w1 Z -+ )

» deterministic (u; = 7m:(x;)) or stochastic (u; ~ (- | x¢))

> open-loop (u; is selected independent of x;) or closed-loop (u; = 7¢(x¢)

depends on x;)

» A control policy induces a transition from state x; at time t with control
input u; = 7¢(x;) to state x¢11 ~ pr(- | x¢, u;) according to the motion
model pr(- | x¢, ue)

22



Optimal Control Problem

> stage cost /(x,u) measures the cost of applying control u in state x
> terminal cost q(x) measures the cost of terminating at state x

> value function V[ (x) of policy 7 is the expected long-term cost of starting
at state x at time t and following transitions induced by 7y, mpy1,...,T7_1:

xt:X:|

» optimal control problem: given initial state x at time t, determine a policy
that minimizes the value function V/(x):

VE(x) == Ext+1;r|: (x1) + Zf Xry Tr(Xr))

terminal cost stage cost

> optimal value: V/*(x) = min, V/(x)

> optimal policy: 7*(x) € arg min V{"(x)

23



Optimal Control Problem Types

v

deterministic (no motion noise) vs stochastic (with motion noise)
fully observable (z; = x;) vs partially observable (z; ~ ps(-|x;))

» Markov Decision Process (MDP) vs Partially Observable Markov Decision
Process (POMDP)

stationary vs non—stationary (time-dependent motion pr ; and cost /)
discrete vs continuous state space X
» tabular approach vs function approximation
discrete vs continuous control space U:
» tabular approach vs optimization
discrete vs continuous time t
finite vs infinite horizon T
reinforcement learning (pr, ¢, q are unknown):
> Model-based RL: explicitly approximate the models pr, 7, g from data and

apply optimal control algorithms

» Model-free RL: directly approximate V;* and 7} without approximating the
motion or cost models

24



Naming Conventions

» The problem is called:
> Motion planning (MP): when the motion model pr is known and
deterministic and the cost functions ¢, q are known

»> Optimal control (OC): when the motion model pr is known but may be
stochastic and the cost functions ¢, q are known

> Reinforcement learning (RL): when the motion model pr and cost functions
£, q are unknown but samples x¢, £(x¢, u¢), q(x¢) can be obtained from them
» Naming conventions differ:
» OC: minimization, cost, state x, control u, policy u
» RL: maximization, reward, state s, action a, policy 7

> ECE276B: minimization, cost, state x, control u, policy 7

25



Example: Inventory Control

» Consider keeping an item stocked in a warehouse:

> If there is too little, we may run out (not preferred)
> If there is too much, the storage cost will be high (not preferred)

> Model:
> x: € R: available stock at the beginning of time period t

» u: € R>o: stock ordered and immediately delivered at the beginning of time
period t (supply)

» w;: random demand during time period t with known pdf. Assume excess
demand is back-logged, i.e., corresponds to negative stock x;.

> Motion model: x;1 = (X, Us, W) := X¢ + Ur — Wy

»> Cost function: E [q(xr) + ZZ—:_OI (r(xe) + cue — pwt)] where

> pw;: revenue

v

cut: cost of items

v

r(xt): penalizes too much stock or negative stock

v

q(x7): remaining items we cannot sell or demand that we cannot meet

26



Example: Rubik’s Cube

» Invented in 1974 by Ern6é Rubik
» Model:
> State space size: ~ 4.33 x 10*°
» Control space size: 12
» Cost: 1 for each time step

» Deterministic, fully observable

» The cube can be solved in 20 or fewer moves

27



Example: Cart-Pole Problem

» Move a cart left, right to keep a pole balanced

> Model:
» State space: 4-D continuous (X,X,G,é)
» Control space: {—N, N}

» Cost:

» 0 when in the goal region
» 1 when outside the goal region
» 100 when outside the feasible region

» Deterministic, fully observable

28



Example: Chess

» Model:

> State space size: ~ 10%
» Control space size: from 0 to 218

» Cost: 0 each step, {—1,0,1} at the end of the
game

» Deterministic, opponent-dependent state
transitions (can be modeled as a game)

» The game tree size (all possible policies) is 10?3

L T N - T -
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Example: Grid World Navigation

» Navigate to a goal without crashing into obstacles
> Model:

> State space: 2-D robot position

> Control space: U = {left, right, up, down}

» Cost: 1 until the goal is reached, oo if an obstacles
is hit

» Can be deterministic or stochastic; fully or partially
observable

30



	Logistics
	Course Topics Overview
	Optimal Control Problem

