ECE276B: Planning \& Learning in Robotics Lecture 9: Sampling-based Motion Planning

Nikolay Atanasov
natanasov@ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING

Electrical and Computer Engineering

Outline

Search-based vs Sampling-based Planning

Probabilistic Roadmap

Rapidly Exploring Random Tree

Motion Planning Problem

- Configuration space: C; Obstacle space: $C_{\text {obs }}$; Free space: $C_{\text {free }}$
- Start state: $\mathbf{x}_{s} \in C_{\text {free }}$; Goal state: $\mathbf{x}_{\tau} \in C_{\text {free }}$
- Path: continuous function $\rho:[0,1] \rightarrow C$; Set of all paths: \mathcal{P}
- Feasible path: continuous function $\rho:[0,1] \rightarrow C_{\text {free }}$ such that $\rho(0)=\mathbf{x}_{s}$ and $\rho(1)=\mathbf{x}_{\tau}$; Set of all feasible paths: $\mathcal{P}_{s, \tau}$
- Motion Planning Problem: Given a path planning problem ($C_{\text {free }}, \mathbf{x}_{s}, \mathbf{x}_{\tau}$) and a cost function $J: \mathcal{P} \rightarrow \mathbb{R}_{\geq 0}$, find a feasible path ρ^{*} such that:

$$
J\left(\rho^{*}\right)=\min _{\rho \in \mathcal{P}_{\mathbf{s}, \tau}} J(\rho)
$$

or report failure if no such path exists.

Search-based Planning

- Generates a graph by systematic discretization of $C_{\text {free }}$
- Searches the graph for a feasible path, guaranteeing to find one if it exists (resolution complete)
- Provides finite-time suboptimality bounds on the solution
- Can interleave graph construction and search, i.e., nodes added only when necessary
- Computationally expensive in high dimensions

Sampling-based Planning

- Generates a graph by random sampling in $C_{\text {free }}$
- Searches the graph for a path, guaranteeing that the probability of finding one if it exists approaches 1 as the number of iterations $\rightarrow \infty$ (probabilistically complete)
- Provides asymptotic suboptimality bounds on the solution
- Can interleave graph construction and search, i.e., samples added only when necessary
- Faster and requires less memory than search-based planning in high dimensions

Primitive Procedures for Sampling-based Motion Planning

- SAMPLE: returns iid samples from C
- SAMPleFree: returns iid samples from $C_{\text {free }}$
- Nearest: given a graph $G=(V, E)$ with $V \subset C$ and a point $x \in C$, returns a vertex $\mathbf{v} \in V$ that is closest to \mathbf{x} :

$$
\operatorname{NEAREST}((V, E), \mathbf{x}):=\underset{\mathbf{v} \in V}{\arg \min }\|\mathbf{x}-\mathbf{v}\|
$$

- NEAR: given a graph $G=(V, E)$ with $V \subset C$, a point $x \in C$, and $r>0$, returns the vertices in V that are within a distance r from \mathbf{x} :

$$
\operatorname{NEAR}((V, E), \mathbf{x}, r):=\{\mathbf{v} \in V \mid\|\mathbf{x}-\mathbf{v}\| \leq r\}
$$

$>$ STEER $_{\epsilon}$: given points $\mathbf{x}, \mathbf{y} \in C$ and $\epsilon>0$, returns a point $\mathbf{z} \in C$ that minimizes $\|\mathbf{z}-\mathbf{y}\|$ while remaining within ϵ from \mathbf{x} :

$$
\operatorname{STEER}_{\epsilon}(\mathbf{x}, \mathbf{y}):=\underset{\mathbf{z}:\|\mathbf{z}-\mathbf{x}\| \leq \epsilon}{\arg \min }\|\mathbf{z}-\mathbf{y}\|
$$

- CollisionFree: given points $\mathbf{x}, \mathbf{y} \in C$, returns True if the line segment between \mathbf{x} and \mathbf{y} lies in $C_{\text {free }}$ and FALSE otherwise.

Outline

Search-based vs Sampling-based Planning

Probabilistic Roadmap

Rapidly Exploring Random Tree

Probabilistic Roadmap

Step 1: Construction Phase: Build a graph G (roadmap) aiming to make it accessible from any point in $C_{\text {free }}$

- Nodes: randomly sampled valid configurations in $C_{\text {free }}$
- Edges: added between samples that are easy to connect with simple local control (e.g., follow straight line)

Step 2: Query Phase: Given start $\mathbf{x}_{s} \in C_{\text {free }}$ and goal $\mathbf{x}_{\tau} \in C_{\text {free }}$, connect them to the graph G and search it for a shortest path from \mathbf{x}_{s} to \mathbf{x}_{τ}

- Pros and Cons:
- Simple and highly effective in high dimensions
- Difficulty with narrow passages
- Can result in suboptimal paths, only asymptotic guarantees on optimality
- Useful for multi-query planning: different start and goal configurations in the same environment

Step 1: Construction Phase

Step 1: Construction Phase

Algorithm 1 PRM (construction phase)
1: $V \leftarrow \emptyset ; E \leftarrow \emptyset$
2: for $i=1, \ldots, n$ do
3: $\quad \mathbf{x}_{r a n d} \leftarrow \operatorname{SAMPLEFREE}()$
4: $\quad V \leftarrow V \cup\left\{\mathbf{x}_{\text {rand }}\right\}$
5: for $x \in \operatorname{NEAR}\left((V, E), \mathbf{x}_{\text {rand }}, r\right)$ do $\quad \triangleright$ May use k nearest nodes
6: if (not G.same_component $\left(\mathbf{x}_{\text {rand }}, \mathbf{x}\right)$) and CollisionFrees $\left(\mathbf{x}_{\text {rand }}, \mathbf{x}\right)$ then
7: $\quad E \leftarrow E \cup\left\{\left(\mathbf{x}_{\text {rand }}, \mathbf{x}\right),\left(\mathbf{x}, \mathbf{x}_{\text {rand }}\right)\right\}$
8: return $G=(V, E)$

- G.same_component $\left(\mathbf{x}_{\text {rand }}, \mathbf{x}\right)$
- ensures that \mathbf{x} and $\mathbf{x}_{\text {rand }}$ are in different connected components of G
- every connection decreases the number of connected components in G
- efficient implementation using a union-find algorithm
- may be replaced by G.vertex_degree $(\mathbf{x})<K$ for some fixed K (e.g., $K=15$) if it is important to generate multiple alternative paths

Asymptotically Optimal Probabilistic Roadmap

- To achieve an asymptotically optimal PRM, the connection radius r should decrease such that the average number of connections attempted from a roadmap vertex is proportional to $\log (n)$:

$$
r^{*}>2\left(1+\frac{1}{d}\right)^{1 / d}\left(\frac{\operatorname{Vol}\left(C_{\text {free }}\right)}{\operatorname{Vol}(\text { Unit d-ball })}\right)^{1 / d}\left(\frac{\log (n)}{n}\right)^{1 / d}
$$

- S. Karaman and E. Frazzoli, "Incremental Sampling-based Algorithms for Optimal Motion Planning," IJRR, 2010

```
Algorithm 2 PRM* (construction phase)
    \(V \leftarrow\left\{\mathbf{x}_{s}\right\} \cup\{\operatorname{SampleFree}()\}_{i=1}^{n} ; E \leftarrow \emptyset\)
    for \(v \in V\) do
        for \(\mathbf{x} \in \operatorname{Near}\left((V, E), \mathbf{v}, r^{*}\right) \backslash\{\mathbf{v}\}\) do
        if CollisionFree \((\mathbf{v}, \mathbf{x})\) then
            \(E \leftarrow E \cup\{(\mathbf{v}, \mathbf{x}),(\mathbf{x}, \mathbf{v})\}\)
    return \(G=(V, E)\)
```


Outline

Search-based vs Sampling-based Planning

Probabilistic Roadmap

Rapidly Exploring Random Tree

PRM vs RRT

- Rapidly Exploring Random Tree (RRT):
- Introduced by Steven LaValle in 1998
- One of the most popular planning techniques
- Many, many, many extensions and variants (articulated robots, kinematics, dynamics, differential constraints)
- There exist incremental versions of RRTs that reuse a previously constructed tree when replanning in response to map updates

- PRM:

- graph constructed from random samples that can be searched for a path whenever a start node \mathbf{x}_{s} and goal node \mathbf{x}_{τ} are specified
- well-suited for repeated planning between different pairs of \mathbf{x}_{s} and \mathbf{x}_{τ} (multi-query planning)
- RRT:
- tree constructed from random samples with root \mathbf{x}_{s} and grown until it contains a path to \mathbf{x}_{τ}
- well-suited for single-shot planning between a fixed pair of \mathbf{x}_{s} and \mathbf{x}_{τ} (single-query planning)

Rapidly Exploring Random Tree (RRT)

- Construction phase: sample a new configuration $\mathbf{x}_{\text {rand }} \in C_{f r e e}$, find the nearest neighbor $\mathbf{x}_{\text {nearest }}$ in G, connect them if straight line is collision-free:

- (Variant) if $\mathbf{x}_{\text {nearest }}$ lies on an existing edge, then split the edge:

- (Variant) if there is an obstacle, travel up to the obstacle boundary as far as allowed by a collision detection algorithm

Rapidly Exploring Random Tree (RRT)

- Starting with an initial configuration x_{s} build a tree until the goal configuration \mathbf{x}_{τ} is part of it

```
Algorithm 3 RRT
    1: \(V \leftarrow\left\{\mathrm{x}_{s}\right\} ; E \leftarrow \emptyset\)
    2: for \(i=1 \ldots n\) do
    3: \(\quad \mathbf{x}_{\text {rand }} \leftarrow\) SampleFree ()
    4: \(\quad \mathbf{x}_{\text {nearest }} \leftarrow \operatorname{NeAREST}\left((V, E), \mathbf{x}_{\text {rand }}\right)\)
    5: \(\quad \mathbf{x}_{\text {new }} \leftarrow \operatorname{STEER}_{\epsilon}\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}_{\text {rand }}\right)\)
    6: if CollisionFree \(\left(\mathbf{x}_{\text {nearest }}, \mathrm{x}_{\text {new }}\right)\) then
        \(V \leftarrow V \cup\left\{\mathbf{x}_{\text {new }}\right\} ; E \leftarrow E \cup\left\{\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}_{\text {new }}\right)\right\}\)
    return \(G=(V, E)\)
```


Rapidly Exploring Random Tree (RRT)

- RRT with $\epsilon=\infty$ (called Rapidly Exploring Dense Tree (RDT)):

45 iterations

2345 iterations

- RRT with $\epsilon<\infty$

Rapidly Exploring Random Tree (RRT)

- What about the goal?
- occasionally (e.g., every 100 iterations) choose the goal \mathbf{x}_{τ} as a sample and see if it gets connected to the tree
- RRT implementation in C-Space:
- Need distance function to find the nearest configurations in C-Space (e.g., distance along the surface of a torus for a 2 link manipulator)
- A controller to track a line in C-Space might be hard to design. We do not have to connect the configurations all the way. Instead, use a local steering function and small step size ϵ to get closer to the second configuration.
- RRT implementation in 3-D workspace:
- need to do collision checking for whole robot body and line-tracking control

Example: RRT Algorithm

- Start node \mathbf{x}_{s}
- Goal node \mathbf{x}_{τ}
- Gray obstacles

Example: RRT Algorithm

- Sample $\mathbf{x}_{\text {rand }}$ in the workspace
- Steer from \mathbf{x}_{s} towards $\mathbf{x}_{\text {rand }}$ by a fixed distance ϵ to get \mathbf{x}_{1}
- If the segment from \mathbf{x}_{s} to \mathbf{x}_{1} is collision-free, insert \mathbf{x}_{1} into the tree

Example: RRT Algorithm

- Sample $\mathbf{x}_{\text {rand }}$ in the workspace
- Find the closest node $\mathbf{x}_{\text {nearest }}$ to $\mathbf{x}_{\text {rand }}$
- Steer from $\mathbf{x}_{\text {nearest }}$ towards $\mathbf{x}_{\text {rand }}$ by a fixed distance ϵ to get \mathbf{x}_{2}
- If the segment from $\mathbf{x}_{\text {nearest }}$ to \mathbf{x}_{2} is collision-free, insert \mathbf{x}_{2} into the tree

Example: RRT Algorithm

- Sample $\mathbf{x}_{\text {rand }}$ in the workspace
- Find the closest node $\mathbf{x}_{\text {nearest }}$ to $\mathbf{x}_{\text {rand }}$
- Steer from $\mathbf{x}_{\text {nearest }}$ towards $\mathbf{x}_{\text {rand }}$ by a fixed distance ϵ to get \mathbf{x}_{3}
- If the segment from $\mathbf{x}_{\text {nearest }}$ to \mathbf{x}_{3} is collision-free, insert \mathbf{x}_{3} into the tree

Example: RRT Algorithm

- Sample $\mathbf{x}_{\text {rand }}$ in the workspace
- Find the closest node $\mathbf{x}_{\text {nearest }}$ to $\mathbf{x}_{\text {rand }}$
- Steer from $\mathbf{x}_{\text {nearest }}$ towards $\mathbf{x}_{\text {rand }}$ by a fixed distance ϵ to get \mathbf{x}_{3}
- If the segment from $\mathbf{x}_{\text {nearest }}$ to \mathbf{x}_{3} is collision-free, insert \mathbf{x}_{3} into the tree

Example: RRT Algorithm

- Continue until a node that is a distance ϵ from the goal is generated
- Either terminate the algorithm or search for additional feasible paths

Sampling in RRTs

- The vanilla RRT algorithm provides uniform coverage of space

- Alternatively, the growth may be biased by the largest Voronoi region

Sampling in RRTs

\rightarrow Goal-biased sampling: with probability $\left(1-p_{g}\right), \mathbf{x}_{\text {rand }}$ is chosen as a uniform sample in $C_{f r e e}$ and with probability $p_{g}, \mathbf{x}_{\text {rand }}=\mathbf{x}_{\tau}$

(a) $p_{g}=0$

(b) $p_{g}=0.1$

(c) $p_{g}=0.5$

Handling Robot Dynamics with Steer $_{\epsilon}()$

- $\operatorname{Steer}_{\epsilon}()$ extends the tree towards a given random sample $\mathbf{x}_{\text {rand }}$
- Consider a car-like robot with non-holonomic constraints (no sideways motion) in $S E(2)$. Obtaining a feasible path from $\mathrm{x}_{\text {rand }}=\left(0,0,90^{\circ}\right)$ to $\mathbf{x}_{\text {nearest }}=\left(1,0,90^{\circ}\right)$ is as challenging as the original planning problem
- $\operatorname{StEER}_{\epsilon}()$ resolves this by not requiring the motion to get all the way to $\mathbf{x}_{\text {rand }}$. Instead, apply the best control input for a fixed duration to obtain $\mathbf{x}_{\text {new }}$ and a dynamically feasible trajectory to it
- See: Y. Li, Z. Littlefield, K. Bekris, "Asymptotically optimal sampling-based kinodynamic planning," The International Journal of Robotics Research, 2016.

Example: 5 DOF Kinodynamic Planning for a Car

Bug Traps

- Growing two trees, one from start and one for goal, often has better performance in practice

(c)

(d)

Bi-directional RRT

```
Algorithm 4 Bi-directional RRT
    \(V_{a} \leftarrow\left\{\mathbf{x}_{s}\right\} ; E_{a} \leftarrow \emptyset ; V_{b} \leftarrow\left\{\mathbf{x}_{\tau}\right\} ; E_{b} \leftarrow \emptyset\)
    for \(i=1 \ldots n\) do
            \(\mathbf{x}_{\text {rand }} \leftarrow\) SAmpleFree()
            \(\mathbf{x}_{\text {nearest }} \leftarrow \operatorname{Nearest}\left(\left(V_{a}, E_{a}\right), \mathbf{x}_{\text {rand }}\right)\)
            \(\mathbf{x}_{\text {new }} \leftarrow \operatorname{StEER}\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}_{\text {rand }}\right)\)
            if \(\mathbf{x}_{\text {new }} \neq \mathbf{x}_{\text {nearest }}\) then
                \(V_{a} \leftarrow V_{a} \cup\left\{\mathbf{x}_{\text {new }}\right\} ; E_{a} \leftarrow\left\{\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}_{\text {new }}\right),\left(\mathbf{x}_{\text {new }}, \mathbf{x}_{\text {nearest }}\right)\right\}\)
            \(\mathbf{x}_{\text {nearest }}^{\prime} \leftarrow \operatorname{Nearest}\left(\left(V_{b}, E_{b}\right), \mathbf{x}_{\text {new }}\right)\)
            \(\mathbf{x}_{\text {new }}^{\prime} \leftarrow \operatorname{StEER}\left(\mathbf{x}_{\text {nearest }}^{\prime}, \mathbf{x}_{\text {new }}\right)\)
            if \(\mathbf{x}_{\text {new }}^{\prime} \neq \mathbf{x}_{\text {nearest }}^{\prime}\) then
                    \(V_{b} \leftarrow V_{b} \cup\left\{\mathbf{x}_{\text {new }}^{\prime}\right\} ; E_{b} \leftarrow\left\{\left(\mathbf{x}_{\text {nearest }}^{\prime}, \mathbf{x}_{\text {new }}^{\prime}\right),\left(\mathbf{x}_{\text {new }}^{\prime}, \mathbf{x}_{\text {nearest }}^{\prime}\right)\right\}\)
            if \(\mathbf{x}_{\text {new }}^{\prime}=\mathbf{x}_{\text {new }}\) then return SOLUTION
            if \(\left|V_{b}\right|<\left|V_{a}\right|\) then \(\operatorname{Swap}\left(\left(V_{a}, E_{a}\right),\left(V_{b}, E_{b}\right)\right)\)
    return FAILURE
```


RRT-Connect (J. Kuffner and S. LaValle, ICRA, 2000)

- Bi-directional tree + attempts to connect the two trees at every iteration

```
Algorithm 5 RRT-Connect
```

```
\(V_{a} \leftarrow\left\{\mathbf{x}_{s}\right\} ; E_{a} \leftarrow \emptyset ; V_{b} \leftarrow\left\{\mathbf{x}_{\tau}\right\} ; E_{b} \leftarrow \emptyset\)
```

$V_{a} \leftarrow\left\{\mathbf{x}_{s}\right\} ; E_{a} \leftarrow \emptyset ; V_{b} \leftarrow\left\{\mathbf{x}_{\tau}\right\} ; E_{b} \leftarrow \emptyset$
for $i=1 \ldots n$ do
for $i=1 \ldots n$ do
$\mathrm{x}_{\text {rand }} \leftarrow$ SampleFree ()
$\mathrm{x}_{\text {rand }} \leftarrow$ SampleFree ()
if not $\operatorname{Extend}\left(\left(V_{a}, E_{a}\right), \mathbf{x}_{\text {rand }}\right)=$ Trapped then
if not $\operatorname{Extend}\left(\left(V_{a}, E_{a}\right), \mathbf{x}_{\text {rand }}\right)=$ Trapped then
if $\operatorname{Connect}\left(\left(V_{b}, E_{b}\right), \mathbf{x}_{\text {new }}\right)=$ Reached then
if $\operatorname{Connect}\left(\left(V_{b}, E_{b}\right), \mathbf{x}_{\text {new }}\right)=$ Reached then
return $\operatorname{Path}\left(\left(V_{a}, E_{a}\right),\left(V_{b}, E_{b}\right)\right)$
return $\operatorname{Path}\left(\left(V_{a}, E_{a}\right),\left(V_{b}, E_{b}\right)\right)$
$\operatorname{Swap}\left(\left(V_{a}, E_{a}\right),\left(V_{b}, E_{b}\right)\right)$
$\operatorname{Swap}\left(\left(V_{a}, E_{a}\right),\left(V_{b}, E_{b}\right)\right)$
return Failure
return Failure
function $\operatorname{Extend}((V, E), \mathbf{x})$
function $\operatorname{Extend}((V, E), \mathbf{x})$
$\mathbf{x}_{\text {nearest }} \leftarrow \operatorname{Nearest}((V, E), \mathbf{x})$
$\mathbf{x}_{\text {nearest }} \leftarrow \operatorname{Nearest}((V, E), \mathbf{x})$
$\mathbf{x}_{\text {new }} \leftarrow \operatorname{STEER}_{\epsilon}\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}\right)$
$\mathbf{x}_{\text {new }} \leftarrow \operatorname{STEER}_{\epsilon}\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}\right)$
if CollisionFree $\left(\mathbf{x}_{\text {nearest }}, \mathrm{x}_{\text {new }}\right)$ then
if CollisionFree $\left(\mathbf{x}_{\text {nearest }}, \mathrm{x}_{\text {new }}\right)$ then
$V \leftarrow\left\{\mathbf{x}_{\text {new }}\right\} ; E \leftarrow\left\{\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}_{\text {new }}\right),\left(\mathbf{x}_{\text {new }}, \mathbf{x}_{\text {nearest }}\right)\right\}$
$V \leftarrow\left\{\mathbf{x}_{\text {new }}\right\} ; E \leftarrow\left\{\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}_{\text {new }}\right),\left(\mathbf{x}_{\text {new }}, \mathbf{x}_{\text {nearest }}\right)\right\}$
if $\mathbf{x}_{\text {new }}=\mathrm{x}$ then return Reached else return Advanced
if $\mathbf{x}_{\text {new }}=\mathrm{x}$ then return Reached else return Advanced
return Trapped
return Trapped
function $\operatorname{Connect}((V, E), \mathbf{x})$
function $\operatorname{Connect}((V, E), \mathbf{x})$
repeat status $\leftarrow \operatorname{ExTEnD}((V, E), \mathbf{x})$ until status \neq Advanced
repeat status $\leftarrow \operatorname{ExTEnD}((V, E), \mathbf{x})$ until status \neq Advanced
return status

```
            return status
```


Example: Single RRT-Connect Iteration

Example: Single RRT-Connect Iteration

- One tree is grown to a random target

Example: Single RRT-Connect Iteration

- The new node becomes a target for the other tree

Example: Single RRT-Connect Iteration

- Determine the nearest node to the target

Example: Single RRT-Connect Iteration

- Try to add a new collision-free branch
$q_{\text {new }}$

Example: Single RRT-Connect Iteration

- If successful, keep extending the branch

Example: Single RRT-Connect Iteration

- If successful, keep extending the branch

Example: Single RRT-Connect Iteration

- If successful, keep extending the branch

Example: Single RRT-Connect Iteration

- If the branch reaches all the way to the target, a feasible path is found!

Example: Single RRT-Connect Iteration

- If the branch reaches all the way to the target, a feasible path is found!

Example: RRT-Connect

Example: RRT-Connect

Example: RRT-Connect

Why Are RRTs So Popular?

- The algorithm is very simple once the main subroutines are implemented:
- Random sample generator
- Nearest neighbor search
- Collision checker
- Steer function
- Pros:
- A sparse graph requires little memory and computation
- RRTs find feasible paths quickly in practice
- Can add heuristic function, e.g., bias the sampling towards the goal (see Gammell et al., BIT*, IJRR, 2020)
- Cons:
- Paths may be suboptimal and require smoothing as a post-processing step
- Finding a path in highly constrained environments (e.g., maze) is challenging

Path Smoothing

- Start with $\mathbf{x}_{1}=\mathbf{x}_{s}$
- Make connections to subsequent points in the path $\mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}, \cdots$
- When a connection collides with obstacles, add the previous point to the smoothed path
- Continue smoothing from this point on

Search-based vs Sampling-based Planning

- RRT:
- A sparse graph requires little memory and computation
- Computed paths may be suboptimal and require smoothing
- Weighted A^{*} :
- Systematic exploration may require a lot of memory and computation
- Returns a path with (sub)optimality guarantees

Outline

```
Search-based vs Sampling-based Planning
```

Probabilistic Roadmap
Rapidly Exploring Random Tree

RRT*

RRT: Probabilistic Completeness but No Optimality

- RRT and RRT-Connect are probabilistically complete: the probability that a feasible path will be found, if one exists, approaches 1 exponentially as the number of samples approaches infinity
- Assuming $C_{\text {free }}$ is connected, bounded, and open, for any $x \in \mathcal{C}_{\text {free }}$, $\lim _{N \rightarrow \infty} \mathbb{P}\left(\left\|\mathbf{x}-\mathbf{x}_{\text {nearest }}\right\|<\epsilon\right)=1$, where $\mathbf{x}_{\text {nearest }}$ is the closest node to \mathbf{x} in G
- RRT is not optimal: the probability that RRT converges to an optimal solution, as the number of samples approaches infinity, is zero under reasonable technical assumptions (S. Karaman, E. Frazzoli, RSS'10)
- Problem with RRT: once we build a tree we never modify it
- RRT* (S. Karaman and E. Frazzoli, "Incremental Sampling-based Algorithms for Optimal Motion Planning," IJRR, 2010)
- RRT + rewiring of the tree to ensure asymptotic optimality
- Contains two steps: extend (similar to RRT) and rewire (new)

RRT*: Extend Step

- Generate a new potential node $\mathbf{x}_{\text {new }}$ identically to RRT
- Instead of finding the closest node in the tree, find all nodes within a neighborhood \mathcal{N} of radius $\min \left\{r^{*}, \epsilon\right\}$ where

$$
r^{*}>2\left(1+\frac{1}{d}\right)^{1 / d}\left(\frac{V_{o l}\left(C_{\text {free }}\right)}{\operatorname{Vol}(\text { Unit d-ball) }}\right)^{1 / d}\left(\frac{\log |V|}{|V|}\right)^{(1 / d)}
$$

- Let $\mathbf{x}_{\text {nearest }}=\underset{\mathbf{x}_{\text {near }} \in \mathcal{N}}{\arg \min } g\left(\mathbf{x}_{\text {near }}\right)+c\left(\mathbf{x}_{\text {near }}, \mathbf{x}_{\text {new }}\right)$ be the node in \mathcal{N} on the currently known shortest path from \mathbf{x}_{s} to $\mathbf{x}_{\text {new }}$
- $V \leftarrow V \cup\left\{\mathbf{x}_{\text {new }}\right\}$
- $E \leftarrow E \cup\left\{\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}_{\text {new }}\right)\right\}$
- Set the label of $\mathrm{x}_{\text {new }}$ to:
$g\left(\mathbf{x}_{\text {new }}\right)=g\left(\mathbf{x}_{\text {nearest }}\right)+c\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}_{\text {new }}\right)$

RRT*: Rewire Step

- Check all nodes $\mathbf{x}_{n e a r} \in \mathcal{N}$ to see if re-routing through $\mathbf{x}_{\text {new }}$ reduces the path length (label correcting!)
- If $g\left(\mathbf{x}_{\text {new }}\right)+c\left(\mathbf{x}_{\text {new }}, \mathbf{x}_{\text {near }}\right)<g\left(\mathbf{x}_{\text {near }}\right)$, then remove the edge between $\mathbf{x}_{\text {near }}$ and its parent and add a new edge between $\mathbf{x}_{\text {near }}$ and $\mathbf{x}_{\text {new }}$

RRT*

```
Algorithm 6 RRT*
```

```
\(V \leftarrow\left\{\mathbf{x}_{s}\right\} ; E \leftarrow \emptyset\)
```

$V \leftarrow\left\{\mathbf{x}_{s}\right\} ; E \leftarrow \emptyset$
for $i=1 \ldots n$ do
for $i=1 \ldots n$ do
$\mathbf{x}_{\text {rand }} \leftarrow$ SAMPLEFREE()
$\mathbf{x}_{\text {rand }} \leftarrow$ SAMPLEFREE()
$\mathbf{x}_{\text {nearest }} \leftarrow \operatorname{NEAREST}\left((V, E), \mathbf{x}_{\text {rand }}\right)$
$\mathbf{x}_{\text {nearest }} \leftarrow \operatorname{NEAREST}\left((V, E), \mathbf{x}_{\text {rand }}\right)$
$\mathbf{x}_{\text {new }} \leftarrow \operatorname{STEER}\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}_{\text {rand }}\right)$
$\mathbf{x}_{\text {new }} \leftarrow \operatorname{STEER}\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}_{\text {rand }}\right)$
if CollisionFree $\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}_{\text {new }}\right)$ then
if CollisionFree $\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}_{\text {new }}\right)$ then
$X_{n e a r} \leftarrow \operatorname{NEAR}\left((V, E), \mathbf{x}_{\text {new }}, \min \left\{r^{*}, \epsilon\right\}\right)$
$X_{n e a r} \leftarrow \operatorname{NEAR}\left((V, E), \mathbf{x}_{\text {new }}, \min \left\{r^{*}, \epsilon\right\}\right)$
$V \leftarrow V \cup\left\{\mathbf{x}_{\text {new }}\right\}$
$V \leftarrow V \cup\left\{\mathbf{x}_{\text {new }}\right\}$
$c_{\text {min }} \leftarrow \operatorname{CosT}\left(\mathbf{x}_{\text {nearest }}\right)+\operatorname{CosT}\left(\operatorname{Line}\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}_{\text {new }}\right)\right)$
$c_{\text {min }} \leftarrow \operatorname{CosT}\left(\mathbf{x}_{\text {nearest }}\right)+\operatorname{CosT}\left(\operatorname{Line}\left(\mathbf{x}_{\text {nearest }}, \mathbf{x}_{\text {new }}\right)\right)$
for $\mathbf{x}_{\text {near }} \in X_{\text {near }}$ do \triangleright Extend along a minimum-cost path
for $\mathbf{x}_{\text {near }} \in X_{\text {near }}$ do \triangleright Extend along a minimum-cost path
if CollisionFree $\left(\mathbf{x}_{\text {near }}, \mathbf{x}_{\text {new }}\right)$ then
if CollisionFree $\left(\mathbf{x}_{\text {near }}, \mathbf{x}_{\text {new }}\right)$ then
if $\operatorname{Cost}\left(\mathbf{x}_{\text {near }}\right)+\operatorname{Cost}\left(\operatorname{Line}\left(\mathbf{x}_{\text {near }}, \mathbf{x}_{\text {new }}\right)\right)<c_{\text {min }}$ then
if $\operatorname{Cost}\left(\mathbf{x}_{\text {near }}\right)+\operatorname{Cost}\left(\operatorname{Line}\left(\mathbf{x}_{\text {near }}, \mathbf{x}_{\text {new }}\right)\right)<c_{\text {min }}$ then
$\mathbf{x}_{\text {min }} \leftarrow \mathbf{x}_{\text {near }}$
$\mathbf{x}_{\text {min }} \leftarrow \mathbf{x}_{\text {near }}$
$c_{\text {min }} \leftarrow \operatorname{CosT}\left(\mathbf{x}_{\text {near }}\right)+\operatorname{CosT}\left(\operatorname{Line}\left(\mathbf{x}_{\text {near }}, \mathbf{x}_{\text {new }}\right)\right)$
$c_{\text {min }} \leftarrow \operatorname{CosT}\left(\mathbf{x}_{\text {near }}\right)+\operatorname{CosT}\left(\operatorname{Line}\left(\mathbf{x}_{\text {near }}, \mathbf{x}_{\text {new }}\right)\right)$
$E \leftarrow E \cup\left\{\left(\mathbf{x}_{\text {min }}, \mathbf{x}_{\text {new }}\right\}\right.$
$E \leftarrow E \cup\left\{\left(\mathbf{x}_{\text {min }}, \mathbf{x}_{\text {new }}\right\}\right.$
for $\mathbf{x}_{\text {near }} \in X_{\text {near }}$ do
for $\mathbf{x}_{\text {near }} \in X_{\text {near }}$ do
if CollisionFREE $\left(\mathbf{x}_{\text {new }}, \mathbf{x}_{\text {near }}\right)$ then
if CollisionFREE $\left(\mathbf{x}_{\text {new }}, \mathbf{x}_{\text {near }}\right)$ then
if $\operatorname{Cost}\left(\mathbf{x}_{\text {new }}\right)+\operatorname{Cost}\left(\operatorname{Line}\left(\mathbf{x}_{\text {new }}, \mathbf{x}_{\text {near }}\right)\right)<\operatorname{CosT}\left(\mathbf{x}_{\text {near }}\right)$ then
if $\operatorname{Cost}\left(\mathbf{x}_{\text {new }}\right)+\operatorname{Cost}\left(\operatorname{Line}\left(\mathbf{x}_{\text {new }}, \mathbf{x}_{\text {near }}\right)\right)<\operatorname{CosT}\left(\mathbf{x}_{\text {near }}\right)$ then
$\mathbf{x}_{\text {parent }} \leftarrow \operatorname{PARENT}\left(\mathbf{x}_{\text {near }}\right)$
$\mathbf{x}_{\text {parent }} \leftarrow \operatorname{PARENT}\left(\mathbf{x}_{\text {near }}\right)$
$E \leftarrow\left(E \backslash\left\{\left(\mathbf{x}_{\text {parent }}, \mathbf{x}_{\text {near }}\right)\right\}\right) \cup\left\{\left(\mathbf{x}_{\text {new }}, \mathbf{x}_{\text {near }}\right)\right\}$
$E \leftarrow\left(E \backslash\left\{\left(\mathbf{x}_{\text {parent }}, \mathbf{x}_{\text {near }}\right)\right\}\right) \cup\left\{\left(\mathbf{x}_{\text {new }}, \mathbf{x}_{\text {near }}\right)\right\}$
21: return $G=(V, E)$

```

\section*{RRT vs RRT*}

(a) RRT

(b) RRT*
- Same nodes in the tree, only the edge connections are different. Notice how RRT* edges are almost straight lines (optimal paths).

\section*{RRT vs RRT*}

(a)
(a) RRT

(b)
(b) RRT*
- Same nodes in the tree, only the edge connections are different. Notice how RRT* edges are almost straight lines (optimal paths).```

