ECE276B: Planning \& Learning in Robotics Lecture 13: Pontryagin's Minimum Principle

Lecturer:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Tianyu Wang: tiw161@eng.ucsd.edu
Yongxi Lu: yol070@eng.ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Locally Extremal Trajectories

- Deterministic continuous-time optimal control:

$$
\begin{aligned}
\min _{\pi \in P C^{0}\left(\left[t_{0}, T\right], \mathcal{U}\right)} & J^{\pi}\left(t_{0}, x_{0}\right):=\int_{t_{0}}^{T} g(x(t), \pi(t, x(t))) d t+g_{T}(x(T)) \\
\text { s.t. } & \dot{x}(t)=f(x(t), u(t)), x\left(t_{0}\right)=x_{0} \\
& x(t) \in \mathcal{X}, \pi(t, x(t)) \in \mathcal{U}
\end{aligned}
$$

- Hamiltonian: $H(x, u, p):=g(x, u)+p^{T} f(x, u)$
- Relationship to Mechanics:
- Hamilton's principle of least action: trajectories of mechanical systems are extremals of the action integral $\int_{t_{0}}^{T} L(t) d t$, where the Lagrangian $L(t):=K(t)-P(t)$ is the difference between kinetic and potential energy.
- If we think of the stage cost as the Lagrangian of a mechanical system, the Hamiltonian is the total energy (kinetic plus potential) of the system
- We can compute extremal open-loop trajectories (ie., local minima) by solving a boundary-value ODE problem with given $x(0)$ and costate $p(T)=\nabla_{x} g_{T}(x)$, where $p(t)$ is the gradient/sensitivity of the optimal cost-to-go with respect to the state x.

Pontryagin's Minimum Principle (PMP)

- Hamiltonian: $H(x, u, p):=g(x, u)+p^{T} f(x, u)$

Theorem: Pontryagin's Minimum Principle

- Let $u^{*}(t):\left[t_{0}, T\right] \rightarrow \mathcal{U}$ be an optimal control trajectory
- Let $x^{*}(t):\left[t_{0}, T\right] \rightarrow \mathcal{X}$ be the associated state trajectory from x_{0}
- Then, there exists a costate trajectory $p^{*}(t):\left[t_{0}, T\right] \rightarrow \mathcal{X}$ satisfying:

1. Canonical equations with boundary conditions:

$$
\begin{array}{ll}
\dot{x}^{*}(t)=\nabla_{p} H\left(x^{*}(t), u^{*}(t), p^{*}(t)\right), & x^{*}\left(t_{0}\right)=x_{0} \\
\dot{p}^{*}(t)=-\nabla_{x} H\left(x^{*}(t), u^{*}(t), p^{*}(t)\right), & p^{*}(T)=\nabla_{x} g_{T}\left(x^{*}(T)\right)
\end{array}
$$

2. Minimum principle with constant (holonomic) constraint:

$$
\begin{aligned}
& u^{*}(t)=\underset{u \in \mathcal{U}}{\arg \min } H\left(x^{*}(t), u, p^{*}(t)\right), \quad \forall t \in\left[t_{0}, T\right] \\
& H\left(x^{*}(t), u^{*}(t), p^{*}(t)\right)=\text { constant, } \quad \forall t \in\left[t_{0}, T\right]
\end{aligned}
$$

- Proof: Liberzon, Calculus of Variations and Optimal Control Theory, Ch. 4.2

Proof of PMP (Step 0: Preliminaries)

First Order Necessary Condition for Optimality

Let f be a continuously differentiable function on \mathbb{R}^{m} and $\mathcal{U} \subseteq \mathbb{R}^{m}$ be a convex set. If u^{*} is a minimizer of $\min _{u \in \mathcal{U}} f(u)$, then:

$$
\nabla f\left(u^{*}\right)^{T}\left(v-u^{*}\right) \geq 0, \quad \forall v \in \mathcal{U}
$$

- Proof: Suppose $\exists w \in \mathcal{U}$ with $\nabla f\left(u^{*}\right)^{T}\left(w-u^{*}\right)<0$. Consider $z(\lambda):=\lambda w+(1-\lambda) u$ for $\lambda \in[0,1]$. Since \mathcal{U} is convex, $z(\lambda) \in \mathcal{U}$ and

$$
\left.\frac{d}{d \lambda} f(z(\lambda))\right|_{\lambda=0}=\nabla f\left(u^{*}\right)^{T}\left(w-u^{*}\right)<0
$$

implies that $f(z(\lambda))<f\left(u^{*}\right)$ for small λ, which contradicts that u^{*} is optimal.

Proof of PMP (Step 0: Preliminaries)

Lemma: ∇-min Exchange

Let $F(t, x, u)$ be a cont.-diffable function of $t \in \mathbb{R}, x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}$ and let $\mathcal{U} \subseteq \mathbb{R}^{m}$ be a convex set. Furthermore, assume $\pi^{*}(t, x)=\arg \min F(t, x, u)$ $u \in \mathcal{U}$ exists and is cont.-diffable. Then, for all t and x :
$\frac{\partial\left(\min _{u \in \mathcal{U}} F(t, x, u)\right)}{\partial t}=\left.\frac{\partial F(t, x, u)}{\partial t}\right|_{U=\pi^{*}(t, x)} \nabla_{X}\left(\min _{u \in \mathcal{U}} F(t, x, u)\right)=\left.\nabla_{\chi} F(t, x, u)\right|_{u=\pi^{*}(t, x)}$

- Proof: Let $G(t, x):=\min _{u \in \mathcal{U}} F(t, x, u)=F\left(t, x, \pi^{*}(t, x)\right)$. Then:

$$
\frac{\partial G(t, x)}{\partial t}=\left.\frac{\partial F(t, x, u)}{\partial t}\right|_{u=\pi^{*}(t, x)}+\underbrace{\left.\frac{\partial F(t, x, u)}{\partial u}\right|_{u=\pi^{*}(t, x)} \frac{\partial \pi^{*}(t, x)}{\partial t}}_{\begin{array}{c}
0 \text { since } \nabla_{u} F\left(t, x, \pi^{*}\right)\left(\pi^{*}(t+\epsilon, x)-\pi^{*}(t, x)\right) \geq 0 \\
\text { for all } \epsilon \text { by Mst order optimality condition }
\end{array}}
$$

A similar derivation can be used for the partial derivative wry x.

Proof of PMP (Step 1: HJB PDE gives $\left.J^{*}(t, x)\right)$

- Extra Assumption: We prove the PMP under the assumption that $J^{*}(t, x)$ and $\pi^{*}(t, x)$ are cont-diffable in t and x and \mathcal{U} is convex. These assumptions can be avoided in a more general proof.
- With cont-diffable cost-to-go, the HJB PDE is also a necessary condition for optimality:

$$
\begin{aligned}
J^{*}(T, x) & =g_{T}(x), \quad \forall x \in \mathcal{X} \\
0 & =\min _{u \in \mathcal{U}} \underbrace{\left(g(x, u)+\frac{\partial}{\partial t} J^{*}(t, x)+\nabla_{x} J^{*}(t, x)^{T} f(x, u)\right)}_{:=F(t, x, u)}, \quad \forall t \in\left[t_{0}, T\right], x \in \mathcal{X}
\end{aligned}
$$

with $\pi^{*}(t, x)$ a corresponding optimal policy.

Proof of PMP (Step 2: ∇-min Exchange Lemma)

- Apply the ∇-min Exchange Lemma to the HJB PDE:

$$
\begin{aligned}
0 & =\frac{\partial}{\partial t}\left(\min _{u \in \mathcal{U}} F(t, x, u)\right)=\frac{\partial^{2} J^{*}(t, x)}{\partial t^{2}}+\left[\frac{\partial}{\partial t} \nabla_{x} J^{*}(t, x)\right]^{T} f\left(x, \pi^{*}(t, x)\right) \\
0 & =\nabla_{x}\left(\min _{u \in \mathcal{U}} F(t, x, u)\right) \\
& =\nabla_{x} g\left(x, u^{*}\right)+\nabla_{x} \frac{\partial J^{*}(t, x)}{\partial t}+\left[\nabla_{x}^{2} J^{*}(t, x)\right] f\left(x, u^{*}\right)+\left[\nabla_{x} f\left(x, u^{*}\right)\right]^{T} \nabla_{x} J^{*}(t, x)
\end{aligned}
$$

where $u^{*}:=\pi^{*}(t, x)$

- Evaluate these along the trajectory $x^{*}(t)$ resulting from $\pi^{*}\left(t, x^{*}(t)\right)$:

$$
\dot{x}^{*}(t)=f\left(x^{*}(t), u^{*}(t)\right)=\nabla_{p} H\left(x^{*}(t), u^{*}(t), p\right)^{T}, \quad x^{*}(0)=x_{0}
$$

Proof of PMP (Step 3: Evaluate along $\left.x^{*}(t), u^{*}(t)\right)$

- Evaluate the results of Step 2 along $x^{*}(t)$:

$$
\begin{aligned}
0 & =\left.\frac{\partial^{2} J^{*}(t, x)}{\partial t^{2}}\right|_{x=x^{*}(t)}+\left[\left.\frac{\partial}{\partial t} \nabla_{x} J^{*}(t, x)\right|_{x=x^{*}(t)}\right]^{T} \dot{x}^{*}(t) \\
& =\frac{d}{d t}(\underbrace{\left.\frac{\partial J^{*}(t, x)}{\partial t}\right|_{x=x^{*}(t)}}_{:=r(t)})=\frac{d}{d t} r(t) \Rightarrow r(t)=\text { const. } \forall t
\end{aligned}
$$

and

$$
\begin{aligned}
0 & =\left.\nabla_{x} g\left(x, u^{*}\right)\right|_{x=x^{*}(t)}+\frac{d}{d t}(\underbrace{\left.\nabla_{x} J^{*}(t, x)\right|_{x=x^{*}(t)}}_{=: p^{*}(t)})+\left[\left.\nabla_{x} f\left(x, u^{*}\right)\right|_{x=x^{*}(t)}\right]^{T}\left[\left.\nabla_{x} J^{*}(t, x)\right|_{x=x^{*}(t)}\right] \\
& =\left.\nabla_{x} g\left(x, u^{*}\right)\right|_{x=x^{*}(t)}+\dot{p}^{*}(t)+\left[\left.\nabla_{x} f\left(x, u^{*}\right)\right|_{x=x^{*}(t)}\right]^{T} p^{*}(t) \\
& =\dot{p}^{*}(t)+\nabla_{x} H\left(x^{*}(t), u^{*}(t), p^{*}(t)\right)
\end{aligned}
$$

Proof of PMP (Step 4: Done)

- The boundary condition $J^{*}(T, x)=g_{T}(x)$ implies that $\nabla_{x} J^{*}(T, x)=\nabla_{x} g_{T}(x)$ for all $x \in \mathcal{X}$ and thus $p^{*}(T)=\nabla_{x} g_{T}\left(x^{*}(T)\right)$
- From the HJB PDE we have:

$$
-\frac{\partial J^{*}(t, x)}{\partial t}=\min _{u \in \mathcal{U}} H\left(x, u, \nabla_{x} J^{*}(t, \cdot)\right)
$$

which along the optimal trajectory $x^{*}(t), u^{*}(t)$ becomes:

$$
-r(t)=H\left(x^{*}(t), u^{*}(t), p^{*}(t)\right)=\text { cons }
$$

- Finally, note that

$$
\begin{aligned}
u^{*}(t) & =\underset{u \in \mathcal{U}}{\arg \min } F\left(t, x^{*}(t), u\right) \\
& =\underset{u \in \mathcal{U}}{\arg \min }\left\{g\left(x^{*}(t), u\right)+\left[\left.\nabla_{x} J^{*}(t, x)\right|_{x=x^{*}(t)}\right]^{T} f\left(x^{*}(t), u\right)\right\} \\
& =\underset{u \in \mathcal{U}}{\arg \min }\left\{g\left(x^{*}(t), u\right)+p^{*}(t)^{T} f\left(x^{*}(t), u\right)\right\} \\
& =\underset{u \in \mathcal{U}}{\arg \min } H\left(x^{*}(t), u, p^{*}(t)\right)
\end{aligned}
$$

HJB PDE vs PMP

- The HJB PDE provides a lot of information - the optimal cost-to-go and an optimal policy for all time and all states!
- Often, we only care about the optimal trajectory for a specific initial condition x_{0}. Exploiting that we need less information, we can arrive at simpler conditions for optimality - Pontryagin's Minimum Principle
- The PMP does not apply to infinite horizon problems, so one has to use the HJB equations in that case
- The HJB PDE is a sufficient condition for optimality (it is possible that the optimal solution does not satisfy it but a solution that satisfies it is guaranteed to be optimal)
- The PMP is a necessary condition for optimality (it is possible that non-optimal trajectories satisfy it) so further analysis is necessary to determine if the candidate PMP policy is optimal
- The PMP requires solving an ODE with split boundary conditions (not easy but easier than the nonlinear HJB PDE!)

Example: Resource Allocation for a Martian Base

- A fleet of reconfigurable, general purpose robots is sent to Mars at $t=0$
- The robots can 1) replicate or 2) make human habitats
- The number of robots at time t is $x(t)$, while the number of habitats is $z(t)$ and they evolve according to:

$$
\begin{aligned}
\dot{x}(t) & =u(t) x(t), \quad x(0)=x>0 \\
\dot{z}(t) & =(1-u(t)) x(t), \quad z(0)=0 \\
0 & \leq u(t) \leq 1
\end{aligned}
$$

where $u(t)$ denotes the percentage of the $x(t)$ robots used for replication

- Goal: Maximize the size of the Martian base by a terminal time T, i.e.:

$$
\max z(T)=\int_{0}^{T}(1-u(t)) x(t) d t
$$

with $f(x, u)=u x, g(x, u)=(1-u) x$ and $g_{T}(x)=0$

Example: Resource Allocation for a Martian Base

- Hamiltonian: $H(x, u, p)=(1-u) x+p u x$
- Apply the PMP:

$$
\begin{aligned}
& \dot{x}^{*}(t)=\nabla_{p} H\left(x^{*}, u^{*}, p^{*}\right)=x^{*}(t) u^{*}(t), \quad x^{*}(0)=x \\
& \dot{p}^{*}(t)=-\nabla_{x} H\left(x^{*}, u^{*}, p^{*}\right)=-1+u^{*}(t)-p^{*}(t) u^{*}(t), \quad p^{*}(T)=0 \\
& u^{*}(t)=\underset{0 \leq u \leq 1}{\arg \max } H\left(x^{*}(t), u, p^{*}(t)\right)=\underset{0 \leq u \leq 1}{\arg \max }\left(x^{*}(t)+x^{*}(t)\left(p^{*}(t)-1\right) u\right)
\end{aligned}
$$

- Since $x^{*}(t)>0$ for $t \in[0, T]$:

$$
u^{*}(t)= \begin{cases}0 & \text { if } p^{*}(t)<1 \\ 1 & \text { if } p^{*}(t) \geq 1\end{cases}
$$

Example: Resource Allocation for a Martian Base

- Work backwards from $t=T$ to determine $p^{*}(t)$:
- Since $p^{*}(T)=0$ for t close to T, we have $u^{*}(t)=0$ and the costate dynamics become $\dot{p}^{*}(t)=-1$
- At time $t=T-1, p^{*}(t)=1$ and the control input switches to $u^{*}(t)=1$
- For $t<T-1$:

$$
\begin{aligned}
\dot{p}^{*}(t) & =-p^{*}(t), \quad p(T-1)=1 \\
& \Rightarrow p^{*}(t)=e^{(T-1)-t}>1 \text { for } t<T-1
\end{aligned}
$$

- Optimal control:

$$
u^{*}(t)= \begin{cases}1 & \text { if } 0 \leq t \leq T-1 \\ 0 & \text { if } T-1 \leq t \leq T\end{cases}
$$

Example: Resource Allocation for a Martian Base

- Optimal trajectories for the Martian resource allocation problem:

- Conclusions:
- Use all robots to replicate themselves from $t=0$ to $t=T-1$ and then use all robots to build habitats
- If $T<1$, then the robots should only build habitats
- If the Hamiltonian is linear in u, its min can only be attained on the boundary of \mathcal{U}, known as bang-bang control

PMP with Fixed Terminal State

- Suppose that in addition to $x(0)=x_{s}$, a final state $x(T)=x_{\tau}$ is given.
- The terminal cost $g_{T}(x(T))$ is not useful since $J^{*}(T, x)=\infty$ if $x(T) \neq x_{\tau}$. The terminal boundary condition for the costate $p(T)=\nabla_{x} g_{T}(x(T))$ does not hold but as compensation we have a different boundary condition $x(T)=x_{\tau}$.
- We still have $2 n$ ODEs with $2 n$ boundary conditions:

$$
\begin{aligned}
& \dot{x}(t)=f(x(t), u(t)), \quad x(0)=x_{s}, x(T)=x_{\tau} \\
& \dot{p}(t)=-\nabla_{x} H(x(t), u(t), p(t))
\end{aligned}
$$

- If only some terminal state are fixed $x_{j}(T)=x_{\tau, j}$ for $j \in I$, then:

$$
\begin{aligned}
& \dot{x}(t)=f(x(t), u(t)), \quad x(0)=x_{s}, \quad x_{j}(T)=x_{\tau, j}, \quad \forall j \in I \\
& \dot{p}(t)=-\nabla_{x} H(x(t), u(t), p(t)), \quad p_{j}(T)=\frac{\partial}{\partial x_{j}} g_{T}(x(T)), \quad \forall j \notin I
\end{aligned}
$$

PMP with Fixed Terminal Set

- Terminal set: a k dim surface in \mathbb{R}^{n} requires:

$$
x(T) \in \mathcal{X}_{\tau}=\left\{x \in \mathbb{R}^{n} \mid h_{j}(x)=0, j=1, \ldots, n-k\right\}
$$

- The costate boundary condition requires that $p(T)$ is orthogonal to the tangent space $T_{x(T)} \mathcal{X}_{\tau}=\left\{d \in \mathbb{R}^{n} \mid \nabla_{x} h_{j}(x(T))^{T} d=0, j=1, \ldots, n-k\right\}$:

$$
\begin{array}{ll}
\dot{x}(t)=f(x(t), u(t)), \quad x(0)=x_{s}, & h_{j}(x(T))=0, j=1, \ldots, n-k \\
\dot{p}(t)=-\nabla_{x} H(x(t), u(t), p(t)), & p(T) \in \operatorname{span}\left\{\nabla_{x} h_{j}(x(T)), \forall j\right\}
\end{array}
$$

$$
\text { OR } \quad d^{T} p(T)=0, \forall d \in T_{x(T)} \mathcal{X}_{\tau}
$$

PMP with Free Initial State

- Suppose that x_{0} is free and subject to optimization with additional cost $g_{0}\left(x_{0}\right)$ term
- The total cost becomes $g_{0}\left(x_{0}\right)+J\left(0, x_{0}\right)$ and the necessary condition for an optimal initial state x_{0} is:

$$
\left.\nabla_{x} g_{0}(x)\right|_{x=x_{0}}+\underbrace{\left.\nabla_{x} J(0, x)\right|_{x=x_{0}}}_{=p(0)}=0 \Rightarrow p(0)=-\nabla_{x} g_{0}\left(x_{0}\right)
$$

- We lose the initial state boundary condition but gain an adjoint state boundary condition:

$$
\begin{aligned}
& \dot{x}(t)=f(x(t), u(t)) \\
& \dot{p}(t)=-\nabla_{x} H(x(t), u(t), p(t)), \quad p(0)=-\nabla_{x} g_{0}\left(x_{0}\right), \quad p(T)=-\nabla_{x} g_{T}(x(T))
\end{aligned}
$$

- Similarly, we can deal with some parts of the initial state being free and some not

PMP with Free Terminal Time

- Suppose that the initial and/or terminal state are given but the terminal time T is free and subject to optimization
- We can compute the total cost of optimal trajectories for various terminal times T and look for the best choice, i.e.:

$$
\left.\frac{\partial}{\partial t} J^{*}(t, x)\right|_{t=T, x=x(T)}=0
$$

- Recall that on the optimal trajectory:

$$
H\left(x^{*}(t), u^{*}(t), p^{*}(t)\right)=-\left.\frac{\partial}{\partial t} J^{*}(t, x)\right|_{x=x^{*}(t)}=\text { const. } \quad \forall t
$$

- Hence, in the free terminal time case, we gain an extra degree of freedom with free T but lose one degree of freedom by the constraint:

$$
H\left(x^{*}(t), u^{*}(t), p^{*}(t)\right)=0, \quad \forall t \in\left[t_{0}, T\right]
$$

PMP with Time-varying System and Cost

- Suppose that the system and stage cost vary with time:

$$
\dot{x}=f(x(t), u(t), t) \quad g(x(t), u(t), t)
$$

- A usual trick is to convert the problem to a time-invariant one by making t part of the state. Let $y(t)=t$ with dynamics:

$$
\dot{y}(t)=1, \quad y(0)=t_{0}
$$

- Augmented state $z(t):=(x(t), y(t))$ and system:

$$
\begin{aligned}
\dot{z}(t) & =\bar{f}(z(t), u(t)):=\left[\begin{array}{c}
f(x(t), u(t), y(t)) \\
1
\end{array}\right] \\
\bar{g}(z, u) & :=g(x, u, y) \quad \bar{g}_{T}(z):=g_{T}(x)
\end{aligned}
$$

- The Hamiltonian need not to be constant along the optimal trajectory:

$$
\begin{array}{rlrl}
H(x, u, p, t) & =g(x, u, t)+p^{\top} f(x, u, t) & & \\
\dot{\chi}^{*}(t) & =f\left(x^{*}(t), u^{*}(t), t\right), & & x^{*}(0)=x_{0} \\
\dot{p}^{*}(t) & =-\nabla_{x} H\left(x^{*}(t), u^{*}(t), p^{*}(t), t\right), & p^{*}(T)=\nabla_{x} g_{T}\left(x^{*}(T)\right) \\
u^{*}(t) & =\underset{u \in \mathcal{U}}{\arg \min } H\left(x^{*}(t), u, p^{*}(t), t\right) & &
\end{array}
$$

$H\left(x^{*}(t), u^{*}(t), p^{*}(t), t\right) \neq$ const

Singular Problems

- Singular Problems: in some cases, the minimum condition $u(t)=\arg \min H\left(x^{*}(t), u, p^{*}(t), t\right)$ might be insufficient to determine $u \in \mathcal{U}$
$u^{*}(t)$ for all t because the values of $x^{*}(t)$ and $p^{*}(t)$ are such that $H\left(x^{*}(t), u, p^{*}(t), t\right)$ is independent of u over a nontrivial interval of time
- The optimal trajectories consist of portions where $u^{*}(t)$ can be determined from the minimum condition (regular arcs) and where $u^{*}(t)$ cannot be determined from the minimum condition since the Hamiltonian is independent of u (singular arcs)

Example: Fixed Terminal State

- System: $\dot{x}(t)=u(t), x(0)=0, x(1)=1, u(t) \in \mathbb{R}$
- Cost: $\min \frac{1}{2} \int_{0}^{1}\left(x(t)^{2}+u(t)^{2}\right) d t$
- Want $x(t)$ and $u(t)$ to be small but need to meet $x(1)=1$

- Approach: use PMP to find a locally optimal open-loop policy

Example: Fixed Terminal State

- Pontryagin's Minimum Principle
- Hamiltonian: $H(x, u, p)=\frac{1}{2}\left(x^{2}+u^{2}\right)+p u$
- Minimum principle: $u(t)=\underset{u \in \mathbb{R}}{\arg \min }\left\{\frac{1}{2}\left(x(t)^{2}+u^{2}\right)+p(t) u\right\}=-p(t)$
- Canonical equations with boundary conditions:

$$
\begin{aligned}
& \dot{x}(t)=\nabla_{p} H(x(t), u(t), p(t))=u(t)=-p(t), \quad x(0)=0, x(1)=1 \\
& \dot{p}(t)=-\nabla_{x} H(x(t), u(t), p(t))=-x(t)
\end{aligned}
$$

- Candidate trajectory: $\ddot{x}(t)=x(t) \quad \Rightarrow \quad x(t)=A e^{t}+B e^{-t}=\frac{e^{t}-e^{-t}}{e-e^{-1}}$
- $x(0)=0 \Rightarrow A+B=0$
- $x(1)=1 \quad \Rightarrow \quad A e+B e^{-1}=1$
- Open-loop control: $u(t)=\dot{x}(t)=\frac{e^{t}+e^{-t}}{e-e^{-1}}$

Example: Free Initial State

- System: $\dot{x}(t)=u(t), x(0)=$ free, $x(1)=1, u(t) \in \mathbb{R}$
- Cost: $\min \frac{1}{2} \int_{0}^{1}\left(x(t)^{2}+u(t)^{2}\right) d t$
- Picking $x(0)=1$ will allow $u(t)=0$ but we will accumulate cost due to $x(t)$. On the other hand, picking $x(0)=0$ will accumulate cost due to $u(t)$ having to drive the state to $x(1)=1$.

- Approach: use PMP to find a locally optimal open-loop policy

Example: Free Initial State

- Pontryagin's Minimum Principle
- Hamiltonian: $H(x, u, p)=\frac{1}{2}\left(x^{2}+u^{2}\right)+p u$
- Minimum principle: $u(t)=\underset{u \in \mathbb{R}}{\arg \min }\left\{\frac{1}{2}\left(x(t)^{2}+u^{2}\right)+p(t) u\right\}=-p(t)$
- Canonical equations with boundary conditions:

$$
\begin{aligned}
& \dot{x}(t)=\nabla_{p} H(x(t), u(t), p(t))=u(t)=-p(t), \quad x(1)=1 \\
& \dot{p}(t)=-\nabla_{x} H(x(t), u(t), p(t))=-x(t), \quad p(0)=0
\end{aligned}
$$

- Candidate trajectory:

$$
\begin{aligned}
& \ddot{x}(t)=x(t) \quad \Rightarrow \quad x(t)=A e^{t}+B e^{-t}=\frac{e^{t}+e^{-t}}{e+e^{-1}} \\
& p(t)=-\dot{x}=-A e^{t}+B e^{-t}=\frac{-e^{t}+e^{-t}}{e+e^{-1}}
\end{aligned}
$$

- $x(1)=1 \quad \Rightarrow \quad A e+B e^{-1}=1$
- $p(0)=0 \Rightarrow-A+B=0$
- $x(0) \approx 0.65$
- Open-loop control: $u(t)=\dot{x}(t)=\frac{e^{t}-e^{-t}}{e+e^{-1}}$

Example: Free Terminal Time

- System: $\dot{x}(t)=u(t), x(0)=0, x(T)=1, u(t) \in \mathbb{R}$
- Cost: $\min \int_{0}^{T} 1+\frac{1}{2}\left(x(t)^{2}+u(t)^{2}\right) d t$
- Free terminal time: $T=$ free
- Note: if we do not include 1 in the stage-cost (i.e., use the same cost as before), we would get $T^{*}=\infty$ (see next slide for details)
- Approach: use PMP to find a locally optimal open-loop policy

Example: Free Terminal Time

- Pontryagin's Minimum Principle
- Hamiltonian: $H(x(t), u(t), p(t))=\frac{1}{2}\left(x(t)^{2}+u(t)^{2}\right)+p(t) u(t)$
- Minimum principle: $u(t)=\underset{u \in \mathbb{R}}{\arg \min }\left\{\frac{1}{2}\left(x(t)^{2}+u^{2}\right)+p(t) u\right\}=-p(t)$
- Canonical equations with boundary conditions:

$$
\begin{aligned}
& \dot{x}(t)=\nabla_{p} H(x(t), u(t), p(t))=u(t)=-p(t), x(0)=0, x(T)=1 \\
& \dot{p}(t)=-\nabla_{x} H(x(t), u(t), p(t))=-x(t)
\end{aligned}
$$

- Candidate trajectory: $\ddot{x}(t)=x(t) \quad \Rightarrow \quad x(t)=A e^{t}+B e^{-t}=\frac{e^{t}-e^{-t}}{e^{T}-e^{-T}}$
$\Rightarrow x(0)=0 \quad \Rightarrow A+B=0$
$\Rightarrow x(T)=1 \quad \Rightarrow A e^{T}+B e^{-T}=1$
- Free terminal time:

$$
\begin{aligned}
0 & =H(x(t), u(t), p(t))=1+\frac{1}{2}\left(x(t)^{2}-p(t)^{2}\right) \\
& =1+\frac{1}{2}\left(\frac{\left(e^{t}-e^{-t}\right)^{2}-\left(e^{t}+e^{-t}\right)^{2}}{\left(e^{T}-e^{-T}\right)^{2}}\right)=1-\frac{2}{\left(e^{T}-e^{-T}\right)^{2}} \\
& \Rightarrow \quad T \approx 0.66
\end{aligned}
$$

Example: Time-varying Singular Problem

- System: $\dot{x}(t)=u(t), x(0)=$ free, $x(1)=$ free, $u(t) \in[-1,1]$
- Time-varying cost: $\min \frac{1}{2} \int_{0}^{1}(x(t)-z(t))^{2} d t$ for $z(t)=1-t^{2}$
- Example feasible state trajectory that tracks the desired $z(t)$ until the slope of $z(t)$ becomes less than -1 and the input $u(t)$ saturates:

- Approach: use PMP to find a locally optimal open-loop policy

Example: Time-varying Singular Problem

- Pontryagin's Minimum Principle
- Hamiltonian: $H(x, u, p, t)=\frac{1}{2}(x-z(t))^{2}+p u$
- Minimum principle:

$$
u(t)=\underset{|u| \leq 1}{\arg \min } H(x(t), u, p(t), t)= \begin{cases}-1 & \text { if } p(t)>0 \\ \text { undetermined } & \text { if } p(t)=0 \\ 1 & \text { if } p(t)<0\end{cases}
$$

- Canonical equations with boundary conditions:

$$
\begin{aligned}
& \dot{x}(t)=\nabla_{p} H(x(t), u(t), p(t))=u(t) \\
& \dot{p}(t)=-\nabla_{x} H(x(t), u(t), p(t))=-(x(t)-z(t)), \quad p(0)=0, p(1)=0
\end{aligned}
$$

- Singular arc: when $p(t)=0$ for a non-trivial time interval, the control cannot be determined from PMP
- In this problem, the singular arc can be determined from the costate ODE:
$0 \equiv \dot{p}=-x(t)+z(t) \quad \Rightarrow \quad u(t)=\dot{x}(t)=\dot{z}(t)=-2 t \quad$ for $p(t)=0$

Example: Time-varying Singular Problem

- Since $p(0)=0$, the state trajectory follows a singular arc until $t_{s} \leq \frac{1}{2}$ (since $u(t)=-2 t \in[-1,1]$) when it switches to a regular arc with $u(t)=-1$ (since $z(t)$ is decreasing and we are trying to track it).
- For $0 \leq t \leq t_{s} \leq \frac{1}{2}$:

$$
x(t)=z(t) \quad p(t)=0
$$

- For $t_{s}<t \leq 1$:

$$
\begin{aligned}
\dot{x}(t) & =-1 \quad \Rightarrow \quad x(t)=z\left(t_{s}\right)-\int_{t_{s}}^{t} d s=1-t_{s}^{2}-t+t_{s} \\
\dot{p}(t) & =-(x(t)-z(t))=t_{s}^{2}-t_{s}-t^{2}+t, \quad p\left(t_{s}\right)=p(1)=0 \\
& \Rightarrow p(s)=p\left(t_{s}\right)+\int_{t_{s}}^{s}\left(t_{s}^{2}-t_{s}-t^{2}+t\right) d t, \quad s \in\left[t_{s}, 1\right] \\
& \Rightarrow 0=p(1)=t_{s}^{2}-t_{s}-\frac{1}{3}+\frac{1}{2}-t_{s}^{3}+t_{s}^{2}+\frac{t_{s}^{3}}{3}-\frac{t_{s}^{2}}{2} \\
& \Rightarrow 0=\left(t_{s}-1\right)^{2}\left(1-4 t_{s}\right) \\
& \Rightarrow t_{s}=\frac{1}{4}
\end{aligned}
$$

Discrete-time PMP

- Consider a discrete-time problem with dynamics $x_{t+1}=f\left(x_{t}, u_{t}\right)$
- Introduce Lagrange multipliers $p_{0: T}$ to relax the constraints:

$$
\begin{aligned}
L\left(x_{0: T}, u_{0: T-1}, p_{0: T}\right) & =g_{T}\left(x_{T}\right)+x_{0}^{T} p_{0}+\sum_{t=0}^{T-1} g\left(x_{t}, u_{t}\right)+\left(f\left(x_{t}, u_{t}\right)-x_{t+1}\right)^{T} p_{t+1} \\
& =g_{T}\left(x_{T}\right)+x_{0}^{T} p_{0}-x_{T}^{T} p_{T}+\sum_{t=0}^{T-1} H\left(x_{t}, u_{t}, p_{t+1}\right)-x_{t}^{T} p_{t}
\end{aligned}
$$

- Setting $\nabla_{x} L=\nabla_{p} L=0$ and explicitly minimizing wrt $u_{0: T-1}$ yields:

Theorem: Discrete-time PMP

If $x_{0: T}^{*}, u_{0: T-1}^{*}$ is an optimal state-control trajectory starting at x_{0}, then there exists a costate trajectory $p_{0: T}^{*}$ such that:

$$
\begin{array}{rlr}
x_{t+1}^{*} & =\nabla_{p} H\left(x_{t}^{*}, u_{t}^{*}, p_{t+1}^{*}\right)=f\left(x_{t}^{*}, u_{t}^{*}\right), & x_{0}^{*}=x_{0} \\
p_{t}^{*} & =\nabla_{x} H\left(x_{t}^{*}, u_{t}^{*}, p_{t+1}^{*}\right)=\nabla_{x} g\left(x_{t}^{*}, u_{t}^{*}\right)+\nabla_{x} f\left(x_{t}^{*}, u_{t}^{*}\right)^{T} p_{t+1}^{*}, & p_{T}^{*}=\nabla_{x} g_{T}\left(x_{T}^{*}\right) \\
u_{t}^{*} & =\underset{u}{\arg \min H\left(x_{t}^{*}, u, p_{t+1}^{*}\right)} &
\end{array}
$$

Gradient of the Cost-to-go via the PMP

- The discrete-time PMP provides an efficient way to evaluate the gradient of the cost-to-go with respect to u and thus optimize control trajectories locally and numerically

Theorem: Cost-to-go Gradient

Given an initial state x_{0} and trajectory $u_{0: T-1}$, let $x_{1: T,}, p_{0: T}$ be such that:

$$
\begin{aligned}
x_{t+1} & =f\left(x_{t}, u_{t}\right), \quad x_{0} \text { given } \\
p_{t} & =\nabla_{x} g\left(x_{t}, u_{t}\right)+\left[\nabla_{x} f\left(x_{t}, u_{t}\right)\right]^{T} p_{t+1}, \quad p_{T}=\nabla_{\times} g_{T}\left(x_{T}\right)
\end{aligned}
$$

Then:

$$
\nabla_{u_{t}} J\left(x_{0: T}, u_{0: T-1}\right)=\nabla_{u} H\left(x_{t}, u_{t}, p_{t+1}\right)=\nabla_{u} g\left(x_{t}, u_{t}\right)+\nabla_{u} f\left(x_{t}, u_{t}\right)^{T} p_{t+1}
$$

- Note that x_{t} can be found in a forward pass (since it does not depend on p) and then p_{t} can be found in a backward pass

Proof by Induction

- The accumulated cost can be written recursively:

$$
J_{t}\left(x_{t: T}, u_{t: T-1}\right)=g\left(x_{t}, u_{t}\right)+J_{t+1}\left(x_{t+1: T}, u_{t+1: T-1}\right)
$$

- Note that u_{t} affects the future costs only through $x_{t+1}=f\left(x_{t}, u_{t}\right)$:

$$
\nabla_{u_{t}} J_{t}\left(x_{t: T}, u_{t: T-1}\right)=\nabla_{u} g\left(x_{t}, u_{t}\right)+\left[\nabla_{u} f\left(x_{t}, u_{t}\right)\right]^{T} \nabla_{x_{t+1}} J_{t+1}\left(x_{t+1: T}, u_{t+1: T-1}\right)
$$

- Claim: $p_{t}=\nabla_{x_{t}} J_{t}\left(x_{t: T}, u_{t: T-1}\right)$:
- Base case: $p_{T}=\nabla_{x_{T}} g_{T}\left(x_{T}\right)$
- Induction: for $t \in\left[t_{0}, T\right)$:

$$
\underbrace{\nabla_{x_{t}} J_{t}\left(x_{t: T}, u_{t: T-1}\right)}_{=p_{t}}=\nabla_{x} g\left(x_{t}, u_{t}\right)+\left[\nabla_{x} f\left(x_{t}, u_{t}\right)\right]^{T} \underbrace{\nabla_{x_{t+1}} J_{t+1}\left(x_{t+1: T}, u_{t+1: T-1}\right)}_{=p_{t+1}}
$$

which is identical with the costate ODE.

