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Globally Optimal Closed-Loop Control

I Deterministic finite-horizon continuous-time optimal control:

min
π∈PC0([t0,T ],U)

Jπ(t0, x0) :=

∫ T

t0

g(x(t), π(t, x(t)))dt + gT (x(T ))

s.t. ẋ(t) = f (x(t), u(t)), x(t0) = x0

x(t) ∈ X , π(t, x(t)) ∈ U

I Hamiltonian: H(x , u, p) := g(x , u) + pT f (x , u)

HJB PDE: Sufficient Conditions for Optimality

If V (t, x) satisfies the HJB PDE:

−∂V (t, x)

∂t
= min

u∈U
H(x(t), u,∇xV (t, ·)), V (T , x) = gT (x), ∀x ∈ X , t ∈ [t0,T ]

then it is the optimal cost-to-go and the policy π(t, x) that attains the
minimum is an optimal policy.
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Locally Optimal Open-Loop Control
I Deterministic finite-horizon continuous-time optimal control:

min
π∈PC0([t0,T ],U)

Jπ(t0, x0) :=

∫ T

t0

g(x(t), π(t, x(t)))dt + gT (x(T ))

s.t. ẋ(t) = f (x(t), u(t)), x(t0) = x0

x(t) ∈ X , π(t, x(t)) ∈ U

I Hamiltonian: H(x , u, p) := g(x , u) + pT f (x , u)

PMP ODE: Necessary Conditions for Optimality

If (x∗(t), u∗(t)) for t ∈ [t0,T ] is a trajectory from an optimal policy π∗(t, x):

ẋ∗(t) = f (x∗(t), u∗(t)), x∗(t0) = x0

ṗ∗(t) = −∇xg(x∗(t), u∗(t))− [∇x f (x∗(t), u∗(t))]Tp∗(t), p∗(T ) = ∇xgT (x∗(T ))

u∗(t) = arg min
u∈U

H(x∗(t), u, p∗(t)), ∀t ∈ [t0,T ]

H(x∗(t), u∗(t), p∗(t)) = constant, ∀t ∈ [t0,T ]
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Tractable Problems
I Consider a deterministic finite-horizon problem with dynamics and cost:

ẋ = a(x) + Bu g(x , u) = q(x) +
1

2
uTRu

I Hamiltonian:
H(x , u, p) = q(x) +

1

2
uTRu + pTa(x) + pTBu

∇uH(x , u, p) = Ru + BTp ∇2
uH(x , u, p) = R

I HJB PDE: obtains globally optimal cost-to-go and policy:

π∗(t, x) = arg min
u∈U

H(x , u,Vx(t, x)) = −R−1BTVx(t, x), t ∈ [t0,T ], x ∈ X

V (T , x) = gT (x), x ∈ X

−Vt(t, x) = q(x) + aTVx(t, x)− 1

2
Vx(t, x)TBR−1BTVx(t, x), t ∈ [t0,T ], x ∈ X

I PMP: both necessary and sufficient for local min as long as R � 0:

u(t) = arg min
u∈U

H(x , u, p) = −R−1BTp(t), t ∈ [t0,T ]

ẋ = a(x)− BR−1BTp, x(0) = x0

ṗ = −qx(x)T − ax(x)Tp, p(T ) = ∇xgT (x(T )) 4



Example: Pendulum

ẋ =

[
x2

k sin(x1)

]
+

[
0
1

]
u, x(0) = x0

ax(x) =

[
0 1

k cos(x1) 0

]
I Cost:

g(x , u) = 1−e−2x2
1 +

r

2
u2 and gT (x) = 0

I PMP: locally optimal controller:

u(t) = −r−1p2(t), t ∈ [t0,T ]

ẋ1 = x2, x1(0) = 0

ẋ2 = k sin(x1)− r−1p2, x2(0) = 0

ṗ1 = −4e−2x2
1 x1 − p2, p1(T ) = 0

ṗ2 = −k cos(x1)p1, p2(T ) = 0

I Cost-to-go and trajectories:

I Optimal policy (from HJB):
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Linear Quadratic Control
I The key assumptions that allowed us to minimize the Hamiltonian

analytically were:
I The system dynamics are linear in the control u
I The stage-cost is quadratic in the control u

I Let us study the simplest such setting in which a deterministic
time-invariant linear system needs to minimize a quadratic cost over a
finite horizon:

min
π∈PC0([t0,T ],U)

Jπ(t0, x0) :=

∫ T

t0

1

2
x(t)TQx(t) +

1

2
u(t)TRu(t)︸ ︷︷ ︸

g(x(t),u(t))

dt +
1

2
x(T )TQT x(T )︸ ︷︷ ︸

gT (x(T ))

s.t. ẋ = Ax + Bu, x(t0) = x0

x(t) ∈ Rn, u(t) = π(t, x(t)) ∈ Rm

where Q = QT � 0, QT = QT
T � 0, and R = RT � 0

I This problem is called the Linear Quadratic Regulator (LQR)
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LQR via the PMP

I Hamiltonian: H(x , u, p) = 1
2x

TQx + 1
2u

TRu + pTAx + pTBu

I Canonical equations with boundary conditions:

ẋ = ∇pH(x , u, p) = Ax + Bu, x(t0) = x0

ṗ = −∇xH(x , u, p) = −Qx − ATp, p(T ) = ∇xgT (x(T )) = QT x(T )

I Minimum principle:

∇uH(x , u, p)T = Ru + BTp = 0 ⇒ u∗(t) = −R−1BTp(t)

∇2
uH(x , u, p) = R � 0 ⇒ u∗(t) is a minimum

I Hamiltonian matrix: the canonical equations can now be simplified to
a linear time-invariant (LTI) system with two-point boundary conditions:[

ẋ
ṗ

]
=

[
A −BR−1BT

−Q −AT

] [
x
p

]
,

x(t0) = x0

p(T ) = QT x(T )
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LQR via the PMP
I Claim: There exists a matrix M(t) = M(t)T � 0 such that

p(t) = M(t)x(t) for all t ∈ [t0,T ]

I We can solve the LTI system described by the Hamiltonian matrix
backwards in time:

[
x(t)
p(t)

]
= e

 A −BR−1BT

−Q −AT

(t−T )︸ ︷︷ ︸
Φ(t,T )

[
x(T )

QT x(T )

]
x(t) = (Φ11(t,T ) + Φ12(t,T )QT )x(T )

p(t) = (Φ21(t,T ) + Φ22(t,T )QT )x(T )

I It turns out that D(t,T ) := Φ11(t,T ) + Φ12(t,T )QT is invertible for
t ∈ [t0,T ] and thus:

p(t) = (Φ21(t,T ) + Φ22(t,T )QT )D−1(t,T )︸ ︷︷ ︸
=:M(t)

x(t), ∀t ∈ [t0,T ]
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LQR via the PMP

I From x(t0) = D(t0,T )x(T ), we obtain an open-loop control policy:

u(t) = −R−1BT (Φ21(t,T ) + Φ22(t,T )QT )D(t0,T )−1x0

I From the claim that p(t) = M(t)x(t), however, we can also obtain a
linear state feedback control policy:

u(t) = −R−1BTM(t)x(t)

I We can obtain a better description of M(t) by differentiating
p(t) = M(t)x(t) and using the canonical equations:

ṗ(t) = Ṁ(t)x(t) + M(t)ẋ(t)

−Qx(t)− ATp(t) = Ṁ(t)x(t) + M(t)Ax(t)−M(t)BR−1BTp(t)

−Ṁ(t)x(t) = Qx(t) + ATM(t)x(t) + M(t)Ax(t)−M(t)BR−1BTM(t)x(t)

which needs to hold for all x(t) and t ∈ [t0,T ] and satisfy the boundary
condition p(T ) = M(T )x(T ) = QT x(T )
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LQR via the PMP (Summary)

I A unique candidate u(t) = −R−1BTM(t)x(t) satsifies the necessary
conditions of the PMP for optimality

I The candidate policy is linear in the state and the matrix M(t) satisfies
a quadratic Riccati differential equation (RDE):

−Ṁ(t) = Q + ATM(t) + M(t)A−M(t)BR−1BTM(t), M(T ) = QT

I Other tools (e.g., the HJB PDE) are needed to decide whether u(t) is a
globally optimal policy
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LQR via the HJB PDE

I Hamiltonian: H(x , u, p) = 1
2x

TQx + 1
2u

TRu + pTAx + pTBu

I HJB PDE:

π∗(t, x) = arg min
u∈U

H(x , u,Vx(t, x)) = −R−1BTVx(t, x), t ∈ [t0,T ], x ∈ X

−Vt(t, x) =
1

2
xTQx + xTATVx(t, x)− 1

2
Vx(t, x)TBR−1BTVx(t, x), t ∈ [t0,T ], x ∈ X

V (T , x) =
1

2
xTQT x

I Guess a solution to the HJB PDE based on the intuition from the PMP:

π(t, x) = −R−1BTM(t)x

V (t, x) =
1

2
xTM(t)x

Vt(t, x) =
1

2
xT Ṁ(t)x

Vx(t, x) = M(t)x
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LQR via the HJB PDE

I Substituting the candidate V (t, x) into the HJB PDE leads to the same
RDE as before and we know that M(t) satisfies it!

1

2
xTM(T )x =

1

2
xTQT x

−1

2
xT Ṁ(t)x =

1

2
xTQx + xTATM(t)x − 1

2
xTM(t)BR−1BTM(t)x , t ∈ [t0,T ], x ∈ X

I Conclusion: Since M(t) satisfies the RDE, V (t, x) = xTM(t)x is the
unique solution to the HJB PDE and is the optimal cost-to-go for the
linear quadratic problem with an associated optimal policy
π(t, x) = −R−1BTM(t)x .

I General Strategy for Continuous-time Optimal Control Problems:

1. Identify a candidate policy using the PMP
2. Use the intuition from 1. to guess a candidate cost-to-go
3. Verify that the candidate policy and cost-to-go satisfy the HJB PDE
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Continuous-time Finite-horizon LQG
I Linear Quadratic Gaussian (LQG) regulation problem:

min
π∈PC0([t0,T ],U)

Jπ(t0, x0) :=
1

2
E
{∫ T

t0

e−
t
γ
[
xT (t) uT (t)

] [Q PT

P R

] [
x(t)
u(t)

]
dt + e−

T
γ x(T )TQT x(T )

}
s.t. dx = (Ax + Bu)dt + Cdω, x(t0) = x0

x(t) ∈ X , u(t) = π(t, x(t)) ∈ U

I Discount factor: γ ∈ [0,∞]

I Optimal cost-to-go: J∗(t, x) = 1
2x

TM(t)x + m(t)

I Optimal policy: π∗(t, x) = −R−1(P + BTM(t))x

I Riccati Equation:

−Ṁ(t) = Q + ATM(t) + M(t)A− (P + BTM(t))TR−1(P + BTM(t))− 1

γ
M(t), M(T ) = QT

−ṁ =
1

2
tr(CCTM(t))− 1

γ
m(t), m(T ) = 0

I M(t) is independent of the noise amplitude C , which implies that the
optimal policy π∗(t, x) is the same for the stochastic (LQG) and
deterministic (LQR) problems!
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Continuous-time Infinite-horizon LQG
I Linear Quadratic Gaussian (LQG) regulation problem:

min
π∈PC0(X ,U)

Jπ(x0) :=
1

2
E
{∫ ∞

t0

e−
t
γ
[
xT (t) uT (t)

] [Q PT

P R

] [
x(t)
u(t)

]
dt

}
s.t. dx = (Ax + Bu)dt + Cdω, x(t0) = x0

x(t) ∈ X , u(t) = π(x(t)) ∈ U

I Discount factor: γ ∈ [0,∞)

I Optimal cost-to-go: J∗(x) = 1
2x

TMx + m

I Optimal policy: π∗(x) = −R−1(P + BTM)x

I Riccati Equation (‘care’ in Matlab):

1

γ
M = Q + ATM + MA− (P + BTM)TR−1(P + BTM)

m =
γ

2
tr(CCTM)

I M is independent of the noise amplitude C , which implies that the
optimal policy π∗(x) is the same for LQG and LQR! 14



Discrete-time Finite-horizon LQG
I Linear Quadratic Gaussian (LQG) regulation problem:

min
π0:T−1

Jπ0 (x) :=
1

2
E

{
T−1∑
t=0

γt
(
xTt Qxt + 2uTt Pxt + uTt Rut

)
+ γT xTQT xT

}
s.t. xt+1 = Axt + But + Cwt , x0 = x , wt ∼ N (0, I )

x(t) ∈ X , ut = πt(xt) ∈ U

I Discount factor: γ ∈ [0, 1]
I Optimal cost-to-go: J∗t (x) = 1

2x
TMtx + mt

I Optimal policy: π∗t (x) = −(R + γBTMt+1B)−1(P + γBTMt+1A)x
I Riccati Equation:

Mt = Q + γATMt+1A− (P + γBTMt+1A)T (R + γBTMt+1B)−1(P + γBTMt+1A), MT = QT

mt = γmt+1 + γ
1

2
tr(CCTMt+1), mT = 0

I Mt is independent of the noise amplitude C , which implies that the
optimal policy π∗t (x) is the same for LQG and LQR!
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Discrete-time Infinite-horizon LQG
I Linear Quadratic Gaussian (LQG) regulation problem:

min
π

Jπ(x) :=
1

2
E

{ ∞∑
t=0

γt
(
xTt Qxt + 2uTt Pxt + uTt Rut

)}
s.t. xt+1 = Axt + But + Cwt , xt0 = x0, wt ∼ N (0, I )

x(t) ∈ X , ut = π(xt) ∈ U

I Discount factor: γ ∈ [0, 1)

I Optimal cost-to-go: J∗(x) = 1
2x

TMx + m

I Optimal policy: π∗(x) = −(R + γBTMB)−1(P + γBTMA)x

I Riccati Equation (‘dare’ in Matlab):

M = Q + γATMA− (P + γBTMA)T (R + γBTMB)−1(P + γBTMA)

m =
γ

2(1− γ)
tr(CCTM)

I M is independent of the noise amplitude C , which implies that the
optimal policy π∗(x) is the same for LQG and LQR! 16



Relation between Continuous- and Discrete-time LQR
I The continuous-time system:

ẋ = Ax + Bu

g(x , u) =
1

2
xTQx +

1

2
uTRu

can be discretized with time step τ :

xt+1 = (I + τA)xt + τBut

τg(x , u) =
τ

2
xTQx +

τ

2
uTRu

I In the limit as τ → 0, the discrete-time Riccati equation reduces to the
continuous one:

M = τQ + (I + τA)TM(I + τA)

− (I + τA)TMτB(τR + τBTMτB)−1τBTM(I + τA)

M = τQ + M + τATM + τMA− τMB(R + τBTMB)−1BTM + o(τ2)

0 = Q + ATM + MA−MB(R + τBTMB)−1BTM +
1

τ
o(τ2)
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Encoding Goals as Quadratic Costs

I In the finite-horizon case, the matrices A,B,Q,R can be time-varying
which is useful for specifying reference trajectories x∗t and for
approximating non-LQG problems

I The cost ‖xt − x∗t ‖2 can be captured in the LQG formulation by
modifying the state and cost as follows:

x̃ =

[
x
1

]
Ã =

[
A 0
0 1

]
, etc.

1

2
x̃T Q̃t x̃ =

1

2
x̃T (DT

t Dt)x̃ Dt x̃t :=
[
I −x∗t

]
x̃t = xt − x∗t

I If the target/goal is stationary, we can instead include it in the state x̃
and use D :=

[
I −I

]
. This has the advantage that the resulting policy

is independent of x∗ and can be used for any target x∗.
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