
ECE276B: Planning & Learning in Robotics
Lecture 3: Markov Decision Processes

Nikolay Atanasov

natanasov@ucsd.edu

1

mailto:natanasov@ucsd.edu

Outline

Markov Decision Processes

Open-Loop vs Closed-Loop Control

Partially Observable Models

2

Markov Chain

Markov Chain

Stochastic process defined by a tuple (X , p0, pf):

I X is a discrete or continuous space

I p0 is a prior pdf defined on X
I pf (· | x) is a conditional pdf defined on X for given x ∈ X that specifies the

stochastic process transitions

I When the state space is finite, X := {1, . . . ,N}, the pdf pf can be
represented by an N × N transition matrix with elements:

Pij := P(xt+1 = j | xt = i) = pf (j | xt = i)

3

Example: Student Markov Chain

4

Markov Reward Process

Markov Reward Process

Markov chain with costs defined by a tuple (X , p0, pf ,T , `, q, γ):

I X is a discrete or continuous space

I p0 is a prior pdf defined on X

I pf (· | x) is a conditional pdf defined on X for given x ∈ X that specifies the
stochastic process transitions

I T is a finite/infinite time horizon

I `(x) is stage cost of state x ∈ X

I q(x) is terminal cost of being in state x at time T

I γ ∈ [0, 1] is a discount factor

5

Example: Student Markov Reward Process

6

MRP Value Function

I Value function: the expected cumulative cost of an MRP starting from
state x ∈ X at time t

I Finite-horizon MRP: trajectories terminate at fixed T <∞

Vt(x) := E

[
q(xT) +

T−1∑
τ=t

`(xτ) | xt = x

]
I Infinite-horizon MRP:

I First-exit MRP: trajectories terminate at the first passage time
T = min {t ∈ N|xt ∈ T } to a terminal state xt ∈ T ⊆ X

I Discounted MRP: trajectories continue forever but stage costs are discounted
by discount factor γ ∈ [0, 1):

I γ close to 0 leads to myopic/greedy evaluation
I γ close to 1 leads to nonmyopic/far-sighted evaluation
I Mathematically convenient since discounting avoids infinite costs as T → ∞

I Average-cost MRP: trajectories continue forever and the value function is the
expected average stage cost

7

Example: Student MRP Value Function

8

Example: Student MRP Value Function

9

Example: Student MRP Value Function

10

Markov Decision Process

Markov Decision Process
Markov Reward Process with controlled transitions defined by a tuple
(X ,U , p0, pf ,T , `, q, γ)

I X is a discrete or continuous state space

I U is a discrete or continuous control space

I p0 is a prior pdf defined on X

I pf (· | xt ,ut) is a conditional pdf defined on X for given xt ∈ X and ut ∈ U
(matrices Pu with elements Pu

ij := pf (j | xt = i , ut = u) in the
finite-dimensional case)

I T is a finite or infinite time horizon

I `(x,u) is stage cost of applying control u ∈ U in state x ∈ X

I q(x) is terminal cost of being in state x at time T

I γ ∈ [0, 1] is a discount factor

11

Example: Markov Decision Process

I A control ut applied in state xt determines the next state xt+1 and the stage
cost `(xt ,ut)

12

Example: Student Markov Decision Process

13

MDP Control Policy and Value Function

I Control policy: a function π that maps a time step t ∈ N and a state x ∈ X
to a feasible control input u ∈ U

I Value function: expected cumulative cost of a policy π applied to an MDP
with initial state x ∈ X at time t:

I Finite-horizon MDP: trajectories terminate at fixed T <∞:

V π
t (x) := E

[
q(xT) +

T−1∑
τ=t

`(xτ , πτ (xτ)) | xt = x

]
I Infinite-horizon MDP: as T →∞, optimal policies become stationary, i.e.,
π := π0 ≡ π1 ≡ · · ·
I First-exit MDP: trajectories terminate at the first passage time

T = min {t ∈ N|xt ∈ T } to a terminal state xt ∈ T ⊆ X
I Discounted MDP: trajectories continue forever but stage costs are discounted

by a factor γ ∈ [0, 1)

I Average-cost MDP: trajectories continue forever and the value function is the
expected average stage cost

14

Example: Value Function of Student MDP

15

Alternative Cost Formulations

I Noise-dependent costs: stage costs `′ depend on motion noise wt :

V π
0 (x) := Ew0:T ,x1:T

[
q(xT) +

T−1∑
t=0

`′(xt , πt(xt),wt) | x0 = x

]

I Using the pdf pw (· | xt ,ut) of wt , this is equivalent to our formulation:

`(xt ,ut) := Ewt |xt ,ut
[`′(xt ,ut ,wt)] =

∫
`(xt ,ut ,wt)pw (wt | xt ,ut)dwt

The expectation can be computed if pw is known or approximated.

I Joint cost-state pdf: allow random costs `′ with joint pdf p(x′, `′ | x,u).
This is equivalent to our formulation as follows:

pf (x′ | x,u) :=

∫
p(x′, `′ | x,u)d`′

`(x,u) := E [`′ | x,u] =

∫ ∫
`′p(x′, `′ |, x,u)dx′d`′

16

Alternative Motion-Model Formulations

I Time-lag motion model: xt+1 = ft(xt , xt−1,ut ,ut−1,wt)

I Can be converted to the standard form via state augmentation

I Let yt := xt−1 and st := ut−1 and define the augmented dynamics:

x̃t+1 :=

xt+1

yt+1

st+1

 =

ft(xt , yt ,ut , st ,wt)
xt
ut

 =: f̃t(x̃t ,ut ,wt)

I This procedure works for an arbitrary number of time lags but the dimension
of the state space grows and increases the computational burden
exponentially (“curse of dimensionality”)

17

Alternative Motion-Model Formulations

I System dynamics: xt+1 = ft(xt ,ut ,wt)

I Correlated Disturbance: wt correlated across time (colored noise):

yt+1 = Atyt + ξt

wt = Ctyt+1

where At , Ct are known and ξt are independent random variables

I Augmented state: x̃t := (xt , yt) with dynamics:

x̃t+1 =

[
xt+1

yt+1

]
=

[
ft(xt ,ut ,Ct(Atyt + ξt))

Atyt + ξt

]
=: f̃t(x̃t ,ut , ξt)

I State estimator: yt must be observed at time t, which can be done using a
state estimator

18

MDP Notation and Terminology (Summary)

t ∈ {0, . . . ,T} discrete time
x ∈ X discrete/continuous state
u ∈ U discrete/continuous control

p0(x) prior probability density function defined on X
pf (x′ | x,u) transition/motion model

`(x,u) stage cost of choosing control u in state x
q(x) terminal cost at state x

πt(x) control policy: function from state x at time t to control u
V π
t (x) value function: expected cumulative cost of starting at state x

at time t and acting according to π

π∗t (x) optimal control policy
V ∗t (x) optimal value function

19

MDP Finite-horizon Optimal Control (Summary)

Finite-horizon Optimal Control

The finite-horizon optimal control problem in an MDP (X ,U , p0, pf ,T , `, q, γ)
with initial state x at time t is:

min
πt:T−1

V π
t (x) := Ext+1:T

[
γT−tq(xT) +

T−1∑
τ=t

γτ−t`(xτ , πτ (xτ))

∣∣∣∣ xt = x

]
s.t. xτ+1 ∼ pf (· | xτ , πτ (xτ)), τ = t, . . . ,T − 1

xτ ∈ X , πτ (xτ) ∈ U

20

Outline

Markov Decision Processes

Open-Loop vs Closed-Loop Control

Partially Observable Models

21

Open-Loop vs Closed-Loop Control
I Open-loop policy: control inputs u0:T−1 are determined at once at time 0

as a function of x0 and do not change online depending on xt

I Closed-loop policy: control inputs are determined “just-in-time” as a
function πt of the current state xt

I Open-loop control is a special case of closed-loop control that disregards the
state xt and, hence, never gives better performance

I In the absence of motion noise and in a special linear quadratic Gaussian
(LQG) case, open-loop and closed-loop control have the same performance

I Open-loop control is computationally much cheaper than closed-loop control.
Consider a discrete-space example with |X | = 10 states, |U| = 10 control
inputs, planning horizon T = 4, and given x0:
I There are |U|T = 104 open-loop strategies

I There are |U|(|U||X|)T−1 = |U||X|(T−1)+1 = 1031 closed-loop strategies

I Open-loop feedback control (OLFC) recomputes a new open-loop
sequence ut:T−1 online, whenever a new state xt is available. OLFC is
guaranteed to perform better than open-loop control and is computationally
more efficient than closed-loop control.

22

Example: Chess Strategy Optimization

I Objective: come up with a strategy that maximizes the chances of winning a
2 game chess match

I Possible outcomes:
I Win/Lose: 1 point for the winner, 0 for the loser
I Draw: 0.5 points for each player
I If the score is equal after 2 games, the players continue playing until one wins

(sudden death)

I Playing styles:
I Timid: draw with probability pd and lose with probability (1− pd)
I Bold: win with probability pw and lose with probability (1− pw)
I Assumption: pd > pw

23

Chess Match Model

I State xt : 2-D vector with our and the opponent’s score after the t-th game

I Control ut ∈ U = {timid, bold}

I Noise wt : score of the next game

I Since timid play does not make sense during the sudden death stage, the
planning horizon is T = 2

I We can construct a time-dependent motion model Pu
ijt for t ∈ {0, 1}

(shown on the next slide)

I Cost: minimize loss probability: −Pwin = Ex1:2

[
q(x2) +

1∑
t=0

`(xt , ut)

]
, where

`(x, u) = 0 and q(x) =

−1 if x =

(
3
2 ,

1
2

)
or (2, 0)

−pw if x = (1, 1)

0 if x =
(

1
2 ,

3
2

)
or (0, 2)

24

Chess Transition Probabilities

Game 1:

Game 2:

25

Open-Loop Chess Strategy
I There are 4 possible open-loop policies:

1. timid-timid: Pwin = p2
dpw

2. bold-bold: Pwin = p2
w + pw (1− pw)pw + (1− pw)pwpw = p2

w (3− 2pw)
3. bold-timid: Pwin = pwpd + pw (1− pd)pw
4. timid-bold: Pwin = pdpw + (1− pd)p2

w

I Since p2
dpw ≤ pdpw ≤ pdpw + (1− pd)p2

w , timid-timid is not optimal

I The best achievable winning probability is:

P∗win = max{

bold-bold︷ ︸︸ ︷
p2
w (3− 2pw),

3. or 4.︷ ︸︸ ︷
pdpw + (1− pd)p2

w}
= p2

w + pw (1− pw) max{2pw , pd}

I If pw ≤ 0.5, then P∗win ≤ 0.5
I For pw = 0.45 and pd = 0.9, P∗win = 0.43
I For pw = 0.5 and pd = 1.0, P∗win = 0.5

I If pd > 2pw , bold-timid and timid-bold are optimal open-loop policies;
otherwise bold-bold is optimal

26

Closed-Loop Chess Strategy

I There are 16 closed-loop policies

I Consider one option: play timid if
and only if ahead (it will turn out
that this is optimal)

I The probability of winning is:
Pwin = pdpw + pw ((1− pd)pw + pw (1− pw)) = p2

w (2− pw) + pw (1− pw)pd

I In the closed-loop case, we can achieve Pwin larger than 0.5 even when pw is
less than 0.5:
I For pw = 0.45 and pd = 0.9, Pwin = 0.5
I For pw = 0.5 and pd = 1.0, Pwin = 0.625

27

Outline

Markov Decision Processes

Open-Loop vs Closed-Loop Control

Partially Observable Models

28

Hidden Markov Model

Hidden Markov Model

Markov Chain with partially observable states defined by tuple (X ,Z, p0, pf , ph)

I X is a discrete or continuous state space

I Z is a discrete or continuous observation space

I p0 is a prior pdf defined on X

I pf (· | xt) is a conditional pdf defined on X for given xt ∈ X
(summarized by matrix P with Pij = pf (j | xt = i) in finite-dim case)

I ph(· | xt) is a conditional pdf defined on Z for given xt ∈ X
(summarized by matrix O with Oij := ph(j | xt = i) in finite-dim case)

29

Partially Observable Markov Decision Process

Partially Observable Markov Decision Process

Markov Decision Process with partially observable states defined by tuple
(X ,U ,Z, p0, pf , ph,T , `, q, γ)

I X is a discrete or continuous state space

I U is a discrete or continuous control space

I Z is a discrete or continuous observation space

I p0 is a prior pdf defined on X
I pf (· | xt ,ut) is a conditional pdf defined on X for given xt ∈ X and ut ∈ U

(summarized by matrices Pu with elements Pu
ij = pf (j | xt = i , ut = u) in

finite-dim case)

I ph(· | xt) is a conditional pdf defined on Z for given xt ∈ X
(summarized by matrix O with Oij := ph(j | xt = i) in finite-dim case)

I T is a finite/infinite time horizon

I `(x,u) is stage cost of applying control u ∈ U in state x ∈ X
I q(x) is terminal cost of being in state x at time T

I γ ∈ [0, 1] is a discount factor

30

Comparison of Markov Models

observed partially observed
uncontrolled Markov Chain/MRP HMM

controlled MDP POMDP

I Markov Chain + Partial Observability = HMM

I Markov Chain + Control = MDP

I Markov Chain + Partial Observability + Control = HMM + Control = MDP
+ Partial Observability = POMDP

31

Bayes Filter

I A probabilistic inference technique for summarizing information
it := (z0:t ,u0:t−1) about a partially observable state xt

I The Bayes filter keeps track of:
pt|t(xt) := p(xt | z0:t ,u0:t−1)

pt+1|t(xt+1) := p(xt+1 | z0:t ,u0:t)

I Derived using total probability, conditional probability, and Bayes rule based
on the motion and observation models of the system

I Motion model: xt+1 = f (xt ,ut ,wt) ∼ pf (· | xt ,ut)

I Observation model: zt = h(xt , vt) ∼ ph(· | xt)

I Bayes filter: consists of predict and update steps:

pt+1|t+1(xt+1) =
1

p(zt+1|z0:t ,u0:t)
ph(zt+1 | xt+1)

Predict: pt+1|t(xt+1)︷ ︸︸ ︷∫
pf (xt+1 | xt ,ut)pt|t(xt)dxt︸ ︷︷ ︸

Update

32

Bayes Filter Example

33

https://www.youtube.com/watch?v=Ry2PXkkMCmg

Equivalence of POMDPs and MDPs

I A POMDP (X ,U ,Z, p0, pf , ph,T , `, q, γ) is equivalent to an MDP
(P(X),U , p0, pψ,T , ¯̀, q̄, γ) such that:
I State space: P(X) is the continuous space of pdfs over X

I If X is continuous, then P(X) :=
{
p : X → R≥0 |

∫
p(x)dx = 1

}
I If |X | = N, then P(X) := {p ∈ [0, 1]N | 1>p = 1}

I Initial state: p0 ∈ P(X)

I Motion model: the Bayes filter pt+1|t+1 = ψ(pt|t , ut , zt+1) acts as a motion
model for pt|t with motion noise given by the observations zt+1 with density:

η(z | pt|t , ut) :=

∫ ∫
ph(z | xt+1)pf (xt+1 | xt , ut)pt|t(xt)dxtdxt+1

I Cost: the equivalent MDP stage and terminal cost functions are the expected
values of the POMDP stage and terminal costs:

¯̀(p, u) :=

∫
`(x, u)p(x)dx q̄(p) :=

∫
q(x)p(x)dx

34

POMDP Finite-horizon Optimal Control
I POMDP (X ,U ,Z, p0, pf , ph,T , `, q, γ):

min
π0:T−1

E

[
γTq(xT) +

T−1∑
t=0

γt`(xt ,ut)

]
s.t. xt+1 ∼ pf (· | xt ,ut), t = 0, . . . ,T − 1

zt+1 ∼ ph(· | xt), t = 0, . . . ,T − 1

ut ∼ πt(· | it), t = 0, . . . ,T − 1

x0 ∼ p0(·)

I Equivalent MDP (P(X),U , p0, pψ,T , ¯̀, q̄, γ) with state pt|t :

min
π0:T−1

V π
0 (p0) = E

[
γT q̄(pT |T) +

T−1∑
t=0

γt ¯̀(pt|t ,ut)

]
s.t. pt+1|t+1 = ψ(pt|t ,ut , zt+1), t = 0, . . . ,T − 1

zt+1 ∼ η(· | pt|t ,ut), t = 0, . . . ,T − 1

ut ∼ πt(· | pt|t), t = 0, . . . ,T − 1

I Due to the equivalence between POMDPs and MDPs, we will focus
exclusively on MDPs

35

	Markov Decision Processes
	Open-Loop vs Closed-Loop Control
	Partially Observable Models

