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Globally Optimal Closed-Loop Control
» Deterministic finite-horizon continuous-time optimal control:

’
e () = / g(x(t), (e, x()))dt + gr(x(T))

s.t. x(t) = f(x(t),u(t)), x(to)=xo
x(t) e X, w(t,x(t)) el

» Hamiltonian: H(x, u,p) := g(x,u) + p" f(x, u)

HJB PDE: Sufficient Conditions for Optimality

If V(t,x) satisfies the HJB PDE:

_oV(t,x)

Ot = mell?{ H(X(t)7 U,VXV(t, ))7 V( T7 X) = gT(X)’ Vx € X, te [t07 T]

then it is the optimal cost-to-go and the policy 7(t, x) that attains the
minimum is an optimal policy.




Locally Optimal Open-Loop Control
» Deterministic finite-horizon continuous-time optimal control:

!
e (o) = [ elx(e)w{ex(e)et + gr(x(T))

s.t. x(t) = f(x(t),u(t)), x(to)=xo
x(t) e X, w(t,x(t)) eU

» Hamiltonian: H(x,u, p) := g(x,u) 4+ p" f(x, u)

PMP ODE: Necessary Conditions for Optimality

If (x*(t), u*(t)) for t € [to, T] is a trajectory from an optimal policy 7*(t, x):

(8) = £(x*(¢), u™(2)),

x* X*(to) = Xp
p(t) = —Vxg(x*(t), u*(t)) — [Vxf (1), (1)) p*(2),  p*(T) = Vugr(x*(T))
u*(t) = argen;{in H(x*(t), u, p*(t)), Vt € [to, T]
H(x*(t), u*(t), p*(t)) = constant, Vt € [to, T]




Tractable Problems

» Consider a deterministic finite-horizon problem with dynamics and cost:

1
x = a(x) + Bu g(x,u) =q(x)+ §uTRu

1
H(x,u,p) = +Zu"Ru+pla(x)+p’™B
» Hamiltonian: (x,u,p) = a(x) 2u utplalx)+p’Bu

VuH(x,u,p) = Ru+ B'p V2H(x,u,p) = R
» HJB PDE: obtains globally optimal cost-to-go and policy:
7*(t,x) = argmin H(x, u, Vi(t,x)) = —R7IBT Vi (t, x), tefto, TlxeX
ueld
V(T,x) = gr(x), x€X

=Ve(t,x) = q(x) +aT Vi(t, x) — %Vx(n x)TBRTIBTVi(t,x), te[to, TxeX
» PMP: both necessary and sufficient for local min as long as R > 0:
u(t) = argmin H(x,u,p) = —R™IBTp(t), t € [ty, T]
uel
x = a(x)— BR7'BTp, x(0) = xo
p= _qx(X)T - ax(X)Tpv p(T) = ngT(X( T)) 4



Example: Pendulum

SN

509~ |peosoa) 0

k cos(x1)

» Cost:

g(x,u) = 1—e_2’(12-|—£u2 and gr(x) =0

» PMP: locally optimal controller:

u(t) = —r 'py(t),
X1 = X2,
x2 = ksin(xy) — rip,,
pr = —4e 2ix; — py,

p2 = —k cos(x1)p1,

» Cost-to-go and trajectories:

» Optimal policy (from HJB):

t € [to, T]
x1(0) =0
x2(0) =0
pi(T)=0
p2(T) =0




Linear Quadratic Control

» The key assumptions that allowed us to minimize the Hamiltonian
analytically were:
» The system dynamics are linear in the control u
> The stage-cost is quadratic in the control u

> Let us study the simplest such setting in which a deterministic
time-invariant linear system needs to minimize a quadratic cost over a
finite horizon:
min I (1o, %0) /Jl(nTQ(o+1 (&) Ru(t) dt + x(T)TQrx(T)
| X = =X X - =X X
rePCO([t0, TI0)” ~ 00 o 2 2" “ 2 T

g(x(t),u(1)) gr(x(T))

sit. x=Ax+ Bu, x(to) =xo
x(t) € R, u(t) = n(t,x(t)) € R

where Q= Q7 =0, Qr=Qf =0, and R=R" -0

» This problem is called the Linear Quadratic Regulator (LQR)



LQR via the PMP
Hamiltonian: H(x, u, p) = %XTQX + %UTRU +p"Ax + pTBu

v

v

Canonical equations with boundary conditions:

x = VpH(x, u, p) = Ax+ Bu, x(to) = xo
p=—ViH(x,u,p)=—Qx—ATp,  p(T)=Vigr(x(T)) = Qrx(T)
» Minimum principle:

VuH(x,u,p)T = Ru+BTp=0 = u*(t)=—-R'BTp(t)
V2H(x,u,p) =R >0 = u*(t) is a minimum

v

Hamiltonian matrix: the canonical equations can now be simplified to
a linear time-invariant (LTI) system with two-point boundary conditions:

B | 4 FR bt



LQR via the PMP

» Claim: There exists a matrix M(t) = M(t)T »= 0 such that
p(t) = M(t)x(t) for all t € [to, T]

> We can solve the LTI system described by the Hamiltonian matrix
backwards in time:

—BR1BT
e )
&(t,T)
x(t) = (P11(t, T) + P12(t, T)Q7)x(T)
p(t) = (P21(t, T) + P2o(t, T)Q7)x(T)

» It turns out that D(t, T) := ®11(t, T) + ®12(t, T)Q7 is invertible for
t € [to, T] and thus:

p(t) = (Pa1(t, T) + oo(t, T)Q7)D (2, T) x(t), Vit € [to, T]

-~

=:M(t)




LQR via the PMP

» From x(t9) = D(to, T)x(T), we obtain an open-loop control policy:
U(t) = —R_]'BT(q)zl(t, T) + ¢22(t, T)QT)D(to, T)_]'Xo

» From the claim that p(t) = M(t)x(t), however, we can also obtain a
linear state feedback control policy:

u(t) = —R BT M(t)x(t)

» We can obtain a better description of M(t) by differentiating
p(t) = M(t)x(t) and using the canonical equations:

p(t) = M(t)x(t) + M(t)x(t)
—Qx(t) — ATp(t) = M(t)x(t) + M(t)Ax(t) — M(t)BR™*BT p(t)
—M(t)x( ) = Qx(t) + AT M(t)x(t) + M(t)Ax(t) — M(t)BR™1BT M(t)x(t)

which needs to hold for all x(t) and t € [tp, T] and satisfy the boundary
condition p(T) = M(T)x(T) = Qrx(T)



LQR via the PMP (Summary)

» A unique candidate u(t) = —R™1BT M(t)x(t) satsifies the necessary
conditions of the PMP for optimality

» The candidate policy is linear in the state and the matrix M(t) satisfies
a quadratic Riccati differential equation (RDE):

—M(t) = Q + ATM(t) + M(t)A— M(t)BRIBTM(t), M(T)=Qr

» Other tools (e.g., the HJB PDE) are needed to decide whether u(t) is a
globally optimal policy

10



LQR via the HJB PDE
» Hamiltonian: H(x, u, p) = %XTQX + %UTRU +pTAx+pTBu
» HJB PDE:

T (t,x) = argenL:in H(x, u, Vi(t,x)) = —R7IBT V,(t, x), t€[ty, Tl,x € X
u
—Vi(t,x) = %XTQX +xTATV,(t,x) — %Vx(t,x)TBR’lBTVX(t, x), te€[to, Tl,xeX
V(T,x) = %XTQTX
» Guess a solution to the HJB PDE based on the intuition from the PMP:

m(t,x) = —R'BTM(t)x

V(tx) = ox"M(t)x
Vi(t,x) = %XTM(t)X

11



LQR via the HJB PDE

» Substituting the candidate V/(t, x) into the HJB PDE leads to the same
RDE as before and we know that M(t) satisfies it!

“xTM(T)x = %XTQTX

T H(e)x = %XTQX +xTATM(t)x — %XTM(t)BR_lBTM(t)X7 te[to, ThxeX
» Conclusion: Since M(t) satisfies the RDE, V/(t,x) = x” M(t)x is the
unique solution to the HJB PDE and is the optimal cost-to-go for the
linear quadratic problem with an associated optimal policy
7(t,x) = —R~1BT M(t)x.

» General Strategy for Continuous-time Optimal Control Problems:

1. ldentify a candidate policy using the PMP
2. Use the intuition from 1. to guess a candidate cost-to-go
3. Verify that the candidate policy and cost-to-go satisfy the HIB PDE

12



Continuous-time Finite-horizon LQG
» Linear Quadratic Gaussian (LQG) regulation problem:
L 1 [x T
repchim g (020) = ;E{./m L) {Q ! } M:ﬂ dive ”X(T)TQTX(T)}

st. dx = (Ax+ Bu)dt + Cdw, x(ty) = xo
x(t) € X, u(t) =n(t,x(t)) eU

v

Discount factor: 7 € [0, 0]

v

Optimal cost-to-go: J*(t,x) = $x" M(t)x + m(t)
Optimal policy: 7*(t,x) = —R™Y(P + BT M(t))x

v

v

Riccati Equation:
—M(t) = Q+ ATM(t) + M(t)A— (P + BTM(t))TR7Y(P + BT M(t)) — %I\/I(t), M(T) = Qr

.1 1
—m = Etr(CCTM(t)) - ;m(t), m(T) =

» M(t) is independent of the noise amplitude C, which implies that the
optimal policy 7*(t, x) is the same for the stochastic (LQG) and

deterministic (LQR) problems! 13



Continuous-time Infinite-horizon LQG

» Linear Quadratic Gaussian (LQG) regulation problem:

WGP@OTXM)J”(XO) = %E {/: e (xT(t) uT(t)] [g PRT] [Egg] dt}

s.t. dx = (Ax+ Bu)dt + Cdw, x(to) = xo
x(t) € X, u(t) =n(x(t)) el

v

Discount factor: v € [0, o)

v

Optimal cost-to-go: J*(x) = ix"Mx + m

v

Optimal policy: 7*(x) = —R~Y(P + BT M)x

v

Riccati Equation (‘care’ in Matlab):
1
“M=Q+A"™M+MA—(P+B"M)TRY(P+B™M)
5

m= %tr(CCTM)

v

M is independent of the noise amplitude C, which implies that the
optimal policy 7*(x) is the same for LQG and LQR!

14



Discrete-time Finite-horizon LQG

» Linear Quadratic Gaussian (LQG) regulation problem:

min  J§(x fIE {Z v ( tTth + 2utTth + utTRut) +7TXTQ7—XT}
T0:T—1
s.t. Xt4+1 = AXt + BUt + C.Wt7 X0 = X, Wg ~ ./\/'(07 /)

x(t) € X, ur =me(xe) €U

» Discount factor: v € [0, 1]
» Optimal cost-to-go: J;(x) = 3x” Mx + m,
» Optimal policy: 7}(x) = —(R+vB"M;11B)"Y(P +vBT M 11A)x
» Riccati Equation:
= Q4+ AT M 1A= (P+vB" M1 AT(R+~vB "My 1BY Y (P + BT My 1A), My = Qr
1
me = YMgy1 + ’YE tr(CCTMt+1)., mr = 0
» M, is independent of the noise amplitude C, which implies that the

optimal policy 7} (x) is the same for LQG and LQR!
15



Discrete-time Infinite-horizon LQG

» Linear Quadratic Gaussian (LQG) regulation problem:

m|n J7(x): E{ny ( tTQXt—l—2utTth+utTRut)}

sit. Xer1 = Axe + Bur + Cwe, x¢y = x0, we ~ N(0,1)
X(t) S X, ug — 7T(Xt) eu

v

Discount factor: v € [0, 1)

v

Optimal cost-to-go: J*(x) = 3x” Mx + m
Optimal policy: 7*(x) = —(R + BT MB)~}(P + vyBT MA)x

v

v

Riccati Equation (‘dare’ in Matlab):
M=Q+~ATMA—(P+~B"MAY(R+~B"MB) (P +~B™ MA)

i T
m=———tr(CC'M
2(1—-7) ( )
M is independent of the noise amplitude C, which implies that the
optimal policy 7*(x) is the same for LQG and LQR! 16

v



Relation between Continuous- and Discrete-time LQR
» The continuous-time system:

x = Ax + Bu

1 1
g(x,u) = §XTQX + EUTRU
can be discretized with time step 7:
xe41 = (I + 7A)xt + 7Buy

Tg(x,u) = %XTQX + guTRu

> In the limit as 7 — 0, the discrete-time Riccati equation reduces to the
continuous one:

M=71Q+ (I +7A)TM(I + TA)
— (I +7A)"MrB(rR+ BT MrB)1rBT M(I + 7A)
M=7Q+M+7ATM +7MA — TMB(R + BT MB)™*BT M + o(7?)
1
0=Q+A"M+ MA—MB(R+7B"MB)1BTM + Zo(?)
T
17



Encoding Goals as Quadratic Costs

» In the finite-horizon case, the matrices A, B, Q, R can be time-varying
which is useful for specifying reference trajectories x; and for
approximating non-LQG problems

» The cost ||x; — x7||? can be captured in the LQG formulation by
modifying the state and cost as follows:

X = [ﬂ A= [é\ g] , etc.

Lorase  lom nThe < ] o *

5 QR:X = 5% (D} Dy)x D:%: = [/ —xt] Xe =Xt — X;

» If the target/goal is stationary, we can instead include it in the state X
and use D := [/ —/]. This has the advantage that the resulting policy
is independent of x* and can be used for any target x*.

18



