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Markov Chain

> Stochastic process: indexed collection of random variables {xg, x, ...}

» Markov chain: memoryless stochastic process {xg, x1, . ..}:
> xo has probability density function po(-)

> X1 conditioned on x; has probability density function pr(- | x;) and is
independent of the history xp.t—1

» Markov assumption:
“The future is independent of the past given the present”

Stochastic process defined by a tuple (X, po, pr):

» X is a discrete or continuous space
> po(-) is a prior pdf defined on X

» pr(- | x) is a conditional pdf defined on X for given x € X that specifies the
stochastic process transitions

> When the state space is finite, X := {1,..., N}, the pdf pr can be
represented by an N x N transition matrix with elements:

Py = P(xey1 =J | xe = 1) = pr(J | xe = 1)



Example: Student Markov Chain
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Example: Student Markov Chain '

MH

» Sample paths:

C1 C2 C3 Pass Sleep

C1 FB FB C1 C2 Sleep

C1 C2 C3 Pub C2 C3 Pass Sleep
C1FBFB C1C2C3PubCl1FBFB
FB C1 C2 Sleep

»
>
>
>

» Transition matrix:

FB [09 01 O 0 0 0 0
C1 05 0 05 0 0 0 0
C2 0 .

P= (3 0 0 0 0 04 06 O
Pub 0 02 04 04 O 0 0
Pass 0 1
Sleep | O 1




Chapman-Kolmogorov Equation

> n-step transition probabilities of Markov chain on X = {1,... N}

P = Pxern = | xe = i) = P(xn = J | x0 = i)

y

» Chapman-Kolmogorov: the n-step transition probabilities can be obtained
recursively from the 1-step transition probabilities:

ZP(m)an, Vi, j,n,0<m<n

n times

» Given the transition matrix P and a vector po := [po(1), ..., po(N)]T

probabilities, the vector of probabilities p,, after n steps is:

of prior

P —PoPn



Example: Student Markov Chain

Cc2 0 0 0 08 0 0 02

P= C3 0 0 0 O 04 06 O
Pub 0 02 04 04 0 0 O

Pass 0 0 0 0 0 0 1
Sleep 0 0 0 0 0 0 1

FB [0.86 0.09 0.05 0 0 0
C1 045 005 O 0.4 0 0
c2 0 0 0 0 032 048
P2= C3 0 0.08 016 0.16 0 0
Pub 0.1 0 0.1 0.32 0.16 0.24
Pass 0 0 0 0 0 0
Sleep 0 0 0 0 0 0

FB 001 0 0 0 O O 0.99
C1 001 0 0 0 0 0 0.99
Cc2 0 00O0OTO0C 1
P — (3 0 00O0OO0C 1
Pub 0 00O0OTO0C 1
Pass 0 00O0OO0O 1
Sleep 0 00O0OTO0C 1



First Passage Time

» First passage time: the number of transitions necessary to reach state j for
the first time is a random variable:

7i = min{t > 1| x; = j}
» Recurrence time: the first passage time 7; from xg =i to j =i
> Probability of first passage in n steps: pf.j") =P(ri=n|x=1)
1)
p,(, = Pj

pD =[P — pi'P;  (first time we visit j should not be 1!)

Py =[Py = pP [P My — PP IPT 2 — - — Py
(n)

> Probability of first passage: p; :=P(1; < oo |xo=1i) =D, pij
» Number of visits to j up to time n:



Recurrence and Transience

> Absorbing state: a state j such that P =1

> Transient state: a state j such that p; <1

> Recurrent state: a state j such that pj; =1

> Positive recurrent state: a recurrent state j with E[7; | xo = j] < o0
> Null recurrent state: a recurrent state j with E[7; | xo = j] = o0

» Periodic state: can only be visited at integer multiples of t

» Ergodic state: a positive recurrent state that is aperiodic



Recurrence and Transience

Total Number of Visits Lemma

IF’(\/jZk+1|X0:j):PJ,'(jfora“kZO

Proof:
By Markov property and induction: P(v; > k + 1| xo = j) = p;P(v; > k | x0 = j).

0-1 Law for the Total Number of Visits

J is recurrent iff E[v; | xo = j] = o0

Proof: Since v; is discrete, we can write v; = Y, 1{v; > k} and

. > . > 1
Ely[x=/=Y P(y>k+1llxo=j)=> pi= T
k=0 k=0 Pij

Recurrence Is Contagious

i is recurrent and p;; >0 = jis recurrent and p;; =1
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Mean First Passage Time

> Mean first passage time: M; :=E|[7; | xo = i]

» By the law of total probability:

My = Pj+> Pu(l+ Mg) =1+ PuMy
k) ke#j

> Let M € RVXN with elements M;; contain all mean first passage times
» The matrix of mean first passage times satisfies:
M=11" + P(M — D)

where D = diag(My,...,Myy) and 1=[1 .- 1]'

11



Equivalence Classes
(n)

V> 0 for some n

» | — j: state j is accessible from state / if P

0 _ 4

> Every state is accessible from itself since P}
» <> j: state i and j communicate if they are accessible from each other
» Equivalence class: a set of states which communicate with each other

» Example: find the equivalence classes for this Markov chain
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Classification of Markov Chains

» Absorbing Markov Chain: contains at least one absorbing state that can be
reached from every other state (not necessarily in one step)

» Irreducible Markov Chain: all states communicate with each other

» Ergodic Markov Chain: an aperiodic, irreducible and positive recurrent
Markov chain
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Periodicity

Periodicity has an important role in the long-term behavior of a Markov chain

(m)

The period of a state i is the largest integer d; such that P;” = 0 whenever

n is not divisible by d;
> If di > 1, then i is periodic
» If di =1, then i is aperiodic

If i <+ j, then d; = d;. Hence, all states of an irreducible Markov chain have
the same period.

Two integers are co-prime if their greatest common divisor (ged) is 1

If we can find co-prime / and m such that P\ > 0 and P{™ > 0, then i is
aperiodic

Since 1 is co-prime to every integer, any state / with a self-transition is
aperiodic
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Periodicity

v

v

v

A matrix P is non-negative if all P; > 0
A matrix P is stochastic if its rows sum to 1, i.e., 3_; P; =1 for all i

A non-negative matrix P is quasi-positive if there exists a natural number
m > 1 such that all entries of P™ are strictly positive

If P is a stochastic matrix and is quasi-positive, i.e., all entries of P™ are
positive, then for all n > m all entries of P" are positive

Aperiodicity Lemma: A stochastic transition matrix P is irreducible and
aperiodic if and only if P is quasi-positive.

A finite Markov chain with transition matrix P is ergodic if and only if P is
quasi-positive
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Stationary and Limiting Distributions

>

Stationary distribution: a vector w € {p € [0,1]" | 1Tp = 1} such that
wP=wl

Limiting distribution: a vector w € {p € [0,1]V | 1Tp = 1} such that:

tingo]P’(xt =jlxo =1)=w;

If it exists, the limiting distribution of a Markov chain is stationary

Absorbing chains have limiting distributions with nonzero elements only in
absorbing states

Ergodic chains have a unique limiting distribution (Perron-Frobenius Thm)

Periodic chains may not have a limiting distribution; their stationary
(")

distribution has w; > 0 only for recurrent states and w; is the frequency o
of being in state j as n — oo
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Example

» Consider a Markov chain with:
> state space X = {0, 1}
> prior pmf po = [P(x0 = 0), P(xo =1)]" = [y, 1 —~]"
> transition matrix with a,b € [0,1], 0 < a+ b < 2:

1—a a
P_|: b 1—b:|

> By induction: P" = -L; [Z z] ey [—Z _Z]

> Since —1 <1—a—b<1:lim, o P"= 15 {g z]

» Limiting distribution: exists and is not dependent on the initial pmf pg:

i ; 1 b a b b
T _ T pt T
tllm P: tllm po P = Po [b a] [ }

at+b a+b a+b
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Example

» If a= b =1, the transition matrix is P = {(1) (1)}

» This Markov chain is periodic:

Xo if tis even
Xt = .
x; if tis odd

11]

» Stationary distribution: w = [5, 5

» Limiting distribution: does not exist. The pmf p; does not converge as
t — oo and depends on pg
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Absorbing Markov Chains
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Absorbing Markov Chains

» Interesting questions:

QL:
Q2:
Q3:
Q4:

On average, how many times is the process in state j7
What is the probability that the state will eventually be absorbed?
What is the expected absorption time?

What is the probability of being absorbed by j given that we started in i?
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Absorbing Markov Chains

. . . R
» Canonical form: reorder states so that transient come first: P = {(g I]
Qn %
» One can show that P" = 0 J and Q" —0asn— o

Proof: If j is transient, then p;; < 1 and from the 0-1 Law:

oo>E[vJ~\xo:i} —El:zll{xn—j} Xo—f:| :Z['Dn]ij

n=0

> Fundamental matrix: Z4 = (1 — Q)~1 =32 Q"
> Expected number of times the chain is in state j: Zf' = E[v; | xo = i

> Expected absorption time when starting from state i: Zj Z,-j-‘

> Absorption probability: let B be the the probability of reaching absorbing
state j starting from transient state i:

Bj=Pj+ Y PuBy = B=R+QB = B=2Z"R

ke Transient



Example: Drunkard’s Walk

» Trans

P =

» Canonical form:

P =

» Fundamental matrix;

77 =

(I-Q)~"

ition matrix:
0
05 0 05
0 05 O
0 0 05
| 0 0 0
0 05 O
05 0 05
0 05 O
0 0 0
| 0 0 0

0 0
0 0
05 0
0 05
0 1
05 0]
0 0
0 05
1 0
0 1
15 1 05
1 2 1
05 1 15
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Ergodic Markov Chains
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General Finite Markov Chain

v

A finite Markov chain might have several transient and recurrent classes
» As t increases, the chain is absorbed in one of the recurrent classes

» We can replace each recurrent class with an absorbing state to obtain a chain
with only transient and absorbing states

v

We can obtain the absorbtion probabilities from B = ZAR

v

Each recurrent class can then be analyzed separately
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Perron-Frobenius Theorem (Finite Ergodic Markov Chain)

Consider an irreducible, aperiodic, finite Markov chain with transition matrix P.
Then, the following hold:

> 1 is the eigenvalue of max modulus, i.e., |A| < 1 for all other eigenvalues

» 1 is a simple eigenvalue, i.e., the associated eigenspace and left-eigenspace
have dimension 1

» The eigenvector associated with 1 is 1

» The unique left eigenvector w is nonnegative and lim,_,oo P" = 1w . Hence,
the unique stationary distribution w is a limiting distribution for the Markov
chain, i.e., any initial distribution converges to w.
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Perron-Frobenius Theorem (Ergodic Markov Chain)

Consider an irreducible, aperiodic, countably infinite Markov chain. Then, one of
the following holds.

> All states are transient and lim;_, oo P(x; = j|xo = i) = 0, Vi, .
> All states are null-recurrent and lim;_, oo P(x; = jlxo =) =0, Vi, .

» All states are positive-recurrent and there exists a limiting distribution
wj = >, w;Pj, > .w; =1 such that:

tILrT;OIP’(Xt = jlxo = i) = w; > 0.
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Fundamental Matrix for Ergodic Chains

» We can try to define a fundamental matrix as in the absorbing case but
(I — P)~! does not exist because P1 = 1 (Perron-Frobenius)

» For absorbing chain, I + Q + Q>+ ... = (I — Q)~! converges because
QR"T—0

» For ergodic chain, | + (P —1w") + (P> — 1w ') + ... converges because
P" — 1w (Perron-Frobenius)

> Note that Plw' = 1w’ and (lw')? = 1w 1w’ = 1w’

Py =3 ()T = e S () awy

i=0

=P"+

i(—l)"(?ﬂ (Iw')=P"—1w’"

i=1

(1-1)n—1

» Thus, the following inverse exists:

1+ (P — 1w —/+Z P—1w' )" =(—P+1w')™!
n=1
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Fundamental Matrix for Ergodic Chains

» Consider an ergodic Markov chain with transition matrix P and stationary
distribution w

» Fundamental matrix: Zf .= (/ - P +1w')!
> w'ZE=w'

> ZE(I-P)=1—-1w"

> Mean first passage time:

7E _ 7E
> My =E[r|x=i]=F—",i#]

w;

1
> M,',‘:E[T,'|X0=I.]=W
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Example: Land of Oz

» Transition matrix:

05 025 0.25
P=1{05 0 0.5
0.25 0.25 0.5

> Stationary distribution:
w' =04 02 04

» Fundamental matrix:

0.9 —0.05
|—P+1w' = [-01 1.2

|0.15  —0.05

[ 1.147 0.04

ZE =1 008 0.84

| —0.187 0.04

» Mean first passage time:

_ ZE-ZF  0.84-0.04 _
Mz = wa 0.2 =4

EOCECEO=0

0.15
-0.1
0.9

—0.187
0.08
1.147
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