ECE276B: Planning \& Learning in Robotics Lecture 12: Continuous-time Optimal Control

Lecturer:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Tianyu Wang: tiw161@eng.ucsd.edu
Yongxi Lu: yol070@eng.ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Continuous-time Optimal Control

- System Dynamics:
- time $t \in\left[t_{0}, T\right]$
- state $x(t) \in \mathcal{X} \subseteq \mathbb{R}^{n}, \forall t \in\left[t_{0}, T\right]$
- control $u(t) \in \mathcal{U} \subseteq \mathbb{R}^{m}, \forall t \in\left[t_{0}, T\right]$
- stochastic differential equation (Ito diffusion):

$$
d x=f(x(t), u(t)) d t+C(x(t), u(t)) d \omega, \quad x\left(t_{0}\right)=x_{0}
$$

- Noise: Brownian motion $\omega(t)$ (integral of white noise)
- Infinite-dimensional dynamic constrained optimization:
$\min _{\pi \in P^{0}\left(\left[t_{0}, T\right], \mathcal{U}\right)} J^{\pi}\left(t_{0}, x_{0}\right):=\mathbb{E}\{\underbrace{\int_{t_{0}}^{T} g(x(t), \pi(t, x(t))) d t}_{\text {running cost }}+\underbrace{g_{T}(x(T))}_{\text {terminal cost }} \mid x\left(t_{0}\right)=x_{0}\}$
s.t. $\quad d x=f(x(t), \pi(t, x(t))) d t+C(x(t), \pi(t, x(t))) d \omega$.

$$
x(t) \in \mathcal{X}, \pi(t, x(t)) \in \mathcal{U}
$$

- Admissible policies: $u(t):=\pi(t, x) \in \Pi:=P C^{0}\left(\left[t_{0}, T\right], \mathcal{U}\right)$ are piecewise cont. functions that map a state x at time t to a control input
- T can be free or fixed; $x(T)$ can be free or in a target set \mathcal{T}
- Additional state constraints can be imposed via the set \mathcal{X}

Assumptions and Technical Details

- Assumptions

1. f is cont-diffable writ to x and cont wry u
2. Existence and Uniqueness: for any admissible policy π and initial $x(\tau) \in \mathcal{X}, \tau \in\left[t_{0}, T\right]$, the noise-free system has a unique state trajectory $x(t)$
3. The running cost $g(x, u)$ is cont-diffable wot x and cont writ u
4. The terminal cost $g_{T}(x)$ is cont-diffable wry x

- The SDE means that the time-integrals of the two sides are equal:

$$
x(T)-x(0)=\int_{0}^{T} f(x(t), u(t)) d t+\underbrace{\int_{0}^{T} C(x(t), u(t)) d \omega(t)}_{\text {Ito intergral }}
$$

- Cannot be written as $\dot{x}=f(x, u)+C(x, u) \dot{\omega}$ because $\dot{\omega}$ does not exist
- The Ito integral of a random process $y(t)$ adapted to $\omega(t)$, ie., $y(t)$ depends on the sample path of $\omega(t)$ up to time t, is:

$$
\int_{0}^{T} y(t) d \omega(t):=\lim _{\substack{N \rightarrow \infty \\ 0=t_{0}<t_{1}<\cdots<t_{N}=T}} \sum_{i=0}^{N-1} y\left(t_{i}\right)\left(\omega\left(t_{i+1}\right)-\omega\left(t_{i}\right)\right)
$$

Existence and Uniqueness

- Existence and Uniqueness: for any admissible policy π and initial $x(\tau) \in \mathcal{X}, \tau \in\left[t_{0}, T\right]$, the noise-free system has a unique state trajectory $x(t)$
- Example: Existence in not guaranteed in general

$$
\begin{aligned}
& \dot{x}(t)=x(t)^{2}, x(0)=1 \\
& \text { Solution does not exist for } T \geq 1: x(t)=\frac{1}{1-t}
\end{aligned}
$$

- Example: Uniqueness in not guaranteed in general

$$
\dot{x}(t)=x(t)^{\frac{1}{3}}, x(0)=0
$$

$$
x(t)=0, \forall t
$$

Infinite number of solutions:

$$
x(t)= \begin{cases}0 & \text { for } 0 \leq t \leq \tau \\ \left(\frac{2}{3}(t-\tau)\right)^{3 / 2} & \text { for } t>\tau\end{cases}
$$

Calculus of Variations

- An infinite-dimensional static constrained optimization
- It is a special case of deterministic continuous-time optimal control for a fully-actuated system $(\dot{x}=u)$ with $t \leftarrow x, x(t) \leftarrow y(x)$,

$$
\begin{aligned}
& \overline{u(t)=\dot{x}(t)} \leftarrow \dot{y}(x), g_{T}(x(T)) \leftarrow h(y(b)): \\
& \min _{y \in C^{1}\left([a, b], \mathbb{R}^{m}\right)} \int_{a}^{b} g(y(x), \dot{y}(x)) d x+h(y(b)) \\
& \text { s.t. } y(a)=y_{0}, y(b)=y_{f}
\end{aligned}
$$

Optimal Cost-to-Go

- Optimal Value/Cost-to-go Function: the closed loop cost $J^{*}(t, x)$ associated with an optimal feedback control law $u^{*}(t):=\pi^{*}(t, x)$ at state x and time t :

$$
J^{*}(t, x) \leq J^{\pi}(t, x), \quad \forall \pi \in \Pi, x \in \mathcal{X}
$$

HJB PDE

The Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE) is satisfied for all time-state pairs (t, x) by the optimal cost-to-go $J^{*}(t, x)$:

$$
\begin{aligned}
J^{*}(T, x) & =g_{T}(x), \quad \forall x \in \mathcal{X} \\
-\frac{\partial}{\partial t} J^{*}(t, x) & =\min _{u \in \mathcal{U}}\left\{g(x, u)+\nabla_{x} J^{*}(t, x)^{T} f(x, u)+\frac{1}{2} \operatorname{tr}\left(\Sigma(x, u)\left[\nabla_{x}^{2} J^{*}(t, x)\right]\right)\right\}
\end{aligned}
$$

for all $t \in\left[t_{0}, T\right]$ and $x \in \mathcal{X}$ and where $\Sigma(x, u):=C(x, u) C^{T}(x, u)$.

- The HJB PDE is the continuous-time analog of Dynamic Programming

HJB PDE Derivation

- A discrete-time approximation of the cont.-time optimal control problem can be used to derive the HJB PDE from the DP algorithm
- Euler Discretization of the SDE with time step τ :
- Discretize $\left[t_{0}, T\right]$ into N pieces of width $\tau:=\frac{T-t_{0}}{N}$
- Define $x_{k}:=x(k \tau)$ and $u_{k}:=u(k \tau)$ for $k=0, \ldots, N$
- Discretized system dynamics:

$$
x_{k+1}=x_{k}+\tau f\left(x_{k}, u_{k}\right)+\epsilon_{k}, \quad \epsilon_{k} \sim \mathcal{N}\left(0, \tau \Sigma\left(x_{k}, u_{k}\right)\right)
$$

so that the motion model is specified by a Gaussian pdf:

$$
p_{f}\left(x^{\prime} \mid x, u\right)=\phi\left(x^{\prime} ; x+\tau f(x, u), \tau \Sigma(x, u)\right)
$$

- Discretized stage cost: $\tau g(x, u)$
- Idea: apply the Bellman Equation to the now discrete-time problem and take the limit as $\tau \rightarrow 0$ to obtain a "continuous-time Bellman Equation"

HJB PDE Derivation

- Bellman Equation: finite-horizon problem with $t:=k \tau$

$$
V(t, x)=\min _{u \in \mathcal{U}(x)}\left\{\tau g(x, u)+\mathbb{E}_{x^{\prime} \sim p_{f}(\cdot \mid x, u)}\left[V\left(t+\tau, x^{\prime}\right)\right]\right\}
$$

- Taylor-series expansion of $V\left(t+\tau, x^{\prime}\right)$ around (t, x) :

$$
\begin{aligned}
V(t+\tau, x+d)= & V(t, x)+\tau \frac{\partial V}{\partial t}(t, x)+o\left(\tau^{2}\right) \\
& +\left[\nabla_{x} V(t, x)\right]^{T} d+\frac{1}{2} d^{T}\left[\nabla_{x}^{2} V(t, x)\right] d+o\left(d^{3}\right)
\end{aligned}
$$

where $d \sim \mathcal{N}(\tau f(x, u), \tau \Sigma(x, u))$

- Note that $\mathbb{E}\left[d^{T} M d\right]=\operatorname{tr}(\Sigma M)+\operatorname{tr}\left(\mu \mu^{T} M\right)$ for $d \sim \mathcal{N}(\mu, \Sigma)$

HJB PDE Derivation

- Note that $\mathbb{E}\left[d^{T} M d\right]=\operatorname{tr}(\Sigma M)+\operatorname{tr}\left(\mu \mu^{T} M\right)$ for $d \sim \mathcal{N}(\mu, \Sigma)$ so that:

$$
\begin{aligned}
\mathbb{E}_{x^{\prime} \sim p_{f}(\cdot \mid x, u)} & {\left[V\left(t+\tau, x^{\prime}\right)\right]=V(t, x)+\tau \frac{\partial V}{\partial t}(t, x)+o\left(\tau^{2}\right) } \\
& +\tau\left[\nabla_{x} V(t, x)\right]^{T} f(x, u)+\frac{\tau}{2} \operatorname{tr}\left(\Sigma(x, u)\left[\nabla_{x}^{2} V(t, x)\right]\right)
\end{aligned}
$$

- Substituting in the Bellman Equation and simplifying, we get:

$$
0=\min _{u \in \mathcal{U}(x)}\left\{g(x, u)+\frac{\partial V}{\partial t}(t, x)+\left[\nabla_{x} V(t, x)\right]^{T} f(x, u)+\frac{1}{2} \operatorname{tr}\left(\Sigma(x, u)\left[\nabla_{x}^{2} V(t, x)\right]\right)+\frac{o\left(\tau^{2}\right)}{\tau}\right\}
$$

- Taking the limit as $\tau \rightarrow 0$ (assuming it can be exchanged with $\min _{u \in \mathcal{U}}$) leads to the HJB PDE:

$$
-\frac{\partial V}{\partial t}(t, x)=\min _{u \in \mathcal{U}(x)}\left\{g(x, u)+\left[\nabla_{x} V(t, x)\right]^{T} f(x, u)+\frac{1}{2} \operatorname{tr}\left(\Sigma(x, u)\left[\nabla_{x}^{2} V(t, x)\right]\right)\right\}
$$

HJB PDEs for Different Problem Formulations

- Discounted Problem: $J^{\pi}(x):=\mathbb{E}[\int_{0}^{\infty} \underbrace{e^{-\frac{t}{2}}}_{\text {discount }} g(x(t), \pi(t, x(t))) d t]$ with $\gamma \in[0, \infty)$

HJB PDEs for the Optimal Cost-to-go

Hamiltonian: $\quad H[x, u, p]=g(x, u)+p^{T} f(x, u)+\frac{1}{2} \operatorname{tr}\left(\Sigma(x, u)\left[\nabla_{x} p(x)\right]\right)$

Finite Horizon: $\quad-\frac{\partial J^{*}}{\partial t}(t, x)=\min _{u \in \mathcal{U}(x)} H\left[x, u, \nabla_{x} J^{*}(t, \cdot)\right], \quad J^{*}(T, x)=g_{T}(x)$

First Exit:

$$
0=\min _{u \in \mathcal{U}(x)} H\left[x, u, \nabla_{x} J^{*}(\cdot)\right], \quad J^{*}(x \in \mathcal{T})=g_{\mathcal{T}}(x)
$$

Discounted:

$$
\frac{1}{\gamma} J^{*}(x)=\min _{u \in \mathcal{U}(x)} H\left[x, u, \nabla_{x} J^{*}(\cdot)\right]
$$

Existence and Uniqueness of Solutions

- The HJB PDE has at most one classical solution (i.e., a function which satisfies the PDE everywhere)
- If a classical solution exists then it is the optimal cost-to-go
- The HJB PDE may not have a classical solution, in which case the optimal cost-to-go is not smooth (e.g. bang-bang control)
- The HJB PDE always has a unique viscosity solution which is the optimal cost-to-go
- Approximation schemes based on MDP discretization are guaranteed to converge to the unique viscosity solution
- Most continuous function approximation schemes (which scale better) are unable to represent non-smooth solutions
- All examples of non-smoothness seem to be deterministic; noise tends to smooth the optimal cost-to-go function

HJB Example 1

- System: $\dot{x}(t)=u(t),|u(t)| \leq 1,0 \leq t \leq 1$
- Costs: $g(x, u)=0$ and $g_{T}(x)=\frac{1}{2} x^{2}$ for all $x \in \mathcal{X}$ and $u \in \mathcal{U}$
- Since we only care about the square of the terminal state, we can construct a candidate optimal policy that drives the state towards 0 as quickly as possible and maintains it there:

$$
\pi(t, x)=-\operatorname{sgn}(x):= \begin{cases}-1 & \text { if } x>0 \\ 0 & \text { if } x=0 \\ 1 & \text { if } x<0\end{cases}
$$

- The cost-to-go in not smooth: $J^{\pi}(t, x)=\frac{1}{2}(\max \{0,|x|-(1-t)\})^{2}$
- We will verify that this function satisfies the HJB and is therefore indeed the optimal cost-to-go function

HJB Example 1: Partial Derivative wrt x

- Cost function and its partial derivative wrt x for fixed t :

$$
J^{\pi}(t, x)=\frac{1}{2}(\max \{0,|x|-(1-t)\})^{2} \quad \frac{\partial J^{\pi}(t, x)}{\partial x}=\operatorname{sgn}(x) \max \{0,|x|-(1-t)\}
$$

HJB Example 1: Partial Derivative wry t

- Cost function and its partial derivative wot t for fixed x :

$$
J^{\pi}(t, x)=\frac{1}{2}(\max \{0,|x|-(1-t)\})^{2} \quad \frac{\partial J^{\pi}(t, x)}{\partial t}=\max \{0,|x|-(1-t)\}
$$

$$
\begin{aligned}
& \text { 二 }|x|>1 \\
& \text { - }|x| \leq 1
\end{aligned}
$$

HJB Example 1

- Boundary condition: $J^{\pi}(1, x)=\frac{1}{2} x^{2}=g_{T}(x)$
- The minimum in the HJB PDE is obtained by $u=-\operatorname{sgn}(x)$:

$$
\min _{|u| \leq 1}\left(\frac{\partial J^{\pi}(t, x)}{\partial t}+\frac{\partial J^{\pi}(t, x)}{\partial x} u\right)=\min _{|u| \leq 1}((1+\operatorname{sgn}(x) u)(\max \{0,|x|-(1-t)\}))=0
$$

- Conclusion: $J^{\pi}(t, x)=J^{*}(t, x)$ and $\pi^{*}(t, x)=-\operatorname{sgn}(x)$ is an optimal policy
- Note that this is a simple example. In general, solving the HJB is nontrivial.

HJB Example 2

- System: $\dot{x}(t)=x(t) u(t),|u(t)| \leq 1,0 \leq t \leq 1$
- Costs: $g(x, u)=0$ and $g_{T}(x)=x$ for all $x \in \mathcal{X}$ and $u \in \mathcal{U}$
- Optimal policy:

$$
\pi(t, x)= \begin{cases}-1 & \text { if } x>0 \\ 0 & \text { if } x=0 \\ 1 & \text { if } x<0\end{cases}
$$

- Optimal cost-to-go:

$$
J^{\pi}(t, x)= \begin{cases}e^{t-1} x & x>0 \\ 0 & x=0 \\ e^{1-t} x & x<0\end{cases}
$$

- The cost-to-go function is not diffable wrt x at $x=0$ and hence does not satisfy the HJB in the classical sense

Theorem: HJB PDE Sufficiency

Suppose that $V(t, x)$ is cont-diffable in t and x and solves the HJB equation:

$$
V(T, x)=g_{T}(x), \quad \forall x \in \mathcal{X}
$$

$-\frac{\partial V(t, x)}{\partial t}=\min _{u \in \mathcal{U}}\left[g(x, u)+\nabla_{x} V(t, x)^{T} f(x, u)+\frac{1}{2} \operatorname{tr}\left(\Sigma(x, u)\left[\nabla_{x}^{2} V(t, x)\right]\right)\right]$
for all $x \in \mathcal{X}$ and $0 \leq t \leq T$. Suppose also that the policy $\pi^{*}(t, x)$ attains the minimum in the HJB for all t and x and is piecewise-cont in t. Then under the assumptions on Slide $3, V(t, x)$ is the unique solution of the HJB equation and is equal to the optimal cost-to-go $J^{*}(t, x)$, while $\pi^{*}(t, x)$ is an optimal policy.

More Tractable Problems

- Consider a restricted class of system dynamics and cost functions:

$$
\begin{aligned}
d x & =(a(x)+B(x) u) d t+C(x) d \omega \\
g(x, u) & =q(x)+\frac{1}{2} u^{T} R(x) u
\end{aligned}
$$

- The Hamiltonian can be minimized analytically wrt u for such problems (suppressing the dependence on x for clarity):

$$
\begin{aligned}
\pi^{*} & =\underset{u}{\arg \min }\left\{q+\frac{1}{2} u^{T} R u+(a+B u)^{T} V_{x}+\frac{1}{2} \operatorname{tr}\left(C C^{T} V_{x x}\right)\right\} \\
& =-R^{-1} B^{T} V_{x} \\
H\left[x, \pi^{*}, V_{x}\right] & =q+a^{T} V_{x}+\frac{1}{2} \operatorname{tr}\left(C C^{T} V_{x x}\right)-\frac{1}{2} V_{x}^{\top} B R^{-1} B^{T} V_{x}
\end{aligned}
$$

- The HJB PDE becomes second-order quadratic, no longer involving the min operator!

More Tractable Problems (Generalizations)

- Control-multiplicative Noise: $\Sigma(x, u)=C_{0}(x) C_{0}(x)^{T}+\sum_{j} C_{j}(x) u u^{T} C_{j}(x)^{T}$

$$
\pi^{*}=-\left(R+\sum_{j} C_{j}^{T} V_{x} x C_{j}\right)^{-1} B^{T} V_{x}
$$

- Convex-in-control Costs: $g(x, u)=q(x)+\sum_{j} r\left(u_{j}\right)$ with convex r :

$$
\pi^{*}=\underset{u}{\arg \min }\left\{\sum_{j} r\left(u_{j}\right)+u^{T} B^{T} V_{x}\right\}=\left(r^{\prime}\right)^{-1}\left(-B^{T} V_{x}\right)
$$

- Example:

$$
r(u)=s \int_{0}^{|u|} \operatorname{atanh}\left(\frac{\omega}{u_{\max }}\right) d \omega \Rightarrow \pi^{*}=u_{\max } \tanh \left(-s^{-1} B^{T} V_{x}\right)
$$

Pendulum Example

- Pendulum dynamics (Newton's second law for rotational systems):

$$
m L^{2} \ddot{\theta}=u-m g L \sin \theta+\text { noise }
$$

- State-space form with $x=\left(x_{1}, x_{2}\right)=(\theta, \dot{\theta})$:

$$
d x=\left[\begin{array}{c}
x_{2} \\
k \sin \left(x_{1}\right)
\end{array}\right] d t+\left[\begin{array}{l}
0 \\
1
\end{array}\right](u d t+\sigma d \omega)
$$

- Stage cost: $g(x, u)=q(x)+\frac{r}{2} u^{2}$
- Optimal cost-to-go and policy (discounted formulation):

$$
\pi^{*}(x)=-\frac{1}{r} J_{x_{2}}^{*}(x)
$$

$$
\frac{1}{\gamma} J^{*}(x)=q(x)+x_{2} J_{x_{1}}^{*}(x)+k \sin \left(x_{1}\right) J_{x_{2}}^{*}(x)+\frac{\sigma^{2}}{2} J_{x_{2} x_{2}}^{*}(x)-\frac{1}{2 r}\left(J_{x_{2}}^{*}(x)\right)^{2}
$$

Pendulum Example

- Parameters: $k=\sigma=r=1, \gamma=0.3, q(\theta, \dot{\theta})=1-\exp \left(-2 \theta^{2}\right)$
- Discretize the state space, approximate derivatives via finite differences, and iterate:

$$
V^{(n+1)}(x)=\beta V^{(n)}(x)+(1-\beta) \gamma \min _{u} H\left[x, u, V^{(n)}(\cdot)\right], \quad \beta=0.99
$$

MDP Discretization

- Define discrete state space $\mathcal{X}_{(h)} \subset \mathbb{R}^{n}$, control space $\mathcal{U}_{(h)} \subset \mathbb{R}^{m}$, and time step $\tau_{(h)}$, where h is a coarseness parameter such that $h \rightarrow 0$ corresponds to infinitely dense discretization
- Local Consistency: construct a motion model $x_{(h)}^{\prime}=x_{(h)}+d$ with:

$$
\begin{aligned}
\mathbb{E}[d] & =\tau_{(h)} f\left(x_{(h)}, u_{(h)}\right)+o\left(\tau_{(h)}\right) \\
\operatorname{cov}[d] & =\tau_{(h)} \Sigma\left(x_{(h)}, u_{(h)}\right)+o\left(\tau_{(h)}\right)
\end{aligned}
$$

- Kushner and Dupois: In the limit $h \rightarrow 0$, the MDP solution $J_{(h)}^{*}$ converges to the solution J^{*} of the continuous problem (even for non-smooth J^{*})

MDP Discretization

- For each $x_{(h)}, u_{(h)}$ choose vectors $\left\{d_{j}\right\}_{j=1}^{K}$ such that all possible next states are $x_{(h)}^{\prime}=x_{(h)}+h d_{j}$
- Specify $\tau_{(h)}$ and $p_{(h)}^{j}:=p_{f}\left(x_{(h)}+h d_{j} \mid x_{(h)}, u_{(h)}\right)$ according to one of the strategies:

1. $\tau_{(h)}=\frac{h^{2}}{h+1}$ and $p_{(h)}^{j}=\frac{h \alpha_{j}+\beta_{j}}{h+1}$

$$
\text { 2. } \tau_{(h)}=h \text { and }
$$ for α_{j}, β_{j} such that:

$$
\begin{aligned}
\sum_{j} \alpha_{j} d_{j} & =f\left(x_{(h)}, u_{(h)}\right) \\
\sum_{j} \beta_{j} d_{j} & =0 \\
\sum_{j} \beta_{j} d_{j} d_{j}^{T} & =\Sigma\left(x_{(h)}, u_{(h)}\right) \\
\sum_{j} \alpha_{j} & =1, \alpha_{j} \geq 0 \\
\sum_{j} \beta_{j} & =1, \beta_{j} \geq 0
\end{aligned}
$$

$$
\begin{gathered}
\min _{\left\{p_{(h)\}}^{j}\right\}}\left\|\Sigma-h \sum_{j} p_{(h)}^{j}\left(d_{j}-f\right)\left(d_{j}-f\right)^{T}\right\|^{2} \\
\text { s.t } \sum_{j} p_{(h)}^{j} d_{j}=f\left(x_{(h)}, u_{(h)}\right) \\
\quad \sum_{j} p_{(h)}^{j}=1, p_{(h)}^{j} \geq 0
\end{gathered}
$$

$$
\text { 3. } \tau_{(h)}=h \text { and }
$$

$$
p_{(h)}^{j} \propto \phi\left(x_{(h)}+h d_{j} ; h f\left(x_{(h)}, u_{(h)}\right), h \Sigma\left(x_{(h)}, u_{(h)}\right)\right)
$$

