ECE276B: Planning & Learning in Robotics
Lecture 4: The Dynamic Programming Algorithm

Nikolay Atanasov

natanasov@ucsd.edu

UC San Diego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

mailto:natanasov@ucsd.edu

Outline

Dynamic Programming Algorithm

Dynamic Programming Algorithm

>

>

MDP: (X, U, po, pr, T, 1,4,7)

Control policy: a function 7 that maps a time step t € N and a state x € X
to a feasible control input u €

Value function V/"(x): expected long-term cost starting in state x at time ¢
and following policy 7

Optimal control problem:

Vi (x0) = min V{ (xo) 7 € argmin V{ (xo)

Dynamic programming: an algorithm for computing the optimal value
function V4 (xo) and an optimal policy 7*
» ldea: compute the value function and policy backwards in time
» Generality: handles non-linear non-convex problems
> Complexity: polynomial in the number of states |X'| and number of actions ||
> Efficiency: much more efficient than a brute-force approach evaluating all
possible policies

Principle of Optimality

» Let 75, ...75_; be an optimal control policy

» Consider a subproblem starting at time t instead of time 0:

T-1
VE(X) = Exnr |77 fa0x7) + D> 77 %, o (%1))

T=t

Xt_x‘|

> Principle of optimality: the truncated control policy 7}.+_; is optimal for
the subproblem min, V[(x) at time t

> Intuition: Suppose 7} +_; were not optimal for the subproblem. Then, there
would exist a policy yielding a lower cost on at least some portion of the
state space.

Example: Deterministic Scheduling Problem

» Consider a deterministic scheduling problem where 4 operations A, B, C, D
are used to produce a product

» Rules: Operation A must occur before B, and C before D

» Cost: there is a transition cost between each two operations:

AcB}—L—»facaD]
canl—L»[camn)
T R e
s »{ooAl 2 »[ooas]

Example: Deterministic Scheduling Problem

» Dynamic programming is applied backwards in time. First, construct an
optimal solution at the last stage and then work backwards.

» The optimal value function at each state of the scheduling problem is

denoted with red text below the state:

AZB 1
o
cAD}—2
BN

The Dynamic Programming Algorithm

Algorithm Dynamic Programming

. Input: MDP (X,U, po, pr, T,4,q,7)

1
2:
3 Vr(x) =q(x), VxeX
4. for tZ(T—l)...O do
5 Qulxou) = L6 0) 1By [Vera ()], Vx € X u € U(x)
6 Vi(x) = min Qi(x,u), vxe X
ueld(x)
7: me(x) = argmin Q¢(x, u), Vx e X
ucld(x)

@

return policy mp.7—1 and value function V

> The expected value function at x” ~ p¢(:|x, u) is:
> Discrete X: Euwp(-xu) [Ves1(x)] = Z Ver1(x)pr(x' | x,u)

x'eXx

> Continuous X: By wp,(-xu) [Ver1(X')] = / Vi1 (X)) pr(x' | x, u)dx’

The Dynamic Programming Algorithm

» At each step, all possible states x € X" are considered because we do not
know a priori which states need to be visited

» This point-wise optimization at each x € X’ is what gives us a policy 7:(x),
i.e., a function specifying a control input for every state x € X

> Consider a problem with |X| = 10 states, |U{| = 10 control inputs, planning
horizon T = 4, and given xp:

> There are [U/|7 = 10* open-loop policies
> There are |[U|/*I(T=D+1 = 103 closed-loop policies

> For each t and each state x, the DP algorithm compares |U| control inputs to
determine the optimal input. In total, there are [U/||X|(T — 1) + |U| = 310
such operations.

Dynamic Programming Optimality

The policy mp.7—1 and value function V; returned by the Dynamic Programming
algorithm are optimal for the finite-horizon optimal control problem.

» Proof:

> Let V;"(x) be the optimal cost for the problem with planning horizon (T — t)
that starts at time t in state x

Proceed by induction
Base-case: V7 (x) = q(x) = Vr(x)
Hypothesis: Assume that for t + 1, V{7 1(x) = Viq1(x) forall x € X

vV v.vyYy

Induction: Show that V{(x) = Vi(x) for all x e X

Proof of Dynamic Programming Optimality

T-1
Vi(xe) = 7Tr;nTin1 Eyorrixe |:7th(XT) + Z (%o ”T(XT)):l
o T=t

T-1
= min B, {e(xm(xt))+ﬂ-‘q(xr)+) vf-fe(xf,m(xfn]

T=t+1
1 .
g 7Tm7!n1 Z(Xhﬂ-t(xt)) + E"z+1 Tlxe [Z 'Y XT7 Tr XT)):|
“re T=t+1

TeT—1

7T a(xr) + 2 WT‘t_lf(Xer(Xr))H

T=t+1

)
= min /(Xt 7Tl‘(xt)) +’7]Exn1\><z |:Ex,+z-TIXg1

T-1
3 . e e
g n;rltn {E(x“ﬂ-f(xt)) + FYEXH»]"‘: n’IITn IEXz+2:T|X:+1 |:’YT ! lq(xT) + Z Y ¢ 1é(x777r‘r(x7')):|:| }
T=t+1
@) . *
- rr;rltn {Z(Xt’ Trt(xt)) + WEXHINPf('\Xn"'z(Xt)) [Vt+1(xf+1)] }
O

utg}?xt) {K Xey Ue) + VB () [Vest (Xe]}

= Vi(xe), Vxe€X

10

Proof of Dynamic Programming Optimality

(1) Since £(x¢, m¢(x¢)) is not a function of x;11.7

(2) Using conditional probability p(x¢+1.7]Xt) = p(X¢2:7|Xe+1, Xe)p(Xe+1]%:) and
the Markov assumption

(3) The minimization can be split since the term ¢(x;, m+(x;)) does not depend
on mey1:7-1. |he expectation E, |, and ming, . can be exchanged since
the functions 7;y1.7_1 make the cost small for all initial conditions, i.e.,
independently of x;1.

» (1)-(3) is the principle of optimality
(4) By definition of V), ;(-) and the motion model x¢y1 ~ pr(- | X¢, ur)

(5) By the induction hypothesis

11

Outline

Example: Chess

12

Example: Chess Strategy Optimization

> State: x, € X :={-2,—1,0,1,2} — the difference between our and the

opponent’s score at the end of game t
» Input: vy € U := {timid, bold}

» Motion model: with py > py,:

pr(Xer1 = X¢ | up = timid, x;) = pq
pr(Xer1 = xe — 1| up = timid, x¢) = 1 — pqg
pr(xei1 = Xt + 1| uy = bold, x;) = py,
pr(xes1 = xe — 1| ur = bold, xt) = 1 — py,

-1
> Cost: Vi(x:) =E |q(x) + let (x-, ur)| with g(x) = ¢ —py,
-0 0

if x>0
ifx=0
if x<0

13

Example: Chess Strategy Optimization

-1 if x>0
> Initialize: Vo(x2) =< —p,, if xo =0
0 if xo <0

» Recursion: for all x;, € X and t =1,0:

Vi(xt) = 6'21 {00xe, ue) + B e [Ver (xes1)1}

Ue

= min {Pd Vir1(xe) + (1 = pa) Vira(xe = 1), pu Ver1(xe + 1) + (1 — pw) Vira (xe — 1)}
timid bold

14

Example:

> x; = 1:

Chess Strategy Optimization

since

Vl(]') = — max {Pd + (1 - pd)pw,pw + (1 - pW)pW}
Pd > Pw

= —pg — (1= pa)pPw
71 (1) = timid

V1(0) = —max {pgpw + (1 — pa)0, pw + (1 — pu)0} = —pw
73(0) = bold

> x; = —1:

Vi(—1) = — max {p40 + (1 = pg)0, pwpw + (1 = pu)0} = —p},
75 (~1) = bold

15

Example: Chess Strategy Optimization

> xp =0:

Vo(0) = — max {pgVa(0) + (1 — pa)Vo(~1), puVa(1) + (1 — pu)Vi(~1)}
= —max {papu + (1 = pa)Piy: Pu(pa + (1 = pa)pu) + (1 = pu)pl, }
= —papw — (1 — pa)ps, — (1 — pu)P2,

73(0) = bold

» Optimal policy: play timid if and only if ahead in the score

16

Outline

Example: Nonlinear System Control

17

Example: Deterministic Nonlinear System

» Consider a deterministic system with state x; € R, control
u; ;= [a;, b € R? and motion model:

Xt+1 = f(Xt7 ut) = aiXt + bl’

> Calculate the optimal value function Vi (x) at time t = 0 and an optimal
policy 75 (x) for t € {0,1}, that minimize the total cost:

Xy + a3 + ag + b3 + b3
» Planning horizon: T =2
» Terminal cost: q(x) = x
» Stage cost: /(x,u) = ||u]|3 = a% + b2

» Discount factor: v =1

18

Example: Deterministic Nonlinear System
» Dynamic programming algorithm at t = T = 2:
V5 (x2) = q(x2) = x2, Vx, €R
> Att=1:

Vi(x) = nl1‘in {l(x1,u1) + V5 (f(x1,u1))} = min {a% + bf 4+ a1xy + bl}
1

a1, by

» Obtain minimum by setting gradient with respect to u; to zero:

0
E(af+bf+alxl+b1) =2a1+x1=0
1
0
£(3%+bf+a1X1+b1) =2bi+1=0
1
leading to aj = —1xi and b = —1

» To confirm this is a minimizer, check that Hessian matrix {(2) g} is positive

definite

19

Example: Deterministic Nonlinear System

> At t=1:

1
» Optimal policy at t = 1: 7y (x1) = —5 {)ﬂ

» Substituting the optimal policy into the value function:

. 1 \? 1)\2 1 1 1 1
Vi(x) = (—§X1> + (_E) + <—§X1> X1+ (_E) = —ZX12 3
> At t =0:

Vi (%) = ng:)n {l(x0,up) + V5 (f(x0,u0))}
. 1 > 1
:g?’lbrl{ag+bg4(aoXo+b0) 4}

. 1 3 1 1
2;!; { (1 - 4x§> a3+ Zbg - §aob0x0 - 4}

20

Example: Deterministic Nonlinear System

> Att=0:
» Obtain minimum by setting gradient with respect to ug to zero:

1 1 1 1 1
i ((1 — *X(?) ag + 3b§ — —agboxo — *) = 2ag — 7aox§ — EboXo =0

dao 4 4 2 4 2
0 1,y » 3,, 1 1y 3 1 B
9bo ((1 4X0> ao+4b0 2aob0X0)~ 2b0 230X0—O
1 4—x§ —xo| |ao| _ |0
-2 [—x 3] |b] " |0

2
— X5 —Xof . . -

0 0] is positive definite and
—Xo0 3

> For xo # £/3, the Hessian matrix 3 [4
as = bs = 0.

> For xo = +v/3, a§ = +v/3b;. Hence we can still choose bt = a; = 0.

> Optimal policy at t = 0: 75 (x0) = [8}

I . i . " 1
» Substituting the optimal policy into the value function: V5 (x) = ~2

21

	Dynamic Programming Algorithm
	Example: Chess
	Example: Nonlinear System Control

