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Policy Evaluation Theorem

Under the termination state assumption, the cost vector Jπ(1), . . . , Jπ(n) for
any proper policy π is the unique solution of:

Jπ(i) = g(i , π(i)) +
n∑

j=1

P
π(i)
ij Jπ(j). ∀i ∈ X \ {0}

Furthermore, given any initial conditions V0, the sequence Vk generated by
the recursion below converges to Jπ:

Vk+1(i) = g(i , π(i)) +
n∑

j=1

P
π(i)
ij Vk(j), ∀i ∈ X \ {0}

I Proof: This is a special case of the SSP Bellman Equation Theorem.
Consider a modified problem, where the only allowable control at state i
is π(i). Since the proper policy π is the only policy under consideration,
the proper policy assumption is satisfied and the arg min over u ∈ U(i)
has to be π(i).
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Value Iteration

I Value Iteration (VI): applies the DP recursion with an arbitrary
initialization V0(i) for all i ∈ X \ {0}:

Vk+1(i) = min
u∈U(i)

[
g(i , u) +

n∑
j=1

Pu
ijVk(j)

]
, ∀i ∈ X \ {0}

I VI requires an infinite number of iterations for Vk(i) to converge to J∗(i)

I In practice, define a threshold for ‖Vk+1(i)− Vk(i)‖ for all i ∈ X \ {0}
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Policy Iteration
I Policy Iteration (PI): iterates the following two steps over policies π

instead of values/cost-to-go:
1. Policy Evaluation: Given a policy π, compute Jπ by solving the linear

system of equations:

Jπ(i) = g(i , π(i)) +
n∑

j=1

P
π(i)
ij Jπ(j), ∀i ∈ X \ {0}

2. Policy Improvement: Obtain a new stationary policy π′:

π′(i) = arg min
u∈U(i)

[
g(i , u) +

n∑
j=1

Pu
ij J

π(j)
]
, ∀i ∈ X \ {0}

I Repeat the two steps above until Jπ
′
(i) = Jπ(i) for all i ∈ X \ {0}

Theorem: Optimality of PI

Under the termination state and proper policy assumptions, the PI algorithm
converges to an optimal policy after a finite number of steps.
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Proof of Optimality of PI (Step 1)
I Let π be a fixed proper policy and V0(i) = Jπ(i) for all i ∈ X \ {0}.

Consider the following recursion in k:

Vk+1(i) = g(i , π′(i)) +
n∑

j=1

P
π′(i)
ij Vk(j), i ∈ X \ {0}

I Then, for all i ∈ X \ {0}:

Jπ(i) = V0(i)
Policy Evaluation

===========
Theorem

g(i , π(i)) +
n∑

j=1

P
π(i)
ij V0(j)

Policy
≥

Improvement
g(i , π′(i)) +

n∑
j=1

P
π′(i)
ij V0(j) =: V1(i)

Since V0(i)≥V1(i)

≥
for all i ∈ X \ {0}

g(i , π′(i)) +
n∑

j=1

P
π′(i)
ij V1(j) =: V2(i)

I Therefore: V0(i) ≥ V1(i) ≥ V2(i) ≥ . . . ≥ Vk(i), for all i ∈ X \ {0}
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Proof of Optimality of PI (Step 2)

I Claim: If π is proper, then π′ is proper

I Proof (by contradiction): Suppose π′ is improper so that Jπ
′
(i) =∞ for

at least one state i as T →∞. The definition of Vk is the DP recursion
after an index substitution k := T − t, initialized from V0(i) = Jπ(i),
and with constrained control space U(i) = {π′(i)} so that:

VT (i) = E

[
T−1∑
t=0

g(xt , π
′(xt)) + Jπ(xT )

∣∣∣∣x0 = i

]

As T →∞, the first term above corresponds to Jπ
′
(i) and we have that

VT (i)→∞. This contradicts: V0(i) ≥ V1(i) ≥ V2(i) ≥ . . .. Therefore,
π′ is proper.
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Proof of Optimality of PI (Step 3)

I Since π′ is proper, by the Policy Evaluation Theorem, the Policy
Evaluation step always has a unique solution Jπ

′
. Furthermore, as

k →∞, Vk → Jπ
′

and therefore Jπ(i) ≥ Jπ
′
(i) for all i ∈ X \ {0}.

I Since the number of stationary policies is finite, eventually we have
Jπ = Jπ

′
after a finite number of steps.

I Once Jπ has converged, it follows from the Policy Improvement step:

Jπ
′
(i) = Jπ(i) = min

u∈U(i)

g(i , u) +
n∑

j=1

Pu
ij J

π(j)

 , i ∈ X \ {0}

I Since this is the Bellman Equation for the SSP problem, we have
converged to an optimal policy π∗ = π and the optimal cost J∗ = Jπ.
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Comparison between VI and PI

I PI and VI actually have a lot in common, if we re-write VI as follows:

2. Policy Improvement: Given Vk(i) obtain a stationary policy:

π(i) = arg min
u∈U(i)

[
g(i , u) +

n∑
j=1

Pu
ijVk(j)

]
, ∀i ∈ X \ {0}

1. Value Update: Given π(i) and Vk(i), compute

Vk+1(i) = g(i , π(i)) +
n∑

j=1

P
π(i)
ij Vk(j), ∀i ∈ X \ {0}

I PI performs Policy Evaluation, which solves a system of linear equations
and is equivalent to running the Value Update step of VI an infinite
number of times!
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Comparison between VI and PI

I Complexity of VI per Iteration: O(|X |2|U|): evaluating the
expectation (i.e., sum over j) requires |X | operations and there are |X |
minimizations over |U| possible control inputs.

I Complexity of PI per Iteration: O(|X |2 (|X |+ |U|)): the Policy
Evaluation step requires solving a system of |X | equations in |X |
unknowns (O(|X |3)), while the Policy Improvement step has the same
complexity as one iteration of VI.

I PI is more computationally expensive than VI

I Theoretically it takes an infinite number of iterations for VI to converge

I PI converges in |U||X | iterations (all possible policies) in the worst case
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Variants: Gauss-Seidel Value Iteration

I A regular VI implementation stores the values from a previous iteration
and updates them for all states simultaneously:

V̄ (i)← min
u∈U(i)

g(i , u) +
n∑

j=1

Pu
ijV (j)

 , ∀i ∈ X \ {0}

V (i)← V̄ (i), ∀i ∈ X \ {0}

I Gauss-Seidel Value Iteration updates the values in place:

V (i)← min
u∈U(i)

g(i , u) +
n∑

j=1

Pu
ijV (j)

 , ∀i ∈ X \ {0}

I Gauss-Seidel VI often leads to faster convergence and requires less
memory than VI
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Variants: Asynchronous/Generalized Policy Iteration

I Assuming that the Value Update and Policy Improvement steps are
executed an infinite number of times for all states, all combinations of
the following converge:

I Any number of Value Update steps in between Policy Improvement steps

I Any number of states updated at each Value Update step

I Any number of states updated at each Policy Improvement step
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Connections to Linear Algebra (SSP)

I In the Policy Evaluation Theorem and in PI’s Policy Evaluation step, we
are essentially solving a linear system of equations:

v = g + Pv ⇒ (I − P)v = g

where for i , j = 1, . . . , n, vi := Jπ(i), gi := g(i , π(i)), Pij := P
π(i)
ij .

I There exists a unique solution for v, iff (I − P) is invertible. This is
guaranteed as long as π is a proper policy.

I Proof: (I − P) is invertible iff P does not have eigenvalues at 1. By the
Chapman-Kolmogorov equation, [PT ]ij = P(xT = j | x0 = i) and since π
is proper, [PT ]ij → 0 as T →∞ for all i , j ∈ X \ {0}. Since PT

vanishes as T →∞ all eigenvalues of P must have modulus less than 1
and therefore (I − P) exists.
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Connections to Linear Algebra (SSP)

I The Policy Evaluation Thm is an iterative solution to (I − P)v = g:

v1 = g + Pv0

v2 = g + Pv1 = g + Pg + P2v0
...

vT = (I + P + P2 + P3 + . . .+ PT−1)g + PTv0
...

v∞ → (I − P)−1g

13



Connections to Linear Algebra (Discounted Problem)

I We can obtain a Policy Evaluation Theorem for the Discounted problem
through the SSP equivalence

I As before, define an auxiliary SSP by introducing a virtual terminal state
0 and transitions P̃u

ij = γPu
ij , P̃

u
i ,0 = 1− γ, P̃u

0,0 = 1, P̃u
0,j = 0.

I The Policy Evaluation Theorem for the auxiliary SSP is: v = g + P̃v

I This leads to a Policy Evaluation Theorem for the Discounted problem:

v = g + γPv ⇒ (I − γP)v = g

where P is the transition kernel of the Discounted problem under the
policy π, equivalent with the SSP policy π̃.

I The matrix P has eigenvalues with modulus ≤ 1. Hence, all eigenvalues
of γP must have modulus < 1, so that (γP)T → 0 as T →∞ and
(I − γP)−1 exists.
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Connections to Linear Algebra (Summary)

I Let vi := Jπ(i), gi := g(i , π(i)), Pij := P
π(i)
ij for i , j = 1, . . . , n

I Finite Horizon: vt = gt + Ptvt+1 starting from vT = gT

I SSP (First Exit): Let T ⊆ X be the set of terminal states and N ⊆ X
be the set of nonterminal states. The cost-to-go/value of policy π is:

(I − PNN ) vN = gN + PNT gT

I Discounted: (I − γP)v = g
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Connections to Linear Programming
I Suppose we initialize VI with a vector V0 that satisfies a relaxed Bellman

Equation:

V0(i) ≤ min
u∈U(i)

g(i , u) +
n∑

j=1

Pij(u)V0(j)

 , ∀i ∈ X \ {0}

I Applying VI to V0 leads to:

V1(i) = min
u∈U(i)

g(i , u) +
n∑

j=1

Pij(u)V0(j)

 ≥ V0(i), ∀i ∈ X \ {0}

V2(i) = min
u∈U(i)

g(i , u) +
n∑

j=1

Pij(u)V1(j)


≥ min

u∈U(i)

g(i , u) +
n∑

j=1

Pij(u)V0(j)

 = V1(i), ∀i ∈ X \ {0}
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Connections to Linear Programming

I The above shows that Vk+1(i) ≥ Vk(i) for all k and i ∈ X \ {0}

I Since VI guarantees that Vk(i)→ J∗(i) as k →∞ we also have:

J∗(i) ≥ V0(i), ∀i ∈ X \ {0} ⇒
∑

i∈X\{0}

wiJ
∗(i) ≥

∑
i∈X\{0}

wiV0(i)

for any wi > 0 for all i ∈ X \ {0}.

I The above holds for any V0 that satisfies:

V0(i) ≤ min
u∈U(i)

g(i , u) +
n∑

j=1

Pij(u)V0(j)

 , ∀i ∈ X \ {0}

I Note that J∗ also satisfies this condition with equality (Bellman
Equation) and hence is the maximal V0 (at each state) that satisfies the
condition.
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Linear Programming Solution to the Bellman Equation

The solution V ∗ to the linear program (with wi > 0):

max
V

∑
i∈X\{0}

wiV (i)

s.t. V (i) ≤

g(i , u) +
n∑

j=1

Pu
ijV (j)

 , ∀u ∈ U(i),∀i ∈ X \ {0}

also solves the Bellman Equation to yield the optimal cost J∗ for SSP.
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Proof: LP Solution to the BE

I Let V ∗ be the solution to the linear program so that:

V ∗(i) ≤

g(i , u) +
n∑

j=1

Pu
ijV
∗(j)

 , ∀u ∈ U(i), ∀i ∈ X \ {0}

I This implies that V ∗(i) ≤ J∗(i) for all i ∈ X \ {0}. By contradiction,
suppose that V ∗ 6= J∗. Then, there exists a state l ∈ X \ {0} such that:

V ∗(l) < J∗(l) ⇒
∑

i∈X\{0}

wiV
∗(i) <

∑
i∈X\{0}

wiJ
∗(i)

for any positive wi but since J∗ solves the Bellman Equation:

J∗(i) ≤

g(i , u) +
n∑

j=1

Pu
ij J
∗(j)

 , ∀u ∈ U(i), ∀i ∈ X \ {0}

I Thus, V ∗ is not the optimal solution, which is a contradiction.
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