ECE276B: Planning & Learning in Robotics Lecture 10: Bellman Equations I

Lecturer:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants: Tianyu Wang: tiw161@eng.ucsd.edu Yongxi Lu: yol070@eng.ucsd.edu

UC San Diego

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Policy Evaluation Theorem

Under the termination state assumption, the cost vector $J^{\pi}(1), \ldots, J^{\pi}(n)$ for any proper policy π is the unique solution of:

$$J^{\pi}(i) = g(i,\pi(i)) + \sum_{j=1}^{n} P_{ij}^{\pi(i)} J^{\pi}(j). \quad \forall i \in \mathcal{X} \setminus \{0\}$$

Furthermore, given any initial conditions V_0 , the sequence V_k generated by the recursion below converges to J^{π} :

$$V_{k+1}(i) = g(i,\pi(i)) + \sum_{j=1}^{n} P_{ij}^{\pi(i)} V_k(j), \qquad \forall i \in \mathcal{X} \setminus \{0\}$$

▶ **Proof**: This is a special case of the SSP Bellman Equation Theorem. Consider a modified problem, where the only allowable control at state *i* is $\pi(i)$. Since the proper policy π is the only policy under consideration, the proper policy assumption is satisfied and the arg min over $u \in U(i)$ has to be $\pi(i)$.

Value Iteration

Value Iteration (VI): applies the DP recursion with an arbitrary initialization V₀(i) for all i ∈ X \ {0}:

$$V_{k+1}(i) = \min_{u \in \mathcal{U}(i)} \Big[g(i, u) + \sum_{j=1}^{n} P_{ij}^{u} V_{k}(j) \Big], \qquad \forall i \in \mathcal{X} \setminus \{0\}$$

▶ VI requires an infinite number of iterations for $V_k(i)$ to converge to $J^*(i)$

▶ In practice, define a threshold for $||V_{k+1}(i) - V_k(i)||$ for all $i \in X \setminus \{0\}$

Policy Iteration

- Policy Iteration (PI): iterates the following two steps over policies π instead of values/cost-to-go:
 - 1. **Policy Evaluation**: Given a policy π , compute J^{π} by solving the linear system of equations:

$$J^{\pi}(i) = g(i,\pi(i)) + \sum_{j=1}^{n} P_{ij}^{\pi(i)} J^{\pi}(j), \qquad orall i \in \mathcal{X} \setminus \{0\}$$

2. **Policy Improvement**: Obtain a new stationary policy π' :

$$\pi'(i) = \underset{u \in \mathcal{U}(i)}{\arg\min} \Big[g(i, u) + \sum_{j=1}^{n} P_{ij}^{u} J^{\pi}(j) \Big], \qquad \forall i \in \mathcal{X} \setminus \{0\}$$

▶ Repeat the two steps above until $J^{\pi'}(i) = J^{\pi}(i)$ for all $i \in \mathcal{X} \setminus \{0\}$

Theorem: Optimality of PI

Under the termination state and proper policy assumptions, the PI algorithm converges to an optimal policy after a finite number of steps.

Proof of Optimality of PI (Step 1)

Let π be a fixed proper policy and V₀(i) = J^π(i) for all i ∈ X \ {0}. Consider the following recursion in k:

$$V_{k+1}(i) = g(i,\pi'(i)) + \sum_{j=1}^{n} P_{ij}^{\pi'(i)} V_k(j), \qquad i \in \mathcal{X} \setminus \{0\}$$

• Then, for all $i \in \mathcal{X} \setminus \{0\}$:

$$J^{\pi}(i) = V_{0}(i) \frac{\text{Policy Evaluation}}{\text{Theorem}} g(i, \pi(i)) + \sum_{j=1}^{n} P_{ij}^{\pi(i)} V_{0}(j)$$

$$\stackrel{\text{Policy}}{\geq} g(i, \pi'(i)) + \sum_{j=1}^{n} P_{ij}^{\pi'(i)} V_{0}(j) =: V_{1}(i)$$

$$\stackrel{\text{Since } V_{0}(i) \geq V_{1}(i)}{\underset{\text{for all } i \in \mathcal{X} \setminus \{0\}}{}} g(i, \pi'(i)) + \sum_{j=1}^{n} P_{ij}^{\pi'(i)} V_{1}(j) =: V_{2}(i)$$

▶ Therefore: $V_0(i) \ge V_1(i) \ge V_2(i) \ge \ldots \ge V_k(i)$, for all $i \in \mathcal{X} \setminus \{0\}$

Proof of Optimality of PI (Step 2)

- **Claim**: If π is proper, then π' is proper
- Proof (by contradiction): Suppose π' is improper so that J^{π'}(i) = ∞ for at least one state i as T → ∞. The definition of V_k is the DP recursion after an index substitution k := T − t, initialized from V₀(i) = J^π(i), and with constrained control space U(i) = {π'(i)} so that:

$$V_{\mathcal{T}}(i) = \mathbb{E}\left[\sum_{t=0}^{\mathcal{T}-1} g(x_t, \pi'(x_t)) + J^{\pi}(x_{\mathcal{T}}) \middle| x_0 = i\right]$$

As $T \to \infty$, the first term above corresponds to $J^{\pi'}(i)$ and we have that $V_T(i) \to \infty$. This contradicts: $V_0(i) \ge V_1(i) \ge V_2(i) \ge \ldots$. Therefore, π' is proper.

Proof of Optimality of PI (Step 3)

- Since π' is proper, by the Policy Evaluation Theorem, the Policy Evaluation step always has a unique solution J^{π'}. Furthermore, as k→∞, V_k→ J^{π'} and therefore J^π(i) ≥ J^{π'}(i) for all i ∈ X \ {0}.
- Since the number of stationary policies is finite, eventually we have $J^{\pi} = J^{\pi'}$ after a finite number of steps.
- Once J^{π} has converged, it follows from the Policy Improvement step:

$$J^{\pi'}(i) = J^{\pi}(i) = \min_{u \in \mathcal{U}(i)} \left(g(i, u) + \sum_{j=1}^{n} P^{u}_{ij} J^{\pi}(j)
ight), \qquad i \in \mathcal{X} \setminus \{0\}$$

Since this is the Bellman Equation for the SSP problem, we have converged to an optimal policy π^{*} = π and the optimal cost J^{*} = J^π. Comparison between VI and PI

▶ PI and VI actually have a lot in common, if we re-write VI as follows:

2. **Policy Improvement**: Given $V_k(i)$ obtain a stationary policy:

$$\pi(i) = \underset{u \in \mathcal{U}(i)}{\arg\min} \Big[g(i, u) + \sum_{j=1}^{n} P_{ij}^{u} V_{k}(j) \Big], \qquad \forall i \in \mathcal{X} \setminus \{0\}$$

1. Value Update: Given $\pi(i)$ and $V_k(i)$, compute

$$V_{k+1}(i) = g(i,\pi(i)) + \sum_{j=1}^n P_{ij}^{\pi(i)} V_k(j), \qquad orall i \in \mathcal{X} \setminus \{0\}$$

PI performs Policy Evaluation, which solves a system of linear equations and is equivalent to running the Value Update step of VI an infinite number of times!

Comparison between VI and PI

- ► Complexity of VI per Iteration: O(|X|²|U|): evaluating the expectation (i.e., sum over j) requires |X| operations and there are |X| minimizations over |U| possible control inputs.
- ► Complexity of PI per Iteration: O(|X|² (|X| + |U|)): the Policy Evaluation step requires solving a system of |X| equations in |X| unknowns (O(|X|³)), while the Policy Improvement step has the same complexity as one iteration of VI.
- ▶ PI is more computationally expensive than VI
- ► Theoretically it takes an infinite number of iterations for VI to converge
- ▶ PI converges in $|U|^{|X|}$ iterations (all possible policies) in the worst case

Variants: Gauss-Seidel Value Iteration

A regular VI implementation stores the values from a previous iteration and updates them for all states simultaneously:

$$\begin{split} \bar{V}(i) \leftarrow \min_{u \in \mathcal{U}(i)} \left(g(i, u) + \sum_{j=1}^{n} P_{ij}^{u} V(j) \right), \qquad \forall i \in \mathcal{X} \setminus \{0\} \\ V(i) \leftarrow \bar{V}(i), \qquad \forall i \in \mathcal{X} \setminus \{0\} \end{split}$$

• Gauss-Seidel Value Iteration updates the values in place:

$$V(i) \leftarrow \min_{u \in \mathcal{U}(i)} \left(g(i, u) + \sum_{j=1}^{n} P_{ij}^{u} V(j) \right), \quad \forall i \in \mathcal{X} \setminus \{0\}$$

 Gauss-Seidel VI often leads to faster convergence and requires less memory than VI

Variants: Asynchronous/Generalized Policy Iteration

- Assuming that the Value Update and Policy Improvement steps are executed an infinite number of times for all states, all combinations of the following converge:
 - Any number of Value Update steps in between Policy Improvement steps
 - Any number of states updated at each Value Update step
 - Any number of states updated at each Policy Improvement step

Connections to Linear Algebra (SSP)

In the Policy Evaluation Theorem and in PI's Policy Evaluation step, we are essentially solving a linear system of equations:

$$\mathbf{v} = \mathbf{g} + P\mathbf{v} \qquad \Rightarrow \qquad (I - P)\mathbf{v} = \mathbf{g}$$

where for i, j = 1, ..., n, $\mathbf{v}_i := J^{\pi}(i)$, $\mathbf{g}_i := g(i, \pi(i))$, $P_{ij} := P_{ij}^{\pi(i)}$.

- There exists a unique solution for v, iff (*I* − *P*) is invertible. This is guaranteed as long as π is a proper policy.
- ▶ **Proof**: (I P) is invertible iff P does not have eigenvalues at 1. By the Chapman-Kolmogorov equation, $[P^T]_{ij} = \mathbb{P}(x_T = j \mid x_0 = i)$ and since π is proper, $[P^T]_{ij} \to 0$ as $T \to \infty$ for all $i, j \in \mathcal{X} \setminus \{0\}$. Since P^T vanishes as $T \to \infty$ all eigenvalues of P must have modulus less than 1 and therefore (I P) exists.

Connections to Linear Algebra (SSP)

• The Policy Evaluation Thm is an iterative solution to $(I - P)\mathbf{v} = \mathbf{g}$:

$$\mathbf{v}_{1} = \mathbf{g} + P\mathbf{v}_{0}$$

$$\mathbf{v}_{2} = \mathbf{g} + P\mathbf{v}_{1} = \mathbf{g} + P\mathbf{g} + P^{2}\mathbf{v}_{0}$$

$$\vdots$$

$$\mathbf{v}_{T} = (I + P + P^{2} + P^{3} + \ldots + P^{T-1})\mathbf{g} + P^{T}\mathbf{v}_{0}$$

$$\vdots$$

$$\mathbf{v}_{\infty} \rightarrow (I - P)^{-1}\mathbf{g}$$

Connections to Linear Algebra (Discounted Problem)

- We can obtain a Policy Evaluation Theorem for the Discounted problem through the SSP equivalence
- ▶ As before, define an auxiliary SSP by introducing a virtual terminal state 0 and transitions $\tilde{P}^{u}_{ij} = \gamma P^{u}_{ij}$, $\tilde{P}^{u}_{i,0} = 1 \gamma$, $\tilde{P}^{u}_{0,0} = 1$, $\tilde{P}^{u}_{0,j} = 0$.
- ▶ The Policy Evaluation Theorem for the auxiliary SSP is: $\mathbf{v} = \mathbf{g} + \tilde{P}\mathbf{v}$
- > This leads to a Policy Evaluation Theorem for the Discounted problem:

$$\mathbf{v} = \mathbf{g} + \gamma P \mathbf{v} \qquad \Rightarrow \qquad (I - \gamma P) \mathbf{v} = \mathbf{g}$$

where *P* is the transition kernel of the Discounted problem under the policy π , equivalent with the SSP policy $\tilde{\pi}$.

▶ The matrix *P* has eigenvalues with modulus ≤ 1 . Hence, all eigenvalues of γP must have modulus < 1, so that $(\gamma P)^T \rightarrow 0$ as $T \rightarrow \infty$ and $(I - \gamma P)^{-1}$ exists.

Connections to Linear Algebra (Summary)

• Let
$$\mathbf{v}_i := J^{\pi}(i)$$
, $\mathbf{g}_i := g(i, \pi(i))$, $P_{ij} := P_{ij}^{\pi(i)}$ for $i, j = 1, \dots, n$

Finite Horizon: $\mathbf{v}_t = \mathbf{g}_t + P_t \mathbf{v}_{t+1}$ starting from $\mathbf{v}_T = \mathbf{g}_T$

SSP (First Exit): Let T ⊆ X be the set of terminal states and N ⊆ X be the set of nonterminal states. The cost-to-go/value of policy π is:

$$(I - P_{\mathcal{N}\mathcal{N}})\mathbf{v}_{\mathcal{N}} = \mathbf{g}_{\mathcal{N}} + P_{\mathcal{N}\mathcal{T}}\mathbf{g}_{\mathcal{T}}$$

• **Discounted**: $(I - \gamma P)\mathbf{v} = \mathbf{g}$

Connections to Linear Programming

Suppose we initialize VI with a vector V₀ that satisfies a relaxed Bellman Equation:

$$V_0(i) \leq \min_{u \in \mathcal{U}(i)} \left(g(i, u) + \sum_{j=1}^n P_{ij}(u) V_0(j) \right), \quad \forall i \in \mathcal{X} \setminus \{0\}$$

Applying VI to V₀ leads to:

$$\begin{split} V_1(i) &= \min_{u \in \mathcal{U}(i)} \left(g(i, u) + \sum_{j=1}^n P_{ij}(u) V_0(j) \right) \ge V_0(i), \qquad \forall i \in \mathcal{X} \setminus \{0\} \\ V_2(i) &= \min_{u \in \mathcal{U}(i)} \left(g(i, u) + \sum_{j=1}^n P_{ij}(u) V_1(j) \right) \\ &\ge \min_{u \in \mathcal{U}(i)} \left(g(i, u) + \sum_{j=1}^n P_{ij}(u) V_0(j) \right) = V_1(i), \qquad \forall i \in \mathcal{X} \setminus \{0\} \end{split}$$

Connections to Linear Programming

- ▶ The above shows that $V_{k+1}(i) \ge V_k(i)$ for all k and $i \in \mathcal{X} \setminus \{0\}$
- ▶ Since VI guarantees that $V_k(i) \rightarrow J^*(i)$ as $k \rightarrow \infty$ we also have:

$$J^*(i) \geq V_0(i), \quad \forall i \in \mathcal{X} \setminus \{0\} \quad \Rightarrow \quad \sum_{i \in \mathcal{X} \setminus \{0\}} w_i J^*(i) \geq \sum_{i \in \mathcal{X} \setminus \{0\}} w_i V_0(i)$$

for any $w_i > 0$ for all $i \in \mathcal{X} \setminus \{0\}$.

• The above holds for **any** V_0 that satisfies:

$$V_0(i) \leq \min_{u \in \mathcal{U}(i)} \left(g(i, u) + \sum_{j=1}^n P_{ij}(u) V_0(j) \right), \quad \forall i \in \mathcal{X} \setminus \{0\}$$

 Note that J* also satisfies this condition with equality (Bellman Equation) and hence is the maximal V₀ (at each state) that satisfies the condition.

Linear Programming Solution to the Bellman Equation

The solution V^* to the linear program (with $w_i > 0$):

$$\max_{V} \sum_{i \in \mathcal{X} \setminus \{0\}} w_i V(i)$$

s.t. $V(i) \leq \left(g(i, u) + \sum_{j=1}^n P_{ij}^u V(j) \right), \quad \forall u \in \mathcal{U}(i), \forall i \in \mathcal{X} \setminus \{0\}$

also solves the Bellman Equation to yield the optimal cost J^* for SSP.

Proof: LP Solution to the BE

• Let V^* be the solution to the linear program so that:

$$V^*(i) \leq \left(g(i,u) + \sum_{j=1}^n P^u_{ij}V^*(j)\right), \qquad \forall u \in \mathcal{U}(i), \forall i \in \mathcal{X} \setminus \{0\}$$

This implies that V^{*}(i) ≤ J^{*}(i) for all i ∈ X \ {0}. By contradiction, suppose that V^{*} ≠ J^{*}. Then, there exists a state I ∈ X \ {0} such that:

$$V^*(I) < J^*(I) \quad \Rightarrow \quad \sum_{i \in \mathcal{X} \setminus \{0\}} w_i V^*(i) < \sum_{i \in \mathcal{X} \setminus \{0\}} w_i J^*(i)$$

for any positive w_i but since J^* solves the Bellman Equation:

$$J^*(i) \leq \left(g(i,u) + \sum_{j=1}^n P^u_{ij}J^*(j)\right), \quad \forall u \in \mathcal{U}(i), \forall i \in \mathcal{X} \setminus \{0\}$$

• Thus, V^* is not the optimal solution, which is a contradiction.