
ECE276B: Planning & Learning in Robotics
Lecture 13: Pontryagin’s Minimum Principle

Lecturer:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Tianyu Wang: tiw161@eng.ucsd.edu
Yongxi Lu: yol070@eng.ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:tiw161@eng.ucsd.edu
mailto:yol070@eng.ucsd.edu

Locally Extremal Trajectories
I Deterministic continuous-time optimal control:

min
π∈PC0([t0,T],U)

Jπ(t0, x0) :=

∫ T

t0

g(x(t), π(t, x(t)))dt + gT (x(T))

s.t. ẋ(t) = f (x(t), u(t)), x(t0) = x0

x(t) ∈ X , π(t, x(t)) ∈ U
I Hamiltonian: H(x , u, p) := g(x , u) + pT f (x , u)

I Relationship to Mechanics:
I Hamilton’s principle of least action: trajectories of mechanical systems

are extremals of the action integral
∫ T

t0
L(t)dt, where the Lagrangian

L(t) := K (t)−P(t) is the difference between kinetic and potential energy.
I If we think of the stage cost as the Lagrangian of a mechanical system,

the Hamiltonian is the total energy (kinetic plus potential) of the system

I We can compute extremal open-loop trajectories (i.e., local minima)
by solving a boundary-value ODE problem with given x(0) and costate
p(T) = ∇xgT (x), where p(t) is the gradient/sensitivity of the optimal
cost-to-go with respect to the state x . 2

Pontryagin’s Minimum Principle (PMP)
I Hamiltonian: H(x , u, p) := g(x , u) + pT f (x , u)

Theorem: Pontryagin’s Minimum Principle

I Let u∗(t) : [t0,T]→ U be an optimal control trajectory

I Let x∗(t) : [t0,T]→ X be the associated state trajectory from x0
I Then, there exists a costate trajectory p∗(t) : [t0,T]→ X satisfying:

1. Canonical equations with boundary conditions:

ẋ∗(t) = ∇pH(x∗(t), u∗(t), p∗(t)), x∗(t0) = x0

ṗ∗(t) = −∇xH(x∗(t), u∗(t), p∗(t)), p∗(T) = ∇xgT (x∗(T))

2. Minimum principle with constant (holonomic) constraint:

u∗(t) = arg min
u∈U

H(x∗(t), u, p∗(t)), ∀t ∈ [t0,T]

H(x∗(t), u∗(t), p∗(t)) = constant, ∀t ∈ [t0,T]

I Proof: Liberzon, Calculus of Variations and Optimal Control Theory,
Ch. 4.2 3

Proof of PMP (Step 0: Preliminaries)

First Order Necessary Condition for Optimality

Let f be a continuously differentiable function on Rm and U ⊆ Rm be a
convex set. If u∗ is a minimizer of minu∈U f (u), then:

∇f (u∗)T (v − u∗) ≥ 0, ∀v ∈ U

I Proof: Suppose ∃w ∈ U with ∇f (u∗)T (w − u∗) < 0. Consider
z(λ) := λw + (1− λ)u for λ ∈ [0, 1]. Since U is convex, z(λ) ∈ U and

d

dλ
f (z(λ))

∣∣∣∣
λ=0

= ∇f (u∗)T (w − u∗) < 0

implies that f (z(λ)) < f (u∗) for small λ, which contradicts that u∗ is
optimal.

4

Proof of PMP (Step 0: Preliminaries)

Lemma: ∇-min Exchange

Let F (t, x , u) be a cont.-diffable function of t ∈ R, x ∈ Rn, u ∈ Rm and let
U ⊆ Rm be a convex set. Furthermore, assume π∗(t, x) = arg min

u∈U
F (t, x , u)

exists and is cont.-diffable. Then, for all t and x :

∂ (minu∈U F (t, x , u))

∂t
=
∂F (t, x , u)

∂t

∣∣∣∣
u=π∗(t,x)

∇x

(
min
u∈U

F (t, x , u)

)
= ∇xF (t, x , u)

∣∣
u=π∗(t,x)

I Proof: Let G (t, x) := minu∈U F (t, x , u) = F (t, x , π∗(t, x)). Then:

∂G (t, x)

∂t
=
∂F (t, x , u)

∂t

∣∣∣∣
u=π∗(t,x)

+
∂F (t, x , u)

∂u

∣∣∣∣
u=π∗(t,x)

∂π∗(t, x)

∂t︸ ︷︷ ︸
=0 since ∇uF (t,x ,π∗)(π∗(t+ε,x)−π∗(t,x))≥0

for all ε by 1st order optimality condition

A similar derivation can be used for the partial derivative wrt x .

5

Proof of PMP (Step 1: HJB PDE gives J∗(t, x))

I Extra Assumption: We prove the PMP under the assumption that
J∗(t, x) and π∗(t, x) are cont-diffable in t and x and U is convex. These
assumptions can be avoided in a more general proof.

I With cont-diffable cost-to-go, the HJB PDE is also a necessary
condition for optimality:

J∗(T , x) = gT (x), ∀x ∈ X

0 = min
u∈U

(
g(x , u) +

∂

∂t
J∗(t, x) +∇xJ

∗(t, x)T f (x , u)

)
︸ ︷︷ ︸

:=F (t,x ,u)

, ∀t ∈ [t0,T], x ∈ X

with π∗(t, x) a corresponding optimal policy.

6

Proof of PMP (Step 2: ∇-min Exchange Lemma)

I Apply the ∇-min Exchange Lemma to the HJB PDE:

0 =
∂

∂t

(
min
u∈U

F (t, x , u)

)
=
∂2J∗(t, x)

∂t2
+

[
∂

∂t
∇xJ

∗(t, x)

]T
f (x , π∗(t, x))

0 = ∇x

(
min
u∈U

F (t, x , u)

)
= ∇xg(x , u∗) +∇x

∂J∗(t, x)

∂t
+ [∇2

xJ
∗(t, x)]f (x , u∗) + [∇x f (x , u∗)]T∇xJ

∗(t, x)

where u∗ := π∗(t, x)

I Evaluate these along the trajectory x∗(t) resulting from π∗(t, x∗(t)):

ẋ∗(t) = f (x∗(t), u∗(t)) = ∇pH(x∗(t), u∗(t), p)T , x∗(0) = x0

7

Proof of PMP (Step 3: Evaluate along x∗(t), u∗(t))

I Evaluate the results of Step 2 along x∗(t):

0 =
∂2J∗(t, x)

∂t2

∣∣∣∣
x=x∗(t)

+

[
∂

∂t
∇xJ

∗(t, x)

∣∣∣∣
x=x∗(t)

]T
ẋ∗(t)

=
d

dt

∂J
∗(t, x)

∂t

∣∣∣∣
x=x∗(t)︸ ︷︷ ︸

:=r(t)

 =
d

dt
r(t)⇒ r(t) = const.∀t

and

0 = ∇xg(x , u∗)|x=x∗(t) +
d

dt

∇xJ
∗(t, x)|x=x∗(t)︸ ︷︷ ︸
=:p∗(t)

+ [∇x f (x , u∗)|x=x∗(t)]
T [∇xJ

∗(t, x)|x=x∗(t)]

= ∇xg(x , u∗)|x=x∗(t) + ṗ∗(t) + [∇x f (x , u∗)|x=x∗(t)]
Tp∗(t)

= ṗ∗(t) +∇xH(x∗(t), u∗(t), p∗(t))

8

Proof of PMP (Step 4: Done)
I The boundary condition J∗(T , x) = gT (x) implies that
∇xJ

∗(T , x) = ∇xgT (x) for all x ∈ X and thus p∗(T) = ∇xgT (x∗(T))

I From the HJB PDE we have:

−∂J
∗(t, x)

∂t
= min

u∈U
H(x , u,∇xJ

∗(t, ·))

which along the optimal trajectory x∗(t), u∗(t) becomes:

−r(t) = H(x∗(t), u∗(t), p∗(t)) = const

I Finally, note that

u∗(t) = arg min
u∈U

F (t, x∗(t), u)

= arg min
u∈U

{
g(x∗(t), u) + [∇xJ

∗(t, x)|x=x∗(t)]
T f (x∗(t), u)

}
= arg min

u∈U

{
g(x∗(t), u) + p∗(t)T f (x∗(t), u)

}
= arg min

u∈U
H(x∗(t), u, p∗(t))

9

HJB PDE vs PMP
I The HJB PDE provides a lot of information – the optimal cost-to-go

and an optimal policy for all time and all states!

I Often, we only care about the optimal trajectory for a specific initial
condition x0. Exploiting that we need less information, we can arrive at
simpler conditions for optimality – Pontryagin’s Minimum Principle

I The PMP does not apply to infinite horizon problems, so one has to
use the HJB equations in that case

I The HJB PDE is a sufficient condition for optimality (it is possible
that the optimal solution does not satisfy it but a solution that satisfies
it is guaranteed to be optimal)

I The PMP is a necessary condition for optimality (it is possible that
non-optimal trajectories satisfy it) so further analysis is necessary to
determine if the candidate PMP policy is optimal

I The PMP requires solving an ODE with split boundary conditions (not
easy but easier than the nonlinear HJB PDE!)

10

Example: Resource Allocation for a Martian Base

I A fleet of reconfigurable, general purpose robots is sent to Mars at t = 0

I The robots can 1) replicate or 2) make human habitats

I The number of robots at time t is x(t), while the number of habitats is
z(t) and they evolve according to:

ẋ(t) = u(t)x(t), x(0) = x > 0

ż(t) = (1− u(t))x(t), z(0) = 0

0 ≤ u(t) ≤ 1

where u(t) denotes the percentage of the x(t) robots used for replication

I Goal: Maximize the size of the Martian base by a terminal time T , i.e.:

max z(T) =

∫ T

0
(1− u(t))x(t)dt

with f (x , u) = ux , g(x , u) = (1− u)x and gT (x) = 0

11

Example: Resource Allocation for a Martian Base

I Hamiltonian: H(x , u, p) = (1− u)x + pux

I Apply the PMP:

ẋ∗(t) = ∇pH(x∗, u∗, p∗) = x∗(t)u∗(t), x∗(0) = x

ṗ∗(t) = −∇xH(x∗, u∗, p∗) = −1 + u∗(t)− p∗(t)u∗(t), p∗(T) = 0

u∗(t) = arg max
0≤u≤1

H(x∗(t), u, p∗(t)) = arg max
0≤u≤1

(x∗(t) + x∗(t)(p∗(t)− 1)u)

I Since x∗(t) > 0 for t ∈ [0,T]:

u∗(t) =

{
0 if p∗(t) < 1

1 if p∗(t) ≥ 1

12

Example: Resource Allocation for a Martian Base

I Work backwards from t = T to determine p∗(t):
I Since p∗(T) = 0 for t close to T , we have u∗(t) = 0 and the costate

dynamics become ṗ∗(t) = −1
I At time t = T − 1, p∗(t) = 1 and the control input switches to u∗(t) = 1
I For t < T − 1:

ṗ∗(t) = −p∗(t), p(T − 1) = 1

⇒ p∗(t) = e(T−1)−t > 1 for t < T − 1

I Optimal control:

u∗(t) =

{
1 if 0 ≤ t ≤ T − 1

0 if T − 1 ≤ t ≤ T

13

Example: Resource Allocation for a Martian Base
I Optimal trajectories for the Martian resource allocation problem:

I Conclusions:
I Use all robots to replicate themselves from t = 0 to t = T − 1 and then

use all robots to build habitats
I If T < 1 , then the robots should only build habitats
I If the Hamiltonian is linear in u, its min can only be attained on the

boundary of U , known as bang-bang control 14

PMP with Fixed Terminal State

I Suppose that in addition to x(0) = xs , a final state x(T) = xτ is given.

I The terminal cost gT (x(T)) is not useful since J∗(T , x) =∞ if
x(T) 6= xτ . The terminal boundary condition for the costate
p(T) = ∇xgT (x(T)) does not hold but as compensation we have a
different boundary condition x(T) = xτ .

I We still have 2n ODEs with 2n boundary conditions:

ẋ(t) = f (x(t), u(t)), x(0) = xs , x(T) = xτ

ṗ(t) = −∇xH(x(t), u(t), p(t))

I If only some terminal state are fixed xj(T) = xτ,j for j ∈ I , then:

ẋ(t) = f (x(t), u(t)), x(0) = xs , xj(T) = xτ,j , ∀j ∈ I

ṗ(t) = −∇xH(x(t), u(t), p(t)), pj(T) =
∂

∂xj
gT (x(T)), ∀j /∈ I

15

PMP with Fixed Terminal Set

I Terminal set: a k dim surface in Rn requires:

x(T) ∈ Xτ = {x ∈ Rn | hj(x) = 0, j = 1, . . . , n − k}

I The costate boundary condition requires that p(T) is orthogonal to the
tangent space Tx(T)Xτ = {d ∈ Rn | ∇xhj(x(T))Td = 0, j = 1, . . . , n − k}:

ẋ(t) = f (x(t), u(t)), x(0) = xs , hj(x(T)) = 0, j = 1, . . . , n − k

ṗ(t) = −∇xH(x(t), u(t), p(t)), p(T) ∈ span{∇xhj(x(T)),∀j}
OR dTp(T) = 0,∀d ∈ Tx(T)Xτ

16

PMP with Free Initial State

I Suppose that x0 is free and subject to optimization with additional cost
g0(x0) term

I The total cost becomes g0(x0) + J(0, x0) and the necessary condition for
an optimal initial state x0 is:

∇xg0(x)|x=x0 +∇xJ(0, x)|x=x0︸ ︷︷ ︸
=p(0)

= 0 ⇒ p(0) = −∇xg0(x0)

I We lose the initial state boundary condition but gain an adjoint state
boundary condition:

ẋ(t) = f (x(t), u(t))

ṗ(t) = −∇xH(x(t), u(t), p(t)), p(0) = −∇xg0(x0), p(T) = −∇xgT (x(T))

I Similarly, we can deal with some parts of the initial state being free and
some not

17

PMP with Free Terminal Time

I Suppose that the initial and/or terminal state are given but the terminal
time T is free and subject to optimization

I We can compute the total cost of optimal trajectories for various
terminal times T and look for the best choice, i.e.:

∂

∂t
J∗(t, x)

∣∣∣∣
t=T ,x=x(T)

= 0

I Recall that on the optimal trajectory:

H(x∗(t), u∗(t), p∗(t)) = − ∂

∂t
J∗(t, x)

∣∣∣∣
x=x∗(t)

= const. ∀t

I Hence, in the free terminal time case, we gain an extra degree of
freedom with free T but lose one degree of freedom by the constraint:

H(x∗(t), u∗(t), p∗(t)) = 0, ∀t ∈ [t0,T]

18

PMP with Time-varying System and Cost
I Suppose that the system and stage cost vary with time:

ẋ = f (x(t), u(t), t) g(x(t), u(t), t)

I A usual trick is to convert the problem to a time-invariant one by
making t part of the state. Let y(t) = t with dynamics:

ẏ(t) = 1, y(0) = t0

I Augmented state z(t) := (x(t), y(t)) and system:

ż(t) =f̄ (z(t), u(t)) :=

[
f (x(t), u(t), y(t))

1

]
ḡ(z , u) :=g(x , u, y) ḡT (z) := gT (x)

I The Hamiltonian need not to be constant along the optimal trajectory:

H(x , u, p, t) = g(x , u, t) + pT f (x , u, t)

ẋ∗(t) = f (x∗(t), u∗(t), t), x∗(0) = x0

ṗ∗(t) = −∇xH(x∗(t), u∗(t), p∗(t), t), p∗(T) = ∇xgT (x∗(T))

u∗(t) = arg min
u∈U

H(x∗(t), u, p∗(t), t)

H(x∗(t), u∗(t), p∗(t), t) 6= const 19

Singular Problems

I Singular Problems: in some cases, the minimum condition
u(t) = arg min

u∈U
H(x∗(t), u, p∗(t), t) might be insufficient to determine

u∗(t) for all t because the values of x∗(t) and p∗(t) are such that
H(x∗(t), u, p∗(t), t) is independent of u over a nontrivial interval of time

I The optimal trajectories consist of portions where u∗(t) can be
determined from the minimum condition (regular arcs) and where u∗(t)
cannot be determined from the minimum condition since the
Hamiltonian is independent of u (singular arcs)

20

Example: Fixed Terminal State

I System: ẋ(t) = u(t), x(0) = 0, x(1) = 1, u(t) ∈ R

I Cost: min 1
2

∫ 1
0 (x(t)2 + u(t)2)dt

I Want x(t) and u(t) to be small but need to meet x(1) = 1

I Approach: use PMP to find a locally optimal open-loop policy

21

Example: Fixed Terminal State
I Pontryagin’s Minimum Principle

I Hamiltonian: H(x , u, p) = 1
2 (x2 + u2) + pu

I Minimum principle: u(t) = arg min
u∈R

{
1
2 (x(t)2 + u2) + p(t)u

}
= −p(t)

I Canonical equations with boundary conditions:

ẋ(t) = ∇pH(x(t), u(t), p(t)) = u(t) = −p(t), x(0) = 0, x(1) = 1

ṗ(t) = −∇xH(x(t), u(t), p(t)) = −x(t)

I Candidate trajectory: ẍ(t) = x(t) ⇒ x(t) = Aet + Be−t = et−e−t

e−e−1

I x(0) = 0 ⇒ A + B = 0
I x(1) = 1 ⇒ Ae + Be−1 = 1

I Open-loop control: u(t) = ẋ(t) = et+e−t

e−e−1

22

Example: Free Initial State

I System: ẋ(t) = u(t), x(0) = free, x(1) = 1, u(t) ∈ R

I Cost: min 1
2

∫ 1
0 (x(t)2 + u(t)2)dt

I Picking x(0) = 1 will allow u(t) = 0 but we will accumulate cost due to
x(t). On the other hand, picking x(0) = 0 will accumulate cost due to
u(t) having to drive the state to x(1) = 1.

I Approach: use PMP to find a locally optimal open-loop policy

23

Example: Free Initial State
I Pontryagin’s Minimum Principle

I Hamiltonian: H(x , u, p) = 1
2 (x2 + u2) + pu

I Minimum principle: u(t) = arg min
u∈R

{
1
2 (x(t)2 + u2) + p(t)u

}
= −p(t)

I Canonical equations with boundary conditions:

ẋ(t) = ∇pH(x(t), u(t), p(t)) = u(t) = −p(t), x(1) = 1

ṗ(t) = −∇xH(x(t), u(t), p(t)) = −x(t), p(0) = 0

I Candidate trajectory:

ẍ(t) = x(t) ⇒ x(t) = Aet + Be−t =
et + e−t

e + e−1

p(t) = −ẋ = −Aet + Be−t =
−et + e−t

e + e−1

I x(1) = 1 ⇒ Ae + Be−1 = 1

I p(0) = 0 ⇒ −A + B = 0

I x(0) ≈ 0.65

I Open-loop control: u(t) = ẋ(t) = et−e−t

e+e−1 24

Example: Free Terminal Time

I System: ẋ(t) = u(t), x(0) = 0, x(T) = 1, u(t) ∈ R

I Cost: min
∫ T
0 1 + 1

2(x(t)2 + u(t)2)dt

I Free terminal time: T = free

I Note: if we do not include 1 in the stage-cost (i.e., use the same cost as
before), we would get T ∗ =∞ (see next slide for details)

I Approach: use PMP to find a locally optimal open-loop policy

25

Example: Free Terminal Time
I Pontryagin’s Minimum Principle

I Hamiltonian: H(x(t), u(t), p(t)) = 1
2 (x(t)2 + u(t)2) + p(t)u(t)

I Minimum principle: u(t) = arg min
u∈R

{
1
2 (x(t)2 + u2) + p(t)u

}
= −p(t)

I Canonical equations with boundary conditions:

ẋ(t) = ∇pH(x(t), u(t), p(t)) = u(t) = −p(t), x(0) = 0, x(T) = 1

ṗ(t) = −∇xH(x(t), u(t), p(t)) = −x(t)

I Candidate trajectory: ẍ(t) = x(t) ⇒ x(t) = Aet +Be−t = et−e−t

eT−e−T

I x(0) = 0 ⇒ A + B = 0
I x(T) = 1 ⇒ AeT + Be−T = 1

I Free terminal time:

0 = H(x(t), u(t), p(t)) = 1 +
1

2
(x(t)2 − p(t)2)

= 1 +
1

2

(
(et − e−t)2 − (et + e−t)2

(eT − e−T)2

)
= 1− 2

(eT − e−T)2

⇒ T ≈ 0.66

26

Example: Time-varying Singular Problem

I System: ẋ(t) = u(t), x(0) = free, x(1) = free, u(t) ∈ [−1, 1]

I Time-varying cost: min 1
2

∫ 1
0 (x(t)− z(t))2dt for z(t) = 1− t2

I Example feasible state trajectory that tracks the desired z(t) until the
slope of z(t) becomes less than −1 and the input u(t) saturates:

I Approach: use PMP to find a locally optimal open-loop policy

27

Example: Time-varying Singular Problem
I Pontryagin’s Minimum Principle

I Hamiltonian: H(x , u, p, t) = 1
2 (x − z(t))2 + pu

I Minimum principle:

u(t) = arg min
|u|≤1

H(x(t), u, p(t), t) =

−1 if p(t) > 0

undetermined if p(t) = 0

1 if p(t) < 0
I Canonical equations with boundary conditions:

ẋ(t) = ∇pH(x(t), u(t), p(t)) = u(t),

ṗ(t) = −∇xH(x(t), u(t), p(t)) = −(x(t)− z(t)), p(0) = 0, p(1) = 0

I Singular arc: when p(t) = 0 for a non-trivial time interval, the control
cannot be determined from PMP

I In this problem, the singular arc can be determined from the costate
ODE:

0 ≡ ṗ = −x(t) + z(t) ⇒ u(t) = ẋ(t) = ż(t) = −2t for p(t) = 0

28

Example: Time-varying Singular Problem

I Since p(0) = 0, the state trajectory follows a singular arc until ts ≤ 1
2

(since u(t) = −2t ∈ [−1, 1]) when it switches to a regular arc with
u(t) = −1 (since z(t) is decreasing and we are trying to track it).

I For 0 ≤ t ≤ ts ≤ 1
2 : x(t) = z(t) p(t) = 0

I For ts < t ≤ 1:

ẋ(t) = −1 ⇒ x(t) = z(ts)−
∫ t

ts

ds = 1− t2s − t + ts

ṗ(t) = −(x(t)− z(t)) = t2s − ts − t2 + t, p(ts) = p(1) = 0

⇒ p(s) = p(ts) +

∫ s

ts

(t2s − ts − t2 + t)dt, s ∈ [ts , 1]

⇒ 0 = p(1) = t2s − ts −
1

3
+

1

2
− t3s + t2s +

t3s
3
− t2s

2
⇒ 0 = (ts − 1)2(1− 4ts)

⇒ ts =
1

4

29

Discrete-time PMP
I Consider a discrete-time problem with dynamics xt+1 = f (xt , ut)

I Introduce Lagrange multipliers p0:T to relax the constraints:

L(x0:T , u0:T−1, p0:T) = gT (xT) + xT0 p0 +
T−1∑
t=0

g(xt , ut) + (f (xt , ut)− xt+1)Tpt+1

= gT (xT) + xT0 p0 − xTT pT +
T−1∑
t=0

H(xt , ut , pt+1)− xTt pt

I Setting ∇xL = ∇pL = 0 and explicitly minimizing wrt u0:T−1 yields:

Theorem: Discrete-time PMP

If x∗0:T , u
∗
0:T−1 is an optimal state-control trajectory starting at x0, then there

exists a costate trajectory p∗0:T such that:

x∗t+1 = ∇pH(x∗t , u
∗
t , p
∗
t+1) = f (x∗t , u

∗
t), x∗0 = x0

p∗t = ∇xH(x∗t , u
∗
t , p
∗
t+1) = ∇xg(x∗t , u

∗
t) +∇x f (x∗t , u

∗
t)Tp∗t+1, p∗T = ∇xgT (x∗T)

u∗t = arg min
u

H(x∗t , u, p
∗
t+1)

30

Gradient of the Cost-to-go via the PMP

I The discrete-time PMP provides an efficient way to evaluate the
gradient of the cost-to-go with respect to u and thus optimize control
trajectories locally and numerically

Theorem: Cost-to-go Gradient

Given an initial state x0 and trajectory u0:T−1, let x1:T , p0:T be such that:

xt+1 = f (xt , ut), x0 given

pt = ∇xg(xt , ut) + [∇x f (xt , ut)]Tpt+1, pT = ∇xgT (xT)

Then:

∇utJ(x0:T , u0:T−1) = ∇uH(xt , ut , pt+1) = ∇ug(xt , ut) +∇uf (xt , ut)
Tpt+1

I Note that xt can be found in a forward pass (since it does not depend
on p) and then pt can be found in a backward pass

31

Proof by Induction

I The accumulated cost can be written recursively:

Jt(xt:T , ut:T−1) = g(xt , ut) + Jt+1(xt+1:T , ut+1:T−1)

I Note that ut affects the future costs only through xt+1 = f (xt , ut):

∇utJt(xt:T , ut:T−1) = ∇ug(xt , ut) + [∇uf (xt , ut)]T∇xt+1Jt+1(xt+1:T , ut+1:T−1)

I Claim: pt = ∇xtJt(xt:T , ut:T−1):
I Base case: pT = ∇xT gT (xT)
I Induction: for t ∈ [t0,T):

∇xtJt(xt:T , ut:T−1)︸ ︷︷ ︸
=pt

= ∇xg(xt , ut) + [∇x f (xt , ut)]T ∇xt+1Jt+1(xt+1:T , ut+1:T−1)︸ ︷︷ ︸
=pt+1

which is identical with the costate ODE.

32

