ECE276B: Planning & Learning in Robotics
Lecture 5: Deterministic Shortest Path

Nikolay Atanasov

natanasov@ucsd.edu

UC San Diego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

mailto:natanasov@ucsd.edu

Outline

Deterministic Shortest Path

Deterministic Shortest Path (DSP) Problem

» Consider a graph with vertex set V, edge set £ C V x V, and edge weights
C :={cj e RU{o0} | (i,)) € £} where ¢;; denotes the cost of transition
from vertex i to vertex j

» Objective: find a shortest path from a start node s to an end node 7

Deterministic Shortest Path (DSP) Problem

>

Path: a sequence i1.q := (i1, iz, ..., ig) Of nodes jx € V
Path length: sum of edge weights along the path: Jis = Z;} Civiest

All paths fromsecVtoT € V: Py, :={i1q| ik €V,h =s,iqg =T}

Objective: find a path that has the min length from node s to node 7:
dist(s,7) = min J it € argmin Jia
(s:7) g€ Ps,r B P

Assumption: There are no negative cycles in the graph, i.e., Js > 0, for all
i1.q € Pijandall i€V

Solving DSP problems:
» The finite-state DSP problem is equivalent to a finite-horizon finite-state
deterministic optimal control (DOC) problem

> Apply dynamic programming or label correcting (variant of a “forward” DPA)
to the equivalent DOC problem

Deterministic Optimal Control (DOC) Problem

» DOC Problem:

» optimal control problem with no disturbances, w: = 0

> closed-loop control does not offer any advantage over open-loop control

» Given xg € X, construct an optimal control sequence ug.7_1 such that:

T-1
min - q(xr) + ; 0(xe, uy)
sit. Xep1 = f(xpue), t=0,..., T =1

XteX, utEU

» The DOC problem can be solved via Dynamic Programming

Equivalence of DOC and DSP Problems (DOC to DSP)

» Construct a graph representation of the DOC problem
> Start node: s := (0,xo) given state xo € X’ at time 0
> Vertex set: represent every state x € X at time t by node i := (¢, x):
T
V:={s}uU <U{(t,x) |x € X}) u{r}
t=1

> End node: an artificial node 7 with arc length ¢; , from node i = (¢,x) to 7
equal to the terminal cost q(x) of the DOC problem

Equivalence of DOC and DSP Problems (DOC to DSP)

> The edge weight between two nodes i = (t,x) and j = (t/,x’) is finite,
cij < oo, only if ' = t+1 and x’ = f(x,u) for some u € U.

> The edge weight between two nodes i = (t,x) and j = (t + 1,x’) is the
smallest stage cost between x and x’:

C = Cltx),(t+1x) = L.QE?X) £(x,u) U {c(rx.- =a(x)}

s.t. x'=f(x,u)

@9

°
L]
L]
e.
Rl

Equivalence of DOC and DSP Problems (DSP to DOC)

» Consider a DSP problem with vertices V), edges £, edge weights C, start node
s € V and terminal node 7 € V

» No negative cycles assumption: an optimal path need not have more than
[V| elements

» We can formulate the DSP problem as DOC with T := |V| — 1 stages:
> State space X =V and control space: U =V

. xt ifxe=71
> Motion model: x;41 = f(x, ue) == £
u; otherwise

> Stage cost and terminal cost:

E(X’u)::{o if x =7 q(x)::{o if x =71

Cx,u Otherwise oo otherwise

Dynamic Programming Applied to DSP

» Due to the DOC equivalence, a DSP problem can be solved via dynamic

programming

Algorithm Deterministic Shortest Path via Dynamic Programming

10:

11:
12:

CONIORWNH

Input: vertices V, start s € V, goal 7 € V, and costs ¢;; for i,j € V
T=|V|-1
Vr(r) = Vroa(r) = ... = Vo(r) = 0
Vr(i) =00, VieV\{r}
VT_1(i) = Ci,r, Viey \ {7’}
rr_(i) =7, VieV\{r}
fort =(T —2),...,0do

Qe(i,J) = cij+ Verr(j), VieV\{r}jeV

Vi(i) = minjey Qe(i,j), VieV\{r}

7rl“(i) € arg @in Qf(iv.j)7 vieV \ {T}

j€
if Vi(i) = Viga(i), Vi € V\ {7} then
break

> V(i) is the optimal cost-to-go from node i to node 7 in at most T — t steps

» Upon termination, Vy(s) = Ja = dist(s, 7)

> The algorithm can be terminated early if V(i) = Vii1(i), Vi € V\ {7}

Forward Dynamic Programming Applied to DSP

» The DSP problem is symmetric: a shortest path from s to 7 is also a shortest

path from 7 to s with all arc directions flipped

» This view leads to a forward dynamic programming algorithm

» V[(j) is the optimal cost-to-arrive to node j from node s in at most t steps

Algorithm Deterministic Shortest Path via Forward Dynamic Programming

[uy

X N OO s wN

Input: vertices V, start s € V, goal 7 € V, and costs ¢;; for i,j € V
T=|V| -1
VEGs)=Vf(s)=...VE(s) =0
Vo () =00, Vji€V\{s}
VI() = cys VieV\{s}
fort=2,..., T do

VEG) = miniey (e + VIS (). Vi€ v\ {s}

if VF(i)= V[(i), VieV\{s} then

break

10

Example: Forward DP Algorithm

> s=—land7=5
> T=V-1=6

1 2 3 4 5 6 7
Vi 0 © oo oo oo oo o0
Vi 05 3 oo o 5
vi 0 5 3 15 13 5 4
vi 0 5 3 15 12 5 4
vi 0o 5 3 15 12 5 4

» Since V(i) =V (i), VieV at
time t = 4, the algorithm can
terminate early, i.e., without
computing Vi (i) and V£ (i)

11

Outline

Label Correcting Algorithm

12

Label Correcting Methods for the DSP Problem

» The (backward) Dynamic Programming algorithm applied to the DSP
problem computes the shortest paths from all nodes to the goal 7

» The forward Dynamic Programming algorithm computes the shortest paths
from the start s to all nodes

» Often many nodes are not part of the shortest path from s to 7

> Label correcting (LC) algorithms for the DSP problem do not necessarily
visit every node of the graph

» LC algorithms prioritize visited nodes i using the cost-to-arrive V/ (/)
» Key ideas in LC algorithms:
> Label gj: estimate of optimal cost-to-arrive from s to each visited i € V

> Label correction: each time g; is reduced, the labels g; of the children of
are corrected: g = gi + ¢j

> OPEN List: set of nodes that can potentially be part of the shortest path to 7

13

Label Correcting Algorithm

Algorithm Label Correcting Algorithm

1. OPEN «+ {s}, gs =0, gi=oo forall i € V\ {s}
2: while OPEN is not empty do

3 Remove i from OPEN

4 for j € Children(i) do

5 if (gi +cj) <gjand (g + ¢j) < g- then > Only when ¢;j >0 for all i,j € V
6: g = &+ ¢jj
7
8
9

Parent(j) =i
if j # 7 then
OPEN = OPEN U{j}

Consider a finite-state deterministic shortest path problem. If there exists at least
one finite cost path from s to 7, then the Label Correcting algorithm terminates
with g, = dist(s, 7), the shortest path length from s to 7. Otherwise, the
algorithm terminates with g, = oc.

14

Label Correcting Algorithm

Yes

Set gj =g, + Ci,j

Isg; + Cij < gT?

Yes

Is g; + Cij < gj?

Insert
Children
@, O
C oo
OPEN)

Remove

Label Correcting Algorithm Proof

1. Claim: The LC algorithm terminates in a finite number of steps

» Each time a node j enters OPEN, its label is decreased and becomes equal to
the length of some path from s to j.

» The number of distinct paths from s to j whose length is smaller than any
given number is finite (no negative cycles assumption)

» There can only be a finite number of label reductions for each node j

» Since the LC algorithm removes nodes from OPEN in line 3, the algorithm will
eventually terminate

2. Claim: The LC algorithm terminates with g, = oo if there is no finite cost
path from s to 7
> A node i€V isin OPEN only if there is a finite cost path from s to /

» If there is no finite cost path from s to 7, then for any node i in OPEN
¢i,» = 00; otherwise there would be a finite cost path from s to 7

» Since ¢j,r = oo for every i in OPEN, line 5 ensures that g- is never updated
and remains oo

16

Label Correcting Algorithm Proof

3. Claim: Assume ¢;; > 0 (special case). The LC algorithm terminates with
g- = dist(s, 7) if there is at least one finite cost path from s to 7.

>

Let ii:q € Ps,- be a shortest path from s to 7 with i =s, iy = 7, and length
Jia = dist(s, 7).

By the principle of optimality, i1, is a shortest path from s to i with length
Jim = dist(s, iy) forany m=1,...,g — 1.

Suppose that g, > JTa = dist(s, 7) (proof by contradiction).

> Since g- only decreases in the algorithm and every cost is nonnegative,

g > Jim =dist(s, i) forall m=2,...,g— 1.

Thus, i;_; does not enter OPEN with g, = Jta-1 = dist(s, i;_1) since if it
did, then the next time i;_; is removed from OPEN, g would be updated to
Jia = dist(s, ii_;).

Similarly, i;_, does not enter OPEN with g, = Jla—2 = dist(s, iy_»).

Continuing this way, iy’ will not enter OPEN with 8y = Ji2 = Cs, i but this
happens at the first iteration of the algorithm, which is a contradiction.

17

Example: Deterministic Scheduling Problem

» Consider a deterministic scheduling problem where 4 operations A, B, C, D

are used to produce a product

» Rules: Operation A must occur before B, and C before D

» Cost: there is a transition cost between each two operations:

Acs} L
can]!

|
1 »fapal—2

18

Example: Deterministic Scheduling Problem

» The state transition diagram of the scheduling problem can be simplified in
order to reduce the number of nodes

2 B3
A
5)
3 AC
4
LC.
4
) . ca | —
C
5 D |——»]cpa

» This results in a DOC problem with T =4 and X = {I.C., A, C, AB, AC,CA,
CD, ABC, ACD or CAD, CAB or ACB, CDA, DONE}

» The DOC problem can be converted into a DSP problem

19

Example: Deterministic Scheduling Problem

» We can map the DOC
problem to a DSP problem
and apply the LC algorithm

lteration Remove OPEN g g g g g & 8 & 8 & 8o &
0 - s 0 o© o0 00 00 0O 0O 00 00 00 00 00
1 s 1,2 0 5 3 00 0 o0 00 00 00 0 00 00
2 2 1,5,6 0 5 3 o oo 7 9 o oo ™o oo o0
3 6 1,5,10 0 5 3 oo oo 7 9 oo oo oo 12 o
4 10 1,5 0 5 3 o0 oo 7 9 oo oo oo 12 14
5 5 1,89 0 5 3 o oo 7 9 oo 11 9 12 14
6 9 1,8 0 5 3 o0 oo 7 9 o 11 9 12 10
7 8 1 0 5 3 o0 o0 7 9 oo 11 9 12 10
8 1 3,4 0 5 3 7 8 7 9 o 11 9 12 10
9 4 0O 5 3 7 8 7 9 oo 11 9 12 10
10 3 - o 5 3 7 8 7 9 oo 11 9 12 10

» Keeping track of the parents when a child node is added to OPEN, we can
determine a shortest path (s,2,5,9,7) with total cost 10, which corresponds

to (C, CA, CAB, CABD) in the original problem -

Label Correcting Algorithm Variations

» The freedom to select which node to remove from OPEN at each iteration
gives rise to several different label correcting methods:

> Breadth-first search (BFS) (Bellman-Ford Algorithm): “first-in, first-out”
policy with OPEN implemented as a queue.

> Depth-first search (DFS): "last-in, first-out” policy with OPEN implemented
as a stack; often saves memory.

> Best-first search (Dijkstra’s Algorithm): the node with minimum label

i* = arg min gj is removed, which guarantees that a node will enter OPEN at
JjEOPEN

most once. OPEN is implemented as a priority queue.

»> D’Esopo-Pape: removes nodes at the top of OPEN. If a node has been in
OPEN before it is inserted at the top; otherwise at the bottom.

> Small-label-first (SLF): removes nodes at the top of OPEN. If gi < grop
node i is inserted at the top; otherwise at the bottom.

> Large-label-last (LLL): the top node is compared with the average of OPEN
and if it is larger, it is placed at the bottom of OPEN; otherwise it is removed.

21

A* Algorithm

» The A* algorithm is a modification to the LC algorithm for special case
cjj > 0 in which the requirement for admission to OPEN is strengthened:

from |gi+cj<g-| to ‘g,-+c,-j+hj<g7

where h; is a non-negative lower bound on the optimal cost-to-go dist(j,)
from node j to 7, known as a heuristic function

» The more stringent criterion can reduce the number of iterations required by
the LC algorithm

» A heuristic function is constructed using special knowledge about the
problem. The more accurately h; estimates the optimal cost-to-go dist(j,)
from j to 7, the more efficient the A* algorithm becomes.

22

	Deterministic Shortest Path
	Label Correcting Algorithm

