
ECE276B: Planning & Learning in Robotics
Lecture 8: Anytime, Incremental, and

Agent-Centered Search

Nikolay Atanasov

natanasov@ucsd.edu

1

mailto:natanasov@ucsd.edu

Anytime, Incremental, and Agent-Centered Search

▶ There are three important situations that happen in practice but vanilla label
correcting algorithms do not handle:

1. planning in very large environments, where it is impossible to compute a path
all the way to the goal (Agent-Centered Search),

2. planning the best possible path in a given fixed amount of time (Anytime
Search)

3. reusing a previous plan rather than recomputing it from scratch in a
dynamically changing or partially known environment (Incremental Search)

2

Agent-Centered, Anytime, and Incremental Search

▶ CMU’s autonomous car used agent-centered, anytime, incremental search
based on the anytime D* algorithm in the DARPA Urban Challenge in 2007

▶ Likhachev and Ferguson, “Planning Long Dynamically Feasible Maneuvers for
Autonomous Vehicles,” IJRR, 2009,
http://journals.sagepub.com/doi/pdf/10.1177/0278364909340445

▶ Video: https://www.youtube.com/watch?v=4hFhl0Oi8KI

▶ Video: https://www.youtube.com/watch?v=qXZt-B7iUyw

3

https://www.youtube.com/watch?v=4hFhl0Oi8KI
https://www.youtube.com/watch?v=4hFhl0Oi8KI
http://journals.sagepub.com/doi/pdf/10.1177/0278364909340445
https://www.youtube.com/watch?v=4hFhl0Oi8KI
https://www.youtube.com/watch?v=qXZt-B7iUyw

Outline

Agent-Centered Search

Anytime Search

Incremental Search

4

Planning in Large Unknown Environments

▶ Freespace Assumption: unknown space is free, i.e., costs between unknown
cells are the same as between free cells

▶ Move the agent along a shortest potentially free path and replan whenever
new sensor information is received

5

Planning in Large Unknown Environments

▶ A constantly updating map requires a lot of replanning!

▶ Agent-Centered Search: places a strict limit on the amount of computation
during replanning

6

Agent-Centered Search
▶ Agent-centered search with free-space assumption:

1. compute a partial path by expanding at most N nodes around the agent
2. move once, incorporate sensor information, and repeat

▶ Example in a known terrain:

▶ Example in an unknown terrain:

▶ Questions:
▶ How to compute a partial path?
▶ How to guarantee that the goal is eventually reached?
▶ How to provide bounds on the number of steps to reach the goal?

7

Agent-Centered Search

▶ Consider repeatedly moving from the start node s to the most promising
adjacent node j ∈ Children(s) using a heuristic hj :

s = argmin
j∈Children(s)

csj + hj

▶ Example: hi = max{|xi − xτ |, |yi − yτ |}+ 0.4min{|xi − xτ |, |yi − yτ |}

▶ Problem: this idea cannot overcome local minima in the heuristic function

8

Learning Real-Time A* (LRTA*)
▶ Idea: the heuristic needs to be updated over time!

▶ Repeatedly move to the most promising adjacent node using and updating a
heuristic:

1. Update: hs = min
j∈Children(s)

csj + hj

2. Move: s = argmin
j∈Children(i)

csj + hj

▶ The heuristic updates make h more informed while ensuring it remains
admissible and consistent

▶ The agent is guaranteed to reach the goal in a finite number of steps if:
▶ all edge costs are bounded from below: cij ≥ δ > 0
▶ the graph is finite and there exists a finite-cost path to the goal
▶ all actions are reversible, ensuring that we do not get stuck in a local min

9

Learning Real-Time A* (LRTA*)

▶ LRTA* is related to A* with N = 1 node expansions because it makes a
move towards the node j in OPEN with smallest gj + hj = csj + hj value

▶ LRTA* with N ≥ 1 node expansions:

1. Expand N nodes

2. Update h-values of expanded nodes via dynamic programming (necessary to
guarantee that the goal is eventually reached):

▶ Initialize: hi =∞ for all i in CLOSED
▶ Repeat: hi = minj∈Children(i)(cij + hj) until convergence of hi for all i ∈ CLOSED

3. Move on the path to node j∗ = argmin
j∈OPEN

(gj + hj)

▶ Node j∗ minimizes the cost-to-arrive to it plus the heuristic estimate of the
remaining distance to the goal, i.e., it looks promising in terms of the whole
path from the current agent state to the goal.

10

Example: Learning Real-Time A* (LRTA*)

(a) 4-connected grid with
Manhattan heuristic

(b) Expand N = 7 nodes (c) Unexpanded node with
smallest f = 5 + 3 value

11

Example: Learning Real-Time A* (LRTA*)

▶ Update h-values of expanded nodes via dynamic programming

hi = min
j∈Children(i)

(cij + hj)

12

Example: Learning Real-Time A* (LRTA*)

▶ Update h-values of expanded nodes via dynamic programming

hi = min
j∈Children(i)

(cij + hj)

13

Example: Learning Real-Time A* (LRTA*)

▶ Repeat:

1. Expand N nodes

2. Update h-values of expanded nodes by dynamic programming

3. Make one move along the shortest path to the node in OPEN with the
smallest f value

14

Real-time Adaptive A* (RTAA*)
▶ RTAA* with N ≥ 1 expands

1. Expand N nodes

2. Update h-values of expanded nodes i by hi = fj∗ − gi where
j∗ = argmin

j∈OPEN
(gj + hj) (only a single pass through the nodes in CLOSED)

3. Move on the path to node j∗ = argmin
j∈OPEN

gj + hj

▶ Proof of admissability: dist(i , τ) ≥ dist(s, τ)− gi ≥ fj∗ − gi = hi

(a) 4-connected grid with
Manhattan heuristic

(b) Expand N = 7 states (c) Unexpanded state with
smallest f = 5 + 3

15

Real-time Adaptive A* (RTAA*)

▶ Unexpanded node j∗ with smallest fj∗ = 8

▶ Update h-values of expanded nodes: hi = fj∗ − gi

16

LRTA* vs RTAA*

(a) LRTA* (b) RTAA*

▶ Update of h-values in RTAA* is much faster but not as informed

▶ Both algorithms guarantee admissible and consistent heuristic over time

▶ Heuristics are monotonically increasing for both

▶ Both guarantee that the goal is reached in a finite number of steps
(assuming: bounded edge cost, finite graph, finite-cost path to goal, and
reversible actions)

17

Outline

Agent-Centered Search

Anytime Search

Incremental Search

18

Anytime Search

▶ Objective: return the best plan possible within a fixed planning time

▶ Idea: run a series of weighted A* searches with decreasing ϵ:

▶ This is inefficient because many labels (g -values) remain the same between
search iterations yet we are recomputing them from scratch

▶ Anytime Repairing A* (ARA*): an algorithm that is able to reuse the
information from a previous search

19

Reusing Labels from a Previous Search

▶ Idea: mark nodes whose g -values have changed since the last expansion

▶ v-value: the g -value of a node at the time of its last expansion
▶ vi = ∞ for nodes that were never expanded
▶ gj = mini∈Parents(j) vi + cij for all nodes

▶ Consistent node: a node i such that vi = gi

▶ Overconsistent node: a node i such that vi > gi

▶ All i ∈ OPEN are overconsistent because vi = ∞ > gi

▶ Alternative view: A* expands overconsistent nodes in f -value order

▶ All we need to do to make A* reuse previous information is to initialize
OPEN with all overconsistent nodes!

20

Reusing Labels from a Previous Search
▶ A* (consistent heuristic): OPEN is initialized with the OPEN list from a

previous search since a consistent heuristic ensures that all nodes in CLOSED
remain consistent

▶ Weighted A* (ϵ-consistent heuristic): OPEN is initialized with the OPEN list
from a previous search and an INCONS list of all nodes in CLOSED whose
g -values decreased after entering CLOSED

Algorithm Weighted A* that keeps track of inconsistent nodes

1: OPEN ← {s}, CLOSED ← {}, ϵ ≥ 1
2: gs = 0, gi =∞ for all i ∈ V \ {s}
3: vi =∞ for all i ∈ V
4: ComputePath()
5:
6: function ComputePath()
7: while fτ > mini∈OPEN fi do ▷ τ is not the most promising node yet
8: Remove i with smallest fi := gi + ϵhi from OPEN
9: Insert i into CLOSED; vi = gi

10: for j ∈ Children(i) do
11: if gj > (gi + cij) then
12: gj ← (gi + cij)
13: if j /∈ CLOSED then insert or update j in OPEN

}
Ensure no node is
expanded multiple times

14: else insert j into INCONS
21

Example: Reusing Labels from a Previous Search
▶ OPEN contains all overconsistent nodes initially
▶ Invariant maintained throughout the search: gj = mini∈Parents(j)vi + cij
▶ OPEN = {4, τ}
▶ CLOSED = {}
▶ Next to expand: 4

22

Example: Reusing Labels from a Previous Search

▶ OPEN = {3, τ}
▶ CLOSED = {4}
▶ Next to expand: τ

23

Example: Reusing Labels from a Previous Search

▶ OPEN = {3}
▶ CLOSED = {4, τ}
▶ Done

24

Anytime Repairing A* (ARA*)

▶ Efficient series of weighted A* searches with decreasing ϵ

▶ Need to keep track of all overconsistent nodes = OPEN ∪ INCONS

Algorithm ARA*

1: Set ϵ to large value
2: OPEN ← {s}
3: gs = 0, gi =∞ for all i ∈ V \ {s}
4: vi =∞ for all i ∈ V
5: while ϵ ≥ 1 do
6: CLOSED ← {}; INCONS ← {}
7: OPEN, INCONS ← ComputePath()
8: Publish current ϵ suboptimal solution
9: Decrease ϵ

10: OPEN = OPEN ∪ INCONS ▷ Initialize OPEN with all overconsistent nodes

25

Repeated A* vs ARA*

▶ A series of weighted A* searches (no g-value reuse)

▶ Anytime Repairing A* (ARA*)

26

Outline

Agent-Centered Search

Anytime Search

Incremental Search

27

Unknown Dynamic Graphs

▶ So far, we assumed that all edge costs are known and do not change

▶ In practice, the environment may be partially known or changing

▶ Naive idea: recompute the path any time an edge cost changes

▶ Lifelong Planning A* (LPA*):
▶ Assumes edge costs change but the agent has not actually moved yet
▶ Recomputes the path from start to goal while reusing prior information

▶ D* and D* Lite:
▶ The agent starts moving along the path to goal and updates edge costs as the

sensors observe new obstacles or free areas
▶ Recomputes the path from the current node to the goal while reusing prior

information

▶ Other variations: Anytime D*, Field D*, Theta*, ...

28

Motivation for Incremental Search
▶ Optimal g -values for a backwards search:

(a) cost of least-cost path to τ initially

(b) cost of least-cost path to τ after a door
turns out to be closed

▶ Can the g-values from the first search be re-used in the second search?

▶ Would the number of changed g -values be different for forward A*?

29

Map Changes and Underconsistent Nodes

▶ So far, ComputePath() only distinguishes consistent and overconsistent
nodes, i.e., vi ≥ gi

▶ Edge cost increases may introduce underconsistent nodes (vi < gi) which
violates the ComputePath() invariant: gj = mini∈Parents(j)vi + cij

▶ Incremental search approach:

1. Fix all underconsistent nodes by setting vi = ∞, which makes them either
overconsistent or consistent

2. Propagate the changes to maintain the invariant: gj = mini∈Parents(j) vi + cij

▶ Additional f -value requirement: for (over)consistent node i that can
belong to some path from s to τ , we require that all underconsistent nodes j
that could be on a path from s to i are expanded before i , i.e., keyi > keyj

keyi = [min{gi , vi}+ ϵhi ; min{gi , vi}] (second value for tie breaking)

30

Lifelong Planning A*

Algorithm LPA* ComputePath()

1: function ComputePath()
2: while keyτ > minj∈OPEN keyj or vτ < gτ do
3: Remove i with smallest keyi from OPEN
4: if vi > gi (overconsistent) then
5: vi = gi ; Insert i into CLOSED
6: for j ∈ Children(i) do
7: if gj > (gi + cij) then
8: gj ← (gi + cij)
9: UpdateMembership(j)

10: else (underconsistent)
11: vi =∞; UpdateMembership(i)
12: for j ∈ Children(i) and j ̸= s do
13: gj = mink∈Parents(j) vk + ckj
14: UpdateMembership(j)

15:
16: function UpdateMembership(i)
17: if vi ̸= gi then
18: if i /∈ CLOSED then insert/update i in OPEN with keyi
19: else
20: if i ∈ OPEN then remove i from OPEN

31

Example: Map Changes and Underconsistent Nodes
▶ Suppose that an edge cost changes

▶ Propagate the changes to maintain: gj = mini∈Parents(j) vi + cij

32

Example: Map Changes and Underconsistent Nodes
▶ This may introduce underconsistent nodes (vi < gi)
▶ OPEN = {1, 3}, CLOSED = {s, 2, 4, τ}
▶ Next to expand: 1 (underconsistent)

33

Example: Map Changes and Underconsistent Nodes

▶ Fix the underconsistent node by setting v1 = ∞ and reinsert in OPEN

34

Example: Map Changes and Underconsistent Nodes

▶ Propagate the changes to maintain: gj = mini∈Parents(j) vi + cij

35

Example: Map Changes and Underconsistent Nodes

▶ OPEN = {1, 3}, CLOSED = {s, 2, 4, τ}
▶ Next to expand: 3 (overconsistent)

36

Example: Map Changes and Underconsistent Nodes

▶ Expand 3 and insert in CLOSED

37

Example: Map Changes and Underconsistent Nodes

▶ OPEN = {1}, CLOSED = {s, 2, 4, τ, 3}
▶ Next to expand: 1 (overconsistent)

38

Example: Map Changes and Underconsistent Nodes

▶ Done. Backtrack the optimal path.

39

D* Lite

▶ Backward search from goal τ to current agent state with all edges reversed

▶ The root of the search tree remains the same and the g values are more likely
to remain unchanged in-between two calls to ComputePath()

Algorithm D* Lite

1: repeat
2: ComputePath() ▷ Modified to fix underconsistent nodes
3: Publish optimal path
4: Follow the path until the map is updated with new sensor information
5: Update the corresponding edge costs
6: Set τ to the current state of the agent
7: until τ is reached

▶ Details in M. Likhachev, D. Ferguson, G. Gordon, A. Stenz, and S. Thrun,
“Anytime search in dynamic graphs,” Artificial Intelligence, 2012.

40

D* Lite (Incremental A*) vs A*

▶ Backward A* does not reuse g -values from previous searches:

(a) initial search by backward A* (b) second search by backward A*

▶ D* Lite reuses g -values from previous searches:

(a) initial search by D* Lite (b) second search by D* Lite

41

Anytime and Incremental Planning

▶ Decrease ϵ and update edge costs at the same time

▶ Re-compute a path by reusing previous g values

Algorithm Anytime D*

1: Set ϵ to large value
2: repeat
3: ComputePath() ▷ Modified to fix underconsistent nodes
4: Publish ϵ-suboptimal path
5: Follow the path until the map is updated with new sensor information
6: Update the corresponding edge costs
7: Set τ to the current state of the agent
8: if significant changes were observed then
9: Increase ϵ or replan from scratch

10: else
11: Decrease ϵ
12: until τ is reached

42

	Agent-Centered Search
	Anytime Search
	Incremental Search

