
ECE276B: Planning & Learning in Robotics
Lecture 10: Bellman Equations I

Lecturer:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Tianyu Wang: tiw161@eng.ucsd.edu
Yongxi Lu: yol070@eng.ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:tiw161@eng.ucsd.edu
mailto:yol070@eng.ucsd.edu

Policy Evaluation Theorem

Under the termination state assumption, the cost vector Jπ(1), . . . , Jπ(n) for
any proper policy π is the unique solution of:

Jπ(i) = g(i , π(i)) +
n∑

j=1

P
π(i)
ij Jπ(j). ∀i ∈ X \ {0}

Furthermore, given any initial conditions V0, the sequence Vk generated by
the recursion below converges to Jπ:

Vk+1(i) = g(i , π(i)) +
n∑

j=1

P
π(i)
ij Vk(j), ∀i ∈ X \ {0}

I Proof: This is a special case of the SSP Bellman Equation Theorem.
Consider a modified problem, where the only allowable control at state i
is π(i). Since the proper policy π is the only policy under consideration,
the proper policy assumption is satisfied and the arg min over u ∈ U(i)
has to be π(i).

2

Value Iteration

I Value Iteration (VI): applies the DP recursion with an arbitrary
initialization V0(i) for all i ∈ X \ {0}:

Vk+1(i) = min
u∈U(i)

[
g(i , u) +

n∑
j=1

Pu
ijVk(j)

]
, ∀i ∈ X \ {0}

I VI requires an infinite number of iterations for Vk(i) to converge to J∗(i)

I In practice, define a threshold for ‖Vk+1(i)− Vk(i)‖ for all i ∈ X \ {0}

3

Policy Iteration
I Policy Iteration (PI): iterates the following two steps over policies π

instead of values/cost-to-go:
1. Policy Evaluation: Given a policy π, compute Jπ by solving the linear

system of equations:

Jπ(i) = g(i , π(i)) +
n∑

j=1

P
π(i)
ij Jπ(j), ∀i ∈ X \ {0}

2. Policy Improvement: Obtain a new stationary policy π′:

π′(i) = arg min
u∈U(i)

[
g(i , u) +

n∑
j=1

Pu
ij J

π(j)
]
, ∀i ∈ X \ {0}

I Repeat the two steps above until Jπ
′
(i) = Jπ(i) for all i ∈ X \ {0}

Theorem: Optimality of PI

Under the termination state and proper policy assumptions, the PI algorithm
converges to an optimal policy after a finite number of steps.

4

Proof of Optimality of PI (Step 1)
I Let π be a fixed proper policy and V0(i) = Jπ(i) for all i ∈ X \ {0}.

Consider the following recursion in k:

Vk+1(i) = g(i , π′(i)) +
n∑

j=1

P
π′(i)
ij Vk(j), i ∈ X \ {0}

I Then, for all i ∈ X \ {0}:

Jπ(i) = V0(i)
Policy Evaluation

===========
Theorem

g(i , π(i)) +
n∑

j=1

P
π(i)
ij V0(j)

Policy
≥

Improvement
g(i , π′(i)) +

n∑
j=1

P
π′(i)
ij V0(j) =: V1(i)

Since V0(i)≥V1(i)

≥
for all i ∈ X \ {0}

g(i , π′(i)) +
n∑

j=1

P
π′(i)
ij V1(j) =: V2(i)

I Therefore: V0(i) ≥ V1(i) ≥ V2(i) ≥ . . . ≥ Vk(i), for all i ∈ X \ {0}
5

Proof of Optimality of PI (Step 2)

I Claim: If π is proper, then π′ is proper

I Proof (by contradiction): Suppose π′ is improper so that Jπ
′
(i) =∞ for

at least one state i as T →∞. The definition of Vk is the DP recursion
after an index substitution k := T − t, initialized from V0(i) = Jπ(i),
and with constrained control space U(i) = {π′(i)} so that:

VT (i) = E

[
T−1∑
t=0

g(xt , π
′(xt)) + Jπ(xT)

∣∣∣∣x0 = i

]

As T →∞, the first term above corresponds to Jπ
′
(i) and we have that

VT (i)→∞. This contradicts: V0(i) ≥ V1(i) ≥ V2(i) ≥ Therefore,
π′ is proper.

6

Proof of Optimality of PI (Step 3)

I Since π′ is proper, by the Policy Evaluation Theorem, the Policy
Evaluation step always has a unique solution Jπ

′
. Furthermore, as

k →∞, Vk → Jπ
′

and therefore Jπ(i) ≥ Jπ
′
(i) for all i ∈ X \ {0}.

I Since the number of stationary policies is finite, eventually we have
Jπ = Jπ

′
after a finite number of steps.

I Once Jπ has converged, it follows from the Policy Improvement step:

Jπ
′
(i) = Jπ(i) = min

u∈U(i)

g(i , u) +
n∑

j=1

Pu
ij J

π(j)

 , i ∈ X \ {0}

I Since this is the Bellman Equation for the SSP problem, we have
converged to an optimal policy π∗ = π and the optimal cost J∗ = Jπ.

7

Comparison between VI and PI

I PI and VI actually have a lot in common, if we re-write VI as follows:

2. Policy Improvement: Given Vk(i) obtain a stationary policy:

π(i) = arg min
u∈U(i)

[
g(i , u) +

n∑
j=1

Pu
ijVk(j)

]
, ∀i ∈ X \ {0}

1. Value Update: Given π(i) and Vk(i), compute

Vk+1(i) = g(i , π(i)) +
n∑

j=1

P
π(i)
ij Vk(j), ∀i ∈ X \ {0}

I PI performs Policy Evaluation, which solves a system of linear equations
and is equivalent to running the Value Update step of VI an infinite
number of times!

8

Comparison between VI and PI

I Complexity of VI per Iteration: O(|X |2|U|): evaluating the
expectation (i.e., sum over j) requires |X | operations and there are |X |
minimizations over |U| possible control inputs.

I Complexity of PI per Iteration: O(|X |2 (|X |+ |U|)): the Policy
Evaluation step requires solving a system of |X | equations in |X |
unknowns (O(|X |3)), while the Policy Improvement step has the same
complexity as one iteration of VI.

I PI is more computationally expensive than VI

I Theoretically it takes an infinite number of iterations for VI to converge

I PI converges in |U||X | iterations (all possible policies) in the worst case

9

Variants: Gauss-Seidel Value Iteration

I A regular VI implementation stores the values from a previous iteration
and updates them for all states simultaneously:

V̄ (i)← min
u∈U(i)

g(i , u) +
n∑

j=1

Pu
ijV (j)

 , ∀i ∈ X \ {0}

V (i)← V̄ (i), ∀i ∈ X \ {0}

I Gauss-Seidel Value Iteration updates the values in place:

V (i)← min
u∈U(i)

g(i , u) +
n∑

j=1

Pu
ijV (j)

 , ∀i ∈ X \ {0}

I Gauss-Seidel VI often leads to faster convergence and requires less
memory than VI

10

Variants: Asynchronous/Generalized Policy Iteration

I Assuming that the Value Update and Policy Improvement steps are
executed an infinite number of times for all states, all combinations of
the following converge:

I Any number of Value Update steps in between Policy Improvement steps

I Any number of states updated at each Value Update step

I Any number of states updated at each Policy Improvement step

11

Connections to Linear Algebra (SSP)

I In the Policy Evaluation Theorem and in PI’s Policy Evaluation step, we
are essentially solving a linear system of equations:

v = g + Pv ⇒ (I − P)v = g

where for i , j = 1, . . . , n, vi := Jπ(i), gi := g(i , π(i)), Pij := P
π(i)
ij .

I There exists a unique solution for v, iff (I − P) is invertible. This is
guaranteed as long as π is a proper policy.

I Proof: (I − P) is invertible iff P does not have eigenvalues at 1. By the
Chapman-Kolmogorov equation, [PT]ij = P(xT = j | x0 = i) and since π
is proper, [PT]ij → 0 as T →∞ for all i , j ∈ X \ {0}. Since PT

vanishes as T →∞ all eigenvalues of P must have modulus less than 1
and therefore (I − P) exists.

12

Connections to Linear Algebra (SSP)

I The Policy Evaluation Thm is an iterative solution to (I − P)v = g:

v1 = g + Pv0

v2 = g + Pv1 = g + Pg + P2v0
...

vT = (I + P + P2 + P3 + . . .+ PT−1)g + PTv0
...

v∞ → (I − P)−1g

13

Connections to Linear Algebra (Discounted Problem)

I We can obtain a Policy Evaluation Theorem for the Discounted problem
through the SSP equivalence

I As before, define an auxiliary SSP by introducing a virtual terminal state
0 and transitions P̃u

ij = γPu
ij , P̃

u
i ,0 = 1− γ, P̃u

0,0 = 1, P̃u
0,j = 0.

I The Policy Evaluation Theorem for the auxiliary SSP is: v = g + P̃v

I This leads to a Policy Evaluation Theorem for the Discounted problem:

v = g + γPv ⇒ (I − γP)v = g

where P is the transition kernel of the Discounted problem under the
policy π, equivalent with the SSP policy π̃.

I The matrix P has eigenvalues with modulus ≤ 1. Hence, all eigenvalues
of γP must have modulus < 1, so that (γP)T → 0 as T →∞ and
(I − γP)−1 exists.

14

Connections to Linear Algebra (Summary)

I Let vi := Jπ(i), gi := g(i , π(i)), Pij := P
π(i)
ij for i , j = 1, . . . , n

I Finite Horizon: vt = gt + Ptvt+1 starting from vT = gT

I SSP (First Exit): Let T ⊆ X be the set of terminal states and N ⊆ X
be the set of nonterminal states. The cost-to-go/value of policy π is:

(I − PNN) vN = gN + PNT gT

I Discounted: (I − γP)v = g

15

Connections to Linear Programming
I Suppose we initialize VI with a vector V0 that satisfies a relaxed Bellman

Equation:

V0(i) ≤ min
u∈U(i)

g(i , u) +
n∑

j=1

Pij(u)V0(j)

 , ∀i ∈ X \ {0}

I Applying VI to V0 leads to:

V1(i) = min
u∈U(i)

g(i , u) +
n∑

j=1

Pij(u)V0(j)

 ≥ V0(i), ∀i ∈ X \ {0}

V2(i) = min
u∈U(i)

g(i , u) +
n∑

j=1

Pij(u)V1(j)


≥ min

u∈U(i)

g(i , u) +
n∑

j=1

Pij(u)V0(j)

 = V1(i), ∀i ∈ X \ {0}

16

Connections to Linear Programming

I The above shows that Vk+1(i) ≥ Vk(i) for all k and i ∈ X \ {0}

I Since VI guarantees that Vk(i)→ J∗(i) as k →∞ we also have:

J∗(i) ≥ V0(i), ∀i ∈ X \ {0} ⇒
∑

i∈X\{0}

wiJ
∗(i) ≥

∑
i∈X\{0}

wiV0(i)

for any wi > 0 for all i ∈ X \ {0}.

I The above holds for any V0 that satisfies:

V0(i) ≤ min
u∈U(i)

g(i , u) +
n∑

j=1

Pij(u)V0(j)

 , ∀i ∈ X \ {0}

I Note that J∗ also satisfies this condition with equality (Bellman
Equation) and hence is the maximal V0 (at each state) that satisfies the
condition.

17

Linear Programming Solution to the Bellman Equation

The solution V ∗ to the linear program (with wi > 0):

max
V

∑
i∈X\{0}

wiV (i)

s.t. V (i) ≤

g(i , u) +
n∑

j=1

Pu
ijV (j)

 , ∀u ∈ U(i),∀i ∈ X \ {0}

also solves the Bellman Equation to yield the optimal cost J∗ for SSP.

18

Proof: LP Solution to the BE

I Let V ∗ be the solution to the linear program so that:

V ∗(i) ≤

g(i , u) +
n∑

j=1

Pu
ijV
∗(j)

 , ∀u ∈ U(i), ∀i ∈ X \ {0}

I This implies that V ∗(i) ≤ J∗(i) for all i ∈ X \ {0}. By contradiction,
suppose that V ∗ 6= J∗. Then, there exists a state l ∈ X \ {0} such that:

V ∗(l) < J∗(l) ⇒
∑

i∈X\{0}

wiV
∗(i) <

∑
i∈X\{0}

wiJ
∗(i)

for any positive wi but since J∗ solves the Bellman Equation:

J∗(i) ≤

g(i , u) +
n∑

j=1

Pu
ij J
∗(j)

 , ∀u ∈ U(i), ∀i ∈ X \ {0}

I Thus, V ∗ is not the optimal solution, which is a contradiction.

19

