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Markov Chain
▶ Stochastic process: indexed collection of random variables {x0, x1, . . .}
▶ Markov chain: memoryless stochastic process {x0, x1, . . .}:

▶ x0 has probability density function p0(·)
▶ xt+1 conditioned on xt has probability density function pf (· | xt) and is

independent of the history x0:t−1

▶ Markov assumption:
“The future is independent of the past given the present”

Markov Chain

Stochastic process defined by a tuple (X , p0, pf ):

▶ X is a discrete or continuous space

▶ p0(·) is a prior pdf defined on X
▶ pf (· | x) is a conditional pdf defined on X for given x ∈ X that specifies the

stochastic process transitions

▶ When the state space is finite, X := {1, . . . ,N}, the pdf pf can be
represented by an N × N transition matrix with elements:

Pij := P(xt+1 = j | xt = i) = pf (j | xt = i)
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Example: Student Markov Chain
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Example: Student Markov Chain

▶ Sample paths:
▶ C1 C2 C3 Pass Sleep
▶ C1 FB FB C1 C2 Sleep
▶ C1 C2 C3 Pub C2 C3 Pass Sleep
▶ C1 FB FB C1 C2 C3 Pub C1 FB FB

FB C1 C2 Sleep

▶ Transition matrix:

P =

FB
C1
C2
C3
Pub
Pass
Sleep



0.9 0.1 0 0 0 0 0
0.5 0 0.5 0 0 0 0
0 0 0 0.8 0 0 0.2
0 0 0 0 0.4 0.6 0
0 0.2 0.4 0.4 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1


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Chapman-Kolmogorov Equation

▶ n-step transition probabilities of Markov chain on X = {1, . . . ,N}

P
(n)
ij := P(xt+n = j | xt = i) = P(xn = j | x0 = i)

▶ Chapman-Kolmogorov: the n-step transition probabilities can be obtained
recursively from the 1-step transition probabilities:

P
(n)
ij =

N∑
k=1

P
(m)
ik P

(n−m)
kj , ∀i , j , n, 0 ≤ m ≤ n

P(n) = P · · ·P︸ ︷︷ ︸
n times

= Pn

▶ Given the transition matrix P and a vector p0 := [p0(1), . . . , p0(N)]⊤ of prior
probabilities, the vector of probabilities pn after n steps is:

p⊤n = p⊤0 P
n
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Example: Student Markov Chain

P =

FB
C1
C2
C3
Pub
Pass
Sleep



0.9 0.1 0 0 0 0 0
0.5 0 0.5 0 0 0 0
0 0 0 0.8 0 0 0.2
0 0 0 0 0.4 0.6 0
0 0.2 0.4 0.4 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1



P2 =

FB
C1
C2
C3
Pub
Pass
Sleep



0.86 0.09 0.05 0 0 0 0
0.45 0.05 0 0.4 0 0 0.1
0 0 0 0 0.32 0.48 0.2
0 0.08 0.16 0.16 0 0 0.6
0.1 0 0.1 0.32 0.16 0.24 0.08
0 0 0 0 0 0 1
0 0 0 0 0 0 1



P100 =

FB
C1
C2
C3
Pub
Pass
Sleep



0.01 0 0 0 0 0 0.99
0.01 0 0 0 0 0 0.99
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1


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First Passage Time
▶ First passage time: the number of transitions necessary to reach state j for

the first time is a random variable:

τj := min{t ≥ 1 | xt = j}

▶ Recurrence time: the first passage time τi from x0 = i to j = i

▶ Probability of first passage in n steps: ρ
(n)
ij := P(τj = n | x0 = i)

ρ
(1)
ij = Pij

ρ
(2)
ij = [P2]ij − ρ

(1)
ij Pjj (first time we visit j should not be 1!)

...

ρ
(n)
ij = [Pn]ij − ρ

(1)
ij [Pn−1]jj − ρ

(2)
ij [Pn−2]jj − · · · − ρ

(n−1)
ij Pjj

▶ Probability of first passage: ρij := P(τj < ∞ | x0 = i) =
∑∞

n=1 ρ
(n)
ij

▶ Number of visits to j up to time n:

v
(n)
j :=

n∑
t=0

1{xt = j} vj := lim
n→∞

v
(n)
j
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Recurrence and Transience

▶ Absorbing state: a state j such that Pjj = 1

▶ Transient state: a state j such that ρjj < 1

▶ Recurrent state: a state j such that ρjj = 1

▶ Positive recurrent state: a recurrent state j with E [τj | x0 = j ] < ∞

▶ Null recurrent state: a recurrent state j with E [τj | x0 = j ] = ∞

▶ Periodic state: can only be visited at integer multiples of t

▶ Ergodic state: a positive recurrent state that is aperiodic
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Recurrence and Transience

Total Number of Visits Lemma

P(vj ≥ k + 1 | x0 = j) = ρkjj for all k ≥ 0

Proof :
By Markov property and induction: P(vj ≥ k + 1 | x0 = j) = ρjjP(vj ≥ k | x0 = j).

0–1 Law for the Total Number of Visits

j is recurrent iff E [vj | x0 = j ] = ∞

Proof : Since vj is discrete, we can write vj =
∑∞

k=0 1{vj > k} and

E [vj | x0 = j ] =
∞∑
k=0

P (vj ≥ k + 1 | x0 = j) =
∞∑
k=0

ρkjj =
1

1− ρjj

Recurrence Is Contagious

i is recurrent and ρij > 0 ⇒ j is recurrent and ρji = 1
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Mean First Passage Time

▶ Mean first passage time: Mij := E [τj | x0 = i ]

▶ By the law of total probability:

Mij = Pij +
∑
k ̸=j

Pik(1 +Mkj) = 1 +
∑
k ̸=j

PikMkj

▶ Let M ∈ RN×N with elements Mij contain all mean first passage times

▶ The matrix of mean first passage times satisfies:

M = 11⊤ + P(M − D)

where D = diag(M11, . . . ,MNN) and 1 =
[
1 · · · 1

]⊤

11



Equivalence Classes
▶ i → j : state j is accessible from state i if P

(n)
ij > 0 for some n

▶ Every state is accessible from itself since P
(0)
ii = 1

▶ i ↔ j : state i and j communicate if they are accessible from each other

▶ Equivalence class: a set of states which communicate with each other

▶ Example: find the equivalence classes for this Markov chain
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Classification of Markov Chains

▶ Absorbing Markov Chain: contains at least one absorbing state that can be
reached from every other state (not necessarily in one step)

▶ Irreducible Markov Chain: all states communicate with each other

▶ Ergodic Markov Chain: an aperiodic, irreducible and positive recurrent
Markov chain
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Periodicity

▶ Periodicity has an important role in the long-term behavior of a Markov chain

▶ The period of a state i is the largest integer di such that P
(n)
ii = 0 whenever

n is not divisible by di
▶ If di > 1, then i is periodic
▶ If di = 1, then i is aperiodic

▶ If i ↔ j , then di = dj . Hence, all states of an irreducible Markov chain have
the same period.

▶ Two integers are co-prime if their greatest common divisor (gcd) is 1

▶ If we can find co-prime l and m such that P
(l)
ii > 0 and P

(m)
ii > 0, then i is

aperiodic

▶ Since 1 is co-prime to every integer, any state i with a self-transition is
aperiodic
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Periodicity

▶ A matrix P is non-negative if all Pij ≥ 0

▶ A matrix P is stochastic if its rows sum to 1, i.e.,
∑

j Pij = 1 for all i

▶ A non-negative matrix P is quasi-positive if there exists a natural number
m ≥ 1 such that all entries of Pm are strictly positive

▶ If P is a stochastic matrix and is quasi-positive, i.e., all entries of Pm are
positive, then for all n ≥ m all entries of Pn are positive

▶ Aperiodicity Lemma: A stochastic transition matrix P is irreducible and
aperiodic if and only if P is quasi-positive.

▶ A finite Markov chain with transition matrix P is ergodic if and only if P is
quasi-positive
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Stationary and Limiting Distributions

▶ Stationary distribution: a vector w ∈ {p ∈ [0, 1]N | 1⊤p = 1} such that
w⊤P = w⊤

▶ Limiting distribution: a vector w ∈ {p ∈ [0, 1]N | 1⊤p = 1} such that:

lim
t→∞

P(xt = j |x0 = i) = wj

▶ If it exists, the limiting distribution of a Markov chain is stationary

▶ Absorbing chains have limiting distributions with nonzero elements only in
absorbing states

▶ Ergodic chains have a unique limiting distribution (Perron-Frobenius Thm)

▶ Periodic chains may not have a limiting distribution; their stationary

distribution has wj > 0 only for recurrent states and wj is the frequency
v
(n)
j

n+1
of being in state j as n → ∞
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Example

▶ Consider a Markov chain with:
▶ state space X = {0, 1}
▶ prior pmf p0 = [P(x0 = 0), P(x0 = 1)]⊤ = [γ, 1− γ]⊤

▶ transition matrix with a, b ∈ [0, 1], 0 < a+ b < 2:

P =

[
1− a a
b 1− b

]

▶ By induction: Pn = 1
a+b

[
b a
b a

]
+ (1−a−b)n

a+b

[
a −a

−b b

]

▶ Since −1 < 1− a− b < 1: limn→∞ Pn = 1
a+b

[
b a
b a

]
▶ Limiting distribution: exists and is not dependent on the initial pmf p0:

lim
t→∞

p⊤t = lim
t→∞

p⊤0 P
t =

1

a+ b
p⊤0

[
b a
b a

]
=

[
b

a+ b
,

b

a+ b

]
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Example

▶ If a = b = 1, the transition matrix is P =

[
0 1
1 0

]
▶ This Markov chain is periodic:

xt =

{
x0 if t is even

x1 if t is odd

▶ Stationary distribution: w =
[
1
2 ,

1
2

]
▶ Limiting distribution: does not exist. The pmf pt does not converge as

t → ∞ and depends on p0
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Absorbing Markov Chains

▶ Interesting questions:

Q1: On average, how many times is the process in state j?

Q2: What is the probability that the state will eventually be absorbed?

Q3: What is the expected absorption time?

Q4: What is the probability of being absorbed by j given that we started in i?
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Absorbing Markov Chains

▶ Canonical form: reorder states so that transient come first: P =

[
Q R
0 I

]

▶ One can show that Pn =

[
Qn *
0 I

]
and Qn → 0 as n → ∞

Proof : If j is transient, then ρij < 1 and from the 0-1 Law:

∞ > E
[
vj | x0 = i

]
= E

[ ∞∑
n=0

1{xn = j}
∣∣∣∣ x0 = i

]
=

∞∑
n=0

[Pn]ij

▶ Fundamental matrix: ZA = (I − Q)−1 =
∑∞

n=0 Q
n

▶ Expected number of times the chain is in state j : ZA
ij = E [vj | x0 = i ]

▶ Expected absorption time when starting from state i :
∑

j Z
A
ij

▶ Absorption probability: let Bij be the the probability of reaching absorbing
state j starting from transient state i :

Bij = Pij +
∑

k∈Transient

PikBkj ⇒ B = R + QB ⇒ B = ZAR
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Example: Drunkard’s Walk

▶ Transition matrix:

P =


1 0 0 0 0
0.5 0 0.5 0 0
0 0.5 0 0.5 0
0 0 0.5 0 0.5
0 0 0 0 1


▶ Canonical form:

P =


0 0.5 0 0.5 0
0.5 0 0.5 0 0
0 0.5 0 0 0.5
0 0 0 1 0
0 0 0 0 1


▶ Fundamental matrix:

ZA = (I − Q)−1 =

1.5 1 0.5
1 2 1
0.5 1 1.5


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General Finite Markov Chain

▶ A finite Markov chain might have several transient and recurrent classes

▶ As t increases, the chain is absorbed in one of the recurrent classes

▶ We can replace each recurrent class with an absorbing state to obtain a chain
with only transient and absorbing states

▶ We can obtain the absorbtion probabilities from B = ZAR

▶ Each recurrent class can then be analyzed separately
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Perron-Frobenius Theorem (Finite Ergodic Markov Chain)

Theorem
Consider an irreducible, aperiodic, finite Markov chain with transition matrix P.
Then, the following hold:

▶ 1 is the eigenvalue of max modulus, i.e., |λ| < 1 for all other eigenvalues

▶ 1 is a simple eigenvalue, i.e., the associated eigenspace and left-eigenspace
have dimension 1

▶ The eigenvector associated with 1 is 1

▶ The unique left eigenvector w is nonnegative and limn→∞ Pn = 1w⊤. Hence,
the unique stationary distribution w is a limiting distribution for the Markov
chain, i.e., any initial distribution converges to w.
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Perron-Frobenius Theorem (Ergodic Markov Chain)

Theorem
Consider an irreducible, aperiodic, countably infinite Markov chain. Then, one of
the following holds.

▶ All states are transient and limt→∞ P(xt = j |x0 = i) = 0, ∀i , j .

▶ All states are null-recurrent and limt→∞ P(xt = j |x0 = i) = 0, ∀i , j .

▶ All states are positive-recurrent and there exists a limiting distribution
wj =

∑
i wiPij ,

∑
j wj = 1 such that:

lim
t→∞

P(xt = j |x0 = i) = wj > 0.
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Fundamental Matrix for Ergodic Chains
▶ We can try to define a fundamental matrix as in the absorbing case but

(I − P)−1 does not exist because P1 = 1 (Perron-Frobenius)

▶ For absorbing chain, I + Q + Q2 + . . . = (I − Q)−1 converges because
Qn → 0

▶ For ergodic chain, I + (P − 1w⊤) + (P2 − 1w⊤) + . . . converges because
Pn → 1w⊤ (Perron-Frobenius)

▶ Note that P1w⊤ = 1w⊤ and (1w⊤)2 = 1w⊤1w⊤ = 1w⊤

(P − 1w⊤)n =
n∑

i=0

(−1)i
(
n

i

)
Pn−i (1w⊤)i = Pn +

n∑
i=1

(−1)i
(
n

i

)
(1w⊤)i

= Pn +

[
n∑

i=1

(−1)i
(
n

i

)]
︸ ︷︷ ︸

(1−1)n−1

(1w⊤) = Pn − 1w⊤

▶ Thus, the following inverse exists:

I +
∞∑
n=1

(Pn − 1w⊤) = I +
∞∑
n=1

(P − 1w⊤)n = (I − P + 1w⊤)−1
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Fundamental Matrix for Ergodic Chains

▶ Consider an ergodic Markov chain with transition matrix P and stationary
distribution w

▶ Fundamental matrix: ZE := (I − P + 1w⊤)−1

▶ w⊤ZE = w⊤

▶ ZE1 = 1

▶ ZE (I − P) = I − 1w⊤

▶ Mean first passage time:

▶ Mij = E [τj | x0 = i ] =
ZE
jj − ZE

ij

wj
, i ̸= j

▶ Mii = E [τi | x0 = i ] =
1

wi
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Example: Land of Oz

▶ Transition matrix:

P =

 0.5 0.25 0.25
0.5 0 0.5
0.25 0.25 0.5


▶ Stationary distribution:

w⊤ =
[
0.4 0.2 0.4

]
▶ Fundamental matrix:

I − P + 1w⊤ =

 0.9 −0.05 0.15
−0.1 1.2 −0.1
0.15 −0.05 0.9


ZE =

 1.147 0.04 −0.187
0.08 0.84 0.08

−0.187 0.04 1.147


▶ Mean first passage time:

M12 =
ZE
22−ZE

12

w2
= 0.84−0.04

0.2 = 4
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