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Continuous-time Optimal Control
I System Dynamics:

I time t ∈ [t0,T ]
I state x(t) ∈ X ⊆ Rn, ∀t ∈ [t0,T ]
I control u(t) ∈ U ⊆ Rm, ∀t ∈ [t0,T ]
I stochastic differential equation (Ito diffusion):

dx = f (x(t), u(t))dt + C (x(t), u(t))dω, x(t0) = x0

I Noise: Brownian motion ω(t) (integral of white noise)
I Infinite-dimensional dynamic constrained optimization:

min
π∈PC0([t0,T ],U)

Jπ(t0, x0) := E

{∫ T

t0

g(x(t), π(t, x(t)))dt︸ ︷︷ ︸
running cost

+ gT (x(T ))︸ ︷︷ ︸
terminal cost

∣∣∣∣x(t0) = x0

}

s.t. dx = f (x(t), π(t, x(t)))dt + C (x(t), π(t, x(t)))dω.

x(t) ∈ X , π(t, x(t)) ∈ U

I Admissible policies: u(t) := π(t, x) ∈ Π := PC 0([t0,T ],U) are
piecewise cont. functions that map a state x at time t to a control input

I T can be free or fixed; x(T ) can be free or in a target set T
I Additional state constraints can be imposed via the set X 2



Assumptions and Technical Details
I Assumptions

1. f is cont-diffable wrt to x and cont wrt u
2. Existence and Uniqueness: for any admissible policy π and initial

x(τ) ∈ X , τ ∈ [t0,T ], the noise-free system has a unique state
trajectory x(t)

3. The running cost g(x , u) is cont-diffable wrt x and cont wrt u
4. The terminal cost gT (x) is cont-diffable wrt x

I The SDE means that the time-integrals of the two sides are equal:

x(T )− x(0) =

∫ T

0
f (x(t), u(t))dt +

∫ T

0
C (x(t), u(t))dω(t)︸ ︷︷ ︸

Ito intergral

I Cannot be written as ẋ = f (x , u) + C (x , u)ω̇ because ω̇ does not exist

I The Ito integral of a random process y(t) adapted to ω(t), i.e., y(t)
depends on the sample path of ω(t) up to time t, is:∫ T

0
y(t)dω(t) := lim

N→∞
0=t0<t1<···<tN=T

N−1∑
i=0

y(ti )(ω(ti+1)− ω(ti ))
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Existence and Uniqueness

I Existence and Uniqueness: for any admissible policy π and initial
x(τ) ∈ X , τ ∈ [t0,T ], the noise-free system has a unique state
trajectory x(t)

I Example: Existence in not guaranteed in general

ẋ(t) = x(t)2, x(0) = 1

Solution does not exist forT ≥ 1 : x(t) =
1

1− t

I Example: Uniqueness in not guaranteed in general

ẋ(t) = x(t)
1
3 , x(0) = 0

Infinite number of solutions :

x(t) = 0, ∀t

x(t) =

{
0 for 0 ≤ t ≤ τ(
2
3(t − τ)

)3/2
for t > τ
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Calculus of Variations

I An infinite-dimensional static constrained optimization

I It is a special case of deterministic continuous-time optimal control for a
fully-actuated system (ẋ = u) with t ← x , x(t)← y(x),
u(t) = ẋ(t)← ẏ(x), gT (x(T ))← h(y(b)):

min
y∈C1([a,b],Rm)

∫ b

a
g(y(x), ẏ(x))dx + h(y(b))

s.t. y(a) = y0, y(b) = yf
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Optimal Cost-to-Go
I Optimal Value/Cost-to-go Function: the closed loop cost J∗(t, x)

associated with an optimal feedback control law u∗(t) := π∗(t, x) at
state x and time t:

J∗(t, x) ≤ Jπ(t, x), ∀π ∈ Π, x ∈ X

HJB PDE

The Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE) is
satisfied for all time-state pairs (t, x) by the optimal cost-to-go J∗(t, x):

J∗(T , x) = gT (x), ∀x ∈ X

− ∂

∂t
J∗(t, x) = min

u∈U

{
g(x , u) +∇xJ

∗(t, x)T f (x , u) +
1

2
tr
(
Σ(x , u)

[
∇2

xJ
∗(t, x)

])}
for all t ∈ [t0,T ] and x ∈ X and where Σ(x , u) := C (x , u)CT (x , u).

I The HJB PDE is the continuous-time analog of Dynamic Programming
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HJB PDE Derivation

I A discrete-time approximation of the cont.-time optimal control problem
can be used to derive the HJB PDE from the DP algorithm

I Euler Discretization of the SDE with time step τ :
I Discretize [t0,T ] into N pieces of width τ := T−t0

N
I Define xk := x(kτ) and uk := u(kτ) for k = 0, . . . ,N
I Discretized system dynamics:

xk+1 = xk + τ f (xk , uk) + εk , εk ∼ N (0, τΣ(xk , uk))

so that the motion model is specified by a Gaussian pdf:

pf (x ′ | x , u) = φ(x ′; x + τ f (x , u), τΣ(x , u))

I Discretized stage cost: τg(x , u)

I Idea: apply the Bellman Equation to the now discrete-time problem and
take the limit as τ → 0 to obtain a “continuous-time Bellman Equation”
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HJB PDE Derivation

I Bellman Equation: finite-horizon problem with t := kτ

V (t, x) = min
u∈U(x)

{
τg(x , u) + Ex ′∼pf (·|x ,u)

[
V (t + τ, x ′)

]}
I Taylor-series expansion of V (t + τ, x ′) around (t, x):

V (t + τ, x + d) =V (t, x) + τ
∂V

∂t
(t, x) + o(τ2)

+ [∇xV (t, x)]T d +
1

2
dT
[
∇2

xV (t, x)
]
d + o(d3)

where d ∼ N (τ f (x , u), τΣ(x , u))

I Note that E
[
dTMd

]
= tr(ΣM) + tr(µµTM) for d ∼ N (µ,Σ)

8



HJB PDE Derivation

I Note that E
[
dTMd

]
= tr(ΣM) + tr(µµTM) for d ∼ N (µ,Σ) so that:

Ex ′∼pf (·|x ,u)
[
V (t + τ, x ′)

]
= V (t, x) + τ

∂V

∂t
(t, x) + o(τ2)

+ τ [∇xV (t, x)]T f (x , u) +
τ

2
tr
(
Σ(x , u)

[
∇2

xV (t, x)
])

I Substituting in the Bellman Equation and simplifying, we get:

0 = min
u∈U(x)

{
g(x , u) +

∂V

∂t
(t, x) + [∇xV (t, x)]T f (x , u) +

1

2
tr
(
Σ(x , u)

[
∇2

xV (t, x)
])

+
o(τ2)

τ

}

I Taking the limit as τ → 0 (assuming it can be exchanged with minu∈U )
leads to the HJB PDE:

−∂V
∂t

(t, x) = min
u∈U(x)

{
g(x , u) + [∇xV (t, x)]T f (x , u) +

1

2
tr
(
Σ(x , u)

[
∇2

xV (t, x)
])}
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HJB PDEs for Different Problem Formulations

I Discounted Problem: Jπ(x) := E

∫ ∞
0

e−
t
γ︸︷︷︸

discount

g(x(t), π(t, x(t)))dt


with γ ∈ [0,∞)

HJB PDEs for the Optimal Cost-to-go

Hamiltonian: H[x , u, p] = g(x , u) + pT f (x , u) +
1

2
tr (Σ(x , u)[∇xp(x)])

Finite Horizon: −∂J
∗

∂t
(t, x) = min

u∈U(x)
H[x , u,∇xJ

∗(t, ·)], J∗(T , x) = gT (x)

First Exit: 0 = min
u∈U(x)

H[x , u,∇xJ
∗(·)], J∗(x ∈ T ) = gT (x)

Discounted:
1

γ
J∗(x) = min

u∈U(x)
H[x , u,∇xJ

∗(·)]
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Existence and Uniqueness of Solutions
I The HJB PDE has at most one classical solution (i.e., a function which

satisfies the PDE everywhere)

I If a classical solution exists then it is the optimal cost-to-go

I The HJB PDE may not have a classical solution, in which case the
optimal cost-to-go is not smooth (e.g. bang-bang control)

I The HJB PDE always has a unique viscosity solution which is the
optimal cost-to-go

I Approximation schemes based on MDP discretization are guaranteed to
converge to the unique viscosity solution

I Most continuous function approximation schemes (which scale better)
are unable to represent non-smooth solutions

I All examples of non-smoothness seem to be deterministic; noise tends to
smooth the optimal cost-to-go function
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HJB Example 1

I System: ẋ(t) = u(t), |u(t)| ≤ 1, 0 ≤ t ≤ 1

I Costs: g(x , u) = 0 and gT (x) = 1
2x

2 for all x ∈ X and u ∈ U

I Since we only care about the square of the terminal state, we can
construct a candidate optimal policy that drives the state towards 0 as
quickly as possible and maintains it there:

π(t, x) = −sgn(x) :=


−1 if x > 0

0 if x = 0

1 if x < 0

I The cost-to-go in not smooth: Jπ(t, x) = 1
2 (max {0, |x | − (1− t)})2

I We will verify that this function satisfies the HJB and is therefore indeed
the optimal cost-to-go function
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HJB Example 1: Partial Derivative wrt x

I Cost function and its partial derivative wrt x for fixed t:

Jπ(t, x) =
1

2
(max {0, |x | − (1− t)})2 ∂Jπ(t, x)

∂x
= sgn(x) max{0, |x | − (1− t)}
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HJB Example 1: Partial Derivative wrt t

I Cost function and its partial derivative wrt t for fixed x :

Jπ(t, x) =
1

2
(max {0, |x | − (1− t)})2 ∂Jπ(t, x)

∂t
= max{0, |x | − (1− t)}
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HJB Example 1

I Boundary condition: Jπ(1, x) = 1
2x

2 = gT (x)

I The minimum in the HJB PDE is obtained by u = −sgn(x):

min
|u|≤1

(
∂Jπ(t, x)

∂t
+
∂Jπ(t, x)

∂x
u

)
= min
|u|≤1

((1 + sgn(x)u) (max{0, |x | − (1− t)})) = 0

I Conclusion: Jπ(t, x) = J∗(t, x) and π∗(t, x) = −sgn(x) is an optimal
policy

I Note that this is a simple example. In general, solving the HJB is
nontrivial.
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HJB Example 2

I System: ẋ(t) = x(t)u(t), |u(t)| ≤ 1, 0 ≤ t ≤ 1

I Costs: g(x , u) = 0 and gT (x) = x for all x ∈ X and u ∈ U

I Optimal policy:

π(t, x) =


−1 if x > 0

0 if x = 0

1 if x < 0

I Optimal cost-to-go:

Jπ(t, x) =


et−1x x > 0

0 x = 0

e1−tx x < 0

I The cost-to-go function is not diffable wrt x at x = 0 and hence does
not satisfy the HJB in the classical sense
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Theorem: HJB PDE Sufficiency

Suppose that V (t, x) is cont-diffable in t and x and solves the HJB equation:

V (T , x) = gT (x), ∀x ∈ X

−∂V (t, x)

∂t
= min

u∈U

[
g(x , u) +∇xV (t, x)T f (x , u) +

1

2
tr
(
Σ(x , u)

[
∇2

xV (t, x)
])]

for all x ∈ X and 0 ≤ t ≤ T . Suppose also that the policy π∗(t, x) attains
the minimum in the HJB for all t and x and is piecewise-cont in t. Then
under the assumptions on Slide 3, V (t, x) is the unique solution of the HJB
equation and is equal to the optimal cost-to-go J∗(t, x), while π∗(t, x) is an
optimal policy.
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More Tractable Problems

I Consider a restricted class of system dynamics and cost functions:

dx = (a(x) + B(x)u)dt + C (x)dω

g(x , u) = q(x) +
1

2
uTR(x)u

I The Hamiltonian can be minimized analytically wrt u for such problems
(suppressing the dependence on x for clarity):

π∗ = arg min
u

{
q +

1

2
uTRu + (a + Bu)TVx +

1

2
tr(CCTVxx)

}
= −R−1BTVx

H[x , π∗,Vx ] = q + aTVx +
1

2
tr(CCTVxx)− 1

2
V T
x BR−1BTVx

I The HJB PDE becomes second-order quadratic, no longer involving the
min operator!
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More Tractable Problems (Generalizations)

I Control-multiplicative Noise: Σ(x , u) = C0(x)C0(x)T +
∑
j

Cj(x)uuTCj(x)T

π∗ = −
(
R +

∑
j

CT
j VxxCj

)−1
BTVx

I Convex-in-control Costs: g(x , u) = q(x) +
∑

j r(uj) with convex r :

π∗ = arg min
u

{∑
j

r(uj) + uTBTVx

}
= (r ′)−1

(
−BTVx

)
I Example:

r(u) = s

∫ |u|
0

atanh

(
ω

umax

)
dω ⇒ π∗ = umax tanh

(
−s−1BTVx

)
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Pendulum Example

I Pendulum dynamics (Newton’s second law for
rotational systems):

mL2θ̈ = u −mgL sin θ + noise

I State-space form with x = (x1, x2) = (θ, θ̇):

dx =

[
x2

k sin(x1)

]
dt +

[
0
1

]
(udt + σdω)

I Stage cost: g(x , u) = q(x) + r
2u

2

I Optimal cost-to-go and policy (discounted formulation):

π∗(x) = −1

r
J∗x2(x)

1

γ
J∗(x) = q(x) + x2J

∗
x1(x) + k sin(x1)J∗x2(x) +

σ2

2
J∗x2x2(x)− 1

2r
(J∗x2(x))2
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Pendulum Example
I Parameters: k = σ = r = 1, γ = 0.3, q(θ, θ̇) = 1− exp(−2θ2)

I Discretize the state space, approximate derivatives via finite differences,
and iterate:

V (n+1)(x) = βV (n)(x) + (1− β)γmin
u

H[x , u,V (n)(·)], β = 0.99
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MDP Discretization
I Define discrete state space X(h) ⊂ Rn, control space U(h) ⊂ Rm, and

time step τ(h), where h is a coarseness parameter such that h→ 0
corresponds to infinitely dense discretization

I Local Consistency: construct a motion
model x ′(h) = x(h) + d with:

E[d ] = τ(h)f (x(h), u(h)) + o(τ(h))

cov[d ] = τ(h)Σ(x(h), u(h)) + o(τ(h))

I Kushner and Dupois: In the limit h→ 0, the MDP solution J∗(h)
converges to the solution J∗ of the continuous problem (even for
non-smooth J∗)
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MDP Discretization
I For each x(h), u(h) choose vectors {dj}Kj=1 such that all possible next

states are x ′(h) = x(h) + hdj

I Specify τ(h) and pj(h) := pf (x(h) + hdj | x(h), u(h)) according to one of the
strategies:

1. τ(h) = h2

h+1 and pj(h) =
hαj+βj
h+1

for αj , βj such that:∑
jαjdj = f (x(h), u(h))∑
jβjdj = 0∑

jβjdjd
T
j = Σ(x(h), u(h))∑

jαj = 1, αj ≥ 0∑
jβj = 1, βj ≥ 0

2. τ(h) = h and

min
{pj

(h)
}
‖Σ− h

∑
j

pj(h)(dj − f )(dj − f )T‖2

s.t
∑
j

pj(h)dj = f (x(h), u(h))∑
j

pj(h) = 1, pj(h) ≥ 0

3. τ(h) = h and

pj(h) ∝ φ(x(h) + hdj ; hf (x(h), u(h)), hΣ(x(h), u(h)))
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