ECE276B: Planning \& Learning in Robotics Lecture 14: Linear Quadratic Control

Lecturer:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Tianyu Wang: tiw161@eng.ucsd.edu
Yongxi Lu: yol070@eng.ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Globally Optimal Closed-Loop Control

- Deterministic finite-horizon continuous-time optimal control:

$$
\begin{aligned}
\min _{\pi \in P C^{0}\left(\left[t_{0}, T\right], \mathcal{U}\right)} & J^{\pi}\left(t_{0}, x_{0}\right):=\int_{t_{0}}^{T} g(x(t), \pi(t, x(t))) d t+g_{T}(x(T)) \\
\text { s.t. } & \dot{x}(t)=f(x(t), u(t)), x\left(t_{0}\right)=x_{0} \\
& x(t) \in \mathcal{X}, \pi(t, x(t)) \in \mathcal{U}
\end{aligned}
$$

- Hamiltonian: $H(x, u, p):=g(x, u)+p^{T} f(x, u)$

HJB PDE: Sufficient Conditions for Optimality

If $V(t, x)$ satisfies the HJB PDE:
$-\frac{\partial V(t, x)}{\partial t}=\min _{u \in \mathcal{U}} H\left(x(t), u, \nabla_{x} V(t, \cdot)\right), \quad V(T, x)=g_{T}(x), \quad \forall x \in \mathcal{X}, t \in\left[t_{0}, T\right]$ then it is the optimal cost-to-go and the policy $\pi(t, x)$ that attains the minimum is an optimal policy.

Locally Optimal Open-Loop Control

- Deterministic finite-horizon continuous-time optimal control:

$$
\begin{aligned}
\min _{\pi \in P C^{0}\left(\left[t_{0}, T\right], \mathcal{U}\right)} & J^{\pi}\left(t_{0}, x_{0}\right):=\int_{t_{0}}^{T} g(x(t), \pi(t, x(t))) d t+g_{T}(x(T)) \\
\text { s.t. } & \dot{x}(t)=f(x(t), u(t)), x\left(t_{0}\right)=x_{0} \\
& x(t) \in \mathcal{X}, \pi(t, x(t)) \in \mathcal{U}
\end{aligned}
$$

- Hamiltonian: $H(x, u, p):=g(x, u)+p^{T} f(x, u)$

PMP ODE: Necessary Conditions for Optimality

 If $\left(x^{*}(t), u^{*}(t)\right)$ for $t \in\left[t_{0}, T\right]$ is a trajectory from an optimal policy $\pi^{*}(t, x)$:$$
\begin{array}{ll}
\dot{x}^{*}(t)=f\left(x^{*}(t), u^{*}(t)\right), & x^{*}\left(t_{0}\right)=x_{0} \\
\dot{p}^{*}(t)=-\nabla_{x} g\left(x^{*}(t), u^{*}(t)\right)-\left[\nabla_{x} f\left(x^{*}(t), u^{*}(t)\right)\right]^{T} p^{*}(t), & p^{*}(T)=\nabla_{x} g_{T}\left(x^{*}(T)\right) \\
u^{*}(t)=\underset{u \in \mathcal{U}}{\arg \min } H\left(x^{*}(t), u, p^{*}(t)\right), & \forall t \in\left[t_{0}, T\right] \\
H\left(x^{*}(t), u^{*}(t), p^{*}(t)\right)=\text { constant }, & \forall t \in\left[t_{0}, T\right]
\end{array}
$$

Tractable Problems

- Consider a deterministic finite-horizon problem with dynamics and cost:

$$
\dot{x}=a(x)+B u \quad g(x, u)=q(x)+\frac{1}{2} u^{T} R u
$$

- Hamiltonian:

$$
H(x, u, p)=q(x)+\frac{1}{2} u^{T} R u+p^{T} a(x)+p^{T} B u
$$

$$
\nabla_{u} H(x, u, p)=R u+B^{T} p \quad \nabla_{u}^{2} H(x, u, p)=R
$$

- HJB PDE: obtains globally optimal cost-to-go and policy:

$$
\begin{aligned}
\pi^{*}(t, x) & =\underset{u \in \mathcal{U}}{\arg \min } H\left(x, u, V_{x}(t, x)\right)=-R^{-1} B^{T} V_{x}(t, x), & & t \in\left[t_{0}, T\right], x \in \mathcal{X} \\
V(T, x) & =g_{T}(x), & & x \in \mathcal{X} \\
-V_{t}(t, x) & =q(x)+a^{T} V_{x}(t, x)-\frac{1}{2} V_{x}(t, x)^{T} B R^{-1} B^{T} V_{x}(t, x), & & t \in\left[t_{0}, T\right], x \in \mathcal{X}
\end{aligned}
$$

- PMP: both necessary and sufficient for local min as long as $R \succ 0$:

$$
\begin{aligned}
u(t) & =\underset{u \in \mathcal{U}}{\arg \min } H(x, u, p)=-R^{-1} B^{T} p(t), & & t \in\left[t_{0}, T\right] \\
\dot{x} & =a(x)-B R^{-1} B^{T} p, & & x(0)=x_{0} \\
\dot{p} & =-q_{x}(x)^{T}-a_{x}(x)^{T} p, & & p(T)=\nabla_{x} g_{T}(x(T))
\end{aligned}
$$

Example: Pendulum

- Cost-to-go and trajectories:

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{c}
x_{2} \\
k \sin \left(x_{1}\right)
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u, x(0)=x_{0} \\
& a_{x}(x)=\left[\begin{array}{cc}
0 & 1 \\
k \cos \left(x_{1}\right) & 0
\end{array}\right]
\end{aligned}
$$

- Cost:

$$
g(x, u)=1-e^{-2 x_{1}^{2}}+\frac{r}{2} u^{2} \text { and } g_{T}(x)=0
$$

- Optimal policy (from HJB):
- PMP: locally optimal controller:

$$
\begin{aligned}
u(t) & =-r^{-1} p_{2}(t), & & t \in\left[t_{0}, T\right] \\
\dot{x}_{1} & =x_{2}, & & x_{1}(0)=0 \\
\dot{x}_{2} & =k \sin \left(x_{1}\right)-r^{-1} p_{2}, & & x_{2}(0)=0 \\
\dot{p}_{1} & =-4 e^{-2 x_{1}^{2}} x_{1}-p_{2}, & & p_{1}(T)=0 \\
\dot{p}_{2} & =-k \cos \left(x_{1}\right) p_{1}, & & p_{2}(T)=0
\end{aligned}
$$

Linear Quadratic Control

- The key assumptions that allowed us to minimize the Hamiltonian analytically were:
- The system dynamics are linear in the control u
- The stage-cost is quadratic in the control u
- Let us study the simplest such setting in which a deterministic time-invariant linear system needs to minimize a quadratic cost over a finite horizon:
$\min _{\pi \in P C^{0}\left(\left[t_{0}, T\right], \mathcal{U}\right)} J^{\pi}\left(t_{0}, x_{0}\right):=\int_{t_{0}}^{T} \underbrace{\frac{1}{2} x(t)^{T} Q x(t)+\frac{1}{2} u(t)^{T} R u(t)}_{g(x(t), u(t))} d t+\underbrace{\frac{1}{2} x(T)^{T} Q_{T} x(T)}_{g_{T}(x(T))}$

$$
\begin{array}{ll}
\text { s.t. } & \dot{x}=A x+B u, \quad x\left(t_{0}\right)=x_{0} \\
& x(t) \in \mathbb{R}^{n}, u(t)=\pi(t, x(t)) \in \mathbb{R}^{m}
\end{array}
$$

where $Q=Q^{T} \succeq 0, Q_{T}=Q_{T}^{T} \succeq 0$, and $R=R^{T} \succ 0$

- This problem is called the Linear Quadratic Regulator (LQR)

LQR via the PMP

- Hamiltonian: $H(x, u, p)=\frac{1}{2} x^{T} Q x+\frac{1}{2} u^{T} R u+p^{T} A x+p^{T} B u$
- Canonical equations with boundary conditions:
$\begin{array}{ll}\dot{x}=\nabla_{p} H(x, u, p)=A x+B u, & x\left(t_{0}\right)=x_{0} \\ \dot{p}=-\nabla_{x} H(x, u, p)=-Q x-A^{T} p, & p(T)=\nabla_{x} g_{T}(x(T))=Q_{T} x(T)\end{array}$
- Minimum principle:

$$
\begin{array}{ll}
\nabla_{u} H(x, u, p)^{T}=R u+B^{T} p=0 & \Rightarrow u^{*}(t)=-R^{-1} B^{T} p(t) \\
\nabla_{u}^{2} H(x, u, p)=R \succ 0 & \Rightarrow u^{*}(t) \text { is a minimum }
\end{array}
$$

- Hamiltonian matrix: the canonical equations can now be simplified to a linear time-invariant (LTI) system with two-point boundary conditions:

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{p}
\end{array}\right]=\left[\begin{array}{cc}
A & -B R^{-1} B^{T} \\
-Q & -A^{T}
\end{array}\right]\left[\begin{array}{l}
x \\
p
\end{array}\right], \quad \begin{gathered}
x\left(t_{0}\right)=x_{0} \\
p(T)=Q_{T} x(T)
\end{gathered}
$$

LQR via the PMP

- Claim: There exists a matrix $M(t)=M(t)^{T} \succeq 0$ such that $p(t)=M(t) x(t)$ for all $t \in\left[t_{0}, T\right]$
- We can solve the LTI system described by the Hamiltonian matrix backwards in time:

$$
\begin{aligned}
& {\left[\begin{array}{c}
x(t) \\
p(t)
\end{array}\right]=\underbrace{e^{\left[\begin{array}{cc}
A & -B R^{-1} B^{T} \\
-Q & -A^{T}
\end{array}\right](t-T)}}_{\Phi(t, T)}\left[\begin{array}{c}
x(T) \\
Q_{T} x(T)
\end{array}\right]} \\
& x(t)=\left(\Phi_{11}(t, T)+\Phi_{12}(t, T) Q_{T}\right) x(T) \\
& p(t)=\left(\Phi_{21}(t, T)+\Phi_{22}(t, T) Q_{T}\right) x(T)
\end{aligned}
$$

- It turns out that $D(t, T):=\Phi_{11}(t, T)+\Phi_{12}(t, T) Q_{T}$ is invertible for $t \in\left[t_{0}, T\right]$ and thus:

$$
p(t)=\underbrace{\left(\Phi_{21}(t, T)+\Phi_{22}(t, T) Q_{T}\right) D^{-1}(t, T)}_{=: M(t)} x(t), \quad \forall t \in\left[t_{0}, T\right]
$$

LQR via the PMP

- From $x\left(t_{0}\right)=D\left(t_{0}, T\right) x(T)$, we obtain an open-loop control policy:

$$
u(t)=-R^{-1} B^{T}\left(\Phi_{21}(t, T)+\Phi_{22}(t, T) Q_{T}\right) D\left(t_{0}, T\right)^{-1} x_{0}
$$

- From the claim that $p(t)=M(t) x(t)$, however, we can also obtain a linear state feedback control policy:

$$
u(t)=-R^{-1} B^{T} M(t) x(t)
$$

- We can obtain a better description of $M(t)$ by differentiating $p(t)=M(t) x(t)$ and using the canonical equations:

$$
\begin{aligned}
\dot{p}(t) & =\dot{M}(t) x(t)+M(t) \dot{x}(t) \\
-Q x(t)-A^{T} p(t) & =\dot{M}(t) x(t)+M(t) A x(t)-M(t) B R^{-1} B^{T} p(t) \\
-\dot{M}(t) x(t) & =Q x(t)+A^{T} M(t) x(t)+M(t) A x(t)-M(t) B R^{-1} B^{T} M(t) x(t)
\end{aligned}
$$

which needs to hold for all $x(t)$ and $t \in\left[t_{0}, T\right]$ and satisfy the boundary condition $p(T)=M(T) x(T)=Q_{T} x(T)$

LQR via the PMP (Summary)

- A unique candidate $u(t)=-R^{-1} B^{T} M(t) x(t)$ satsifies the necessary conditions of the PMP for optimality
- The candidate policy is linear in the state and the matrix $M(t)$ satisfies a quadratic Riccati differential equation (RDE):
$-\dot{M}(t)=Q+A^{T} M(t)+M(t) A-M(t) B R^{-1} B^{T} M(t), \quad M(T)=Q_{T}$
- Other tools (e.g., the HJB PDE) are needed to decide whether $u(t)$ is a globally optimal policy

LQR via the HJB PDE

- Hamiltonian: $H(x, u, p)=\frac{1}{2} x^{T} Q x+\frac{1}{2} u^{T} R u+p^{T} A x+p^{T} B u$
- HJB PDE:

$$
\begin{aligned}
\pi^{*}(t, x) & =\underset{u \in \mathcal{U}}{\arg \min } H\left(x, u, V_{x}(t, x)\right)=-R^{-1} B^{T} V_{x}(t, x), & & t \in\left[t_{0}, T\right], x \in \mathcal{X} \\
-V_{t}(t, x) & =\frac{1}{2} x^{\top} Q x+x^{T} A^{T} V_{x}(t, x)-\frac{1}{2} V_{x}(t, x)^{T} B R^{-1} B^{T} V_{x}(t, x), & & t \in\left[t_{0}, T\right], x \in \mathcal{X} \\
V(T, x) & =\frac{1}{2} x^{\top} Q_{T} x & &
\end{aligned}
$$

- Guess a solution to the HJB PDE based on the intuition from the PMP:

$$
\begin{aligned}
\pi(t, x) & =-R^{-1} B^{T} M(t) x \\
V(t, x) & =\frac{1}{2} x^{T} M(t) x \\
V_{t}(t, x) & =\frac{1}{2} x^{T} \dot{M}(t) x \\
V_{x}(t, x) & =M(t) x
\end{aligned}
$$

LQR via the HJB PDE

- Substituting the candidate $V(t, x)$ into the HJB PDE leads to the same RDE as before and we know that $M(t)$ satisfies it!

$$
\begin{aligned}
\frac{1}{2} x^{\top} M(T) x & =\frac{1}{2} x^{\top} Q_{T} x \\
-\frac{1}{2} x^{\top} \dot{M}(t) x & =\frac{1}{2} x^{\top} Q x+x^{\top} A^{T} M(t) x-\frac{1}{2} x^{\top} M(t) B R^{-1} B^{T} M(t) x, t \in\left[t_{0}, T\right], x \in \mathcal{X}
\end{aligned}
$$

- Conclusion: Since $M(t)$ satisfies the RDE, $V(t, x)=x^{T} M(t) x$ is the unique solution to the HJB PDE and is the optimal cost-to-go for the linear quadratic problem with an associated optimal policy $\pi(t, x)=-R^{-1} B^{T} M(t) x$.
- General Strategy for Continuous-time Optimal Control Problems:

1. Identify a candidate policy using the PMP
2. Use the intuition from 1. to guess a candidate cost-to-go
3. Verify that the candidate policy and cost-to-go satisfy the HJB PDE

Continuous-time Finite-horizon LQG

- Linear Quadratic Gaussian (LQG) regulation problem:
$\min _{\pi \in P C^{0}\left(\left[t_{0}, T\right], \mathcal{U}\right)} J^{\pi}\left(t_{0}, x_{0}\right):=\frac{1}{2} \mathbb{E}\left\{\int_{t_{0}}^{T} e^{-\frac{t}{\gamma}}\left[x^{T}(t) \quad u^{T}(t)\right]\left[\begin{array}{cc}Q & P^{T} \\ P & R\end{array}\right]\left[\begin{array}{c}x(t) \\ u(t)\end{array}\right] d t+e^{\left.\left.-\frac{T}{\gamma} x(T)^{T} Q_{T} x(T)\right\},{ }^{2}\right)}\right.$
s.t. $d x=(A x+B u) d t+C d \omega, x\left(t_{0}\right)=x_{0}$

$$
x(t) \in \mathcal{X}, u(t)=\pi(t, x(t)) \in \mathcal{U}
$$

- Discount factor: $\gamma \in[0, \infty]$
- Optimal cost-to-go: $J^{*}(t, x)=\frac{1}{2} x^{\top} M(t) x+m(t)$
- Optimal policy: $\pi^{*}(t, x)=-R^{-1}\left(P+B^{T} M(t)\right) x$
- Riccati Equation:

$$
\left.\left.\begin{array}{rlrl}
-\dot{M}(t) & =Q+A^{T} M(t)+M(t) A-\left(P+B^{T} M(t)\right)^{T} R^{-1}\left(P+B^{T} M(t)\right)-\frac{1}{\gamma} M(t), & & M(T)
\end{array}\right)=Q_{T}\right)
$$

- $M(t)$ is independent of the noise amplitude C, which implies that the optimal policy $\pi^{*}(t, x)$ is the same for the stochastic (LQG) and deterministic (LQR) problems!

Continuous-time Infinite-horizon LQG

- Linear Quadratic Gaussian (LQG) regulation problem:
$\min _{\pi \in P C^{0}(\mathcal{X}, \mathcal{U})} J^{\pi}\left(x_{0}\right):=\frac{1}{2} \mathbb{E}\left\{\int_{t_{0}}^{\infty} e^{-\frac{t}{\gamma}}\left[x^{T}(t) \quad u^{T}(t)\right]\left[\begin{array}{ll}Q & P^{T} \\ P & R\end{array}\right]\left[\begin{array}{c}x(t) \\ u(t)\end{array}\right] d t\right\}$
s.t. $\quad d x=(A x+B u) d t+C d \omega, x\left(t_{0}\right)=x_{0}$

$$
x(t) \in \mathcal{X}, u(t)=\pi(x(t)) \in \mathcal{U}
$$

- Discount factor: $\gamma \in[0, \infty)$
- Optimal cost-to-go: $J^{*}(x)=\frac{1}{2} x^{T} M x+m$
- Optimal policy: $\pi^{*}(x)=-R^{-1}\left(P+B^{T} M\right) x$
- Riccati Equation ('care' in Matlab):

$$
\begin{aligned}
\frac{1}{\gamma} M & =Q+A^{T} M+M A-\left(P+B^{T} M\right)^{T} R^{-1}\left(P+B^{T} M\right) \\
m & =\frac{\gamma}{2} \operatorname{tr}\left(C C^{T} M\right)
\end{aligned}
$$

- M is independent of the noise amplitude C, which implies that the optimal policy $\pi^{*}(x)$ is the same for LQG and LQR!

Discrete-time Finite-horizon LQG

- Linear Quadratic Gaussian (LQG) regulation problem:
$\min _{\pi_{0}: T-1} J_{0}^{\pi}(x):=\frac{1}{2} \mathbb{E}\left\{\sum_{t=0}^{T-1} \gamma^{t}\left(x_{t}^{T} Q x_{t}+2 u_{t}^{T} P x_{t}+u_{t}^{T} R u_{t}\right)+\gamma^{T} x_{T} Q_{T} x_{T}\right\}$
s.t. $\quad x_{t+1}=A x_{t}+B u_{t}+C w_{t}, \quad x_{0}=x, w_{t} \sim \mathcal{N}(0, I)$

$$
x(t) \in \mathcal{X}, u_{t}=\pi_{t}\left(x_{t}\right) \in \mathcal{U}
$$

- Discount factor: $\gamma \in[0,1]$
- Optimal cost-to-go: $J_{t}^{*}(x)=\frac{1}{2} x^{\top} M_{t} x+m_{t}$
- Optimal policy: $\pi_{t}^{*}(x)=-\left(R+\gamma B^{T} M_{t+1} B\right)^{-1}\left(P+\gamma B^{T} M_{t+1} A\right) x$
- Riccati Equation:
$M_{t}=Q+\gamma A^{T} M_{t+1} A-\left(P+\gamma B^{T} M_{t+1} A\right)^{T}\left(R+\gamma B^{T} M_{t+1} B\right)^{-1}\left(P+\gamma B^{T} M_{t+1} A\right), \quad M_{T}=Q_{T}$ $m_{t}=\gamma m_{t+1}+\gamma \frac{1}{2} \operatorname{tr}\left(C C^{\top} M_{t+1}\right)$,
- M_{t} is independent of the noise amplitude C, which implies that the optimal policy $\pi_{t}^{*}(x)$ is the same for LQG and LQR!

Discrete-time Infinite-horizon LQG

- Linear Quadratic Gaussian (LQG) regulation problem:

$$
\begin{array}{ll}
\min _{\pi} & J^{\pi}(x):=\frac{1}{2} \mathbb{E}\left\{\sum_{t=0}^{\infty} \gamma^{t}\left(x_{t}^{T} Q x_{t}+2 u_{t}^{T} P x_{t}+u_{t}^{T} R u_{t}\right)\right\} \\
\text { s.t. } & x_{t+1}=A x_{t}+B u_{t}+C w_{t}, \quad x_{t_{0}}=x_{0}, w_{t} \sim \mathcal{N}(0, l) \\
& x(t) \in \mathcal{X}, u_{t}=\pi\left(x_{t}\right) \in \mathcal{U}
\end{array}
$$

- Discount factor: $\gamma \in[0,1)$
- Optimal cost-to-go: $J^{*}(x)=\frac{1}{2} x^{T} M x+m$
- Optimal policy: $\pi^{*}(x)=-\left(R+\gamma B^{T} M B\right)^{-1}\left(P+\gamma B^{T} M A\right) x$
- Riccati Equation ('dare' in Matlab):

$$
\begin{aligned}
M & =Q+\gamma A^{T} M A-\left(P+\gamma B^{T} M A\right)^{T}\left(R+\gamma B^{T} M B\right)^{-1}\left(P+\gamma B^{T} M A\right) \\
m & =\frac{\gamma}{2(1-\gamma)} \operatorname{tr}\left(C C^{T} M\right)
\end{aligned}
$$

- M is independent of the noise amplitude C, which implies that the optimal policy $\pi^{*}(x)$ is the same for LQG and LQR!

Relation between Continuous- and Discrete-time LQR

- The continuous-time system:

$$
\begin{aligned}
\dot{x} & =A x+B u \\
g(x, u) & =\frac{1}{2} x^{T} Q x+\frac{1}{2} u^{T} R u
\end{aligned}
$$

can be discretized with time step τ :

$$
\begin{aligned}
x_{t+1} & =(I+\tau A) x_{t}+\tau B u_{t} \\
\tau g(x, u) & =\frac{\tau}{2} x^{T} Q x+\frac{\tau}{2} u^{T} R u
\end{aligned}
$$

- In the limit as $\tau \rightarrow 0$, the discrete-time Riccati equation reduces to the continuous one:

$$
\begin{aligned}
M= & \tau Q+(I+\tau A)^{T} M(I+\tau A) \\
& \quad-(I+\tau A)^{T} M \tau B\left(\tau R+\tau B^{T} M \tau B\right)^{-1} \tau B^{T} M(I+\tau A) \\
M= & \tau Q+M+\tau A^{T} M+\tau M A-\tau M B\left(R+\tau B^{T} M B\right)^{-1} B^{T} M+o\left(\tau^{2}\right) \\
0= & Q+A^{T} M+M A-M B\left(R+\tau B^{T} M B\right)^{-1} B^{T} M+\frac{1}{\tau} o\left(\tau^{2}\right)
\end{aligned}
$$

Encoding Goals as Quadratic Costs

- In the finite-horizon case, the matrices A, B, Q, R can be time-varying which is useful for specifying reference trajectories x_{t}^{*} and for approximating non-LQG problems
- The cost $\left\|x_{t}-x_{t}^{*}\right\|^{2}$ can be captured in the LQG formulation by modifying the state and cost as follows:

$$
\begin{aligned}
& \tilde{x}=\left[\begin{array}{c}
x \\
1
\end{array}\right] \quad \tilde{A}=\left[\begin{array}{ll}
A & 0 \\
0 & 1
\end{array}\right], \text { etc. } \\
& \frac{1}{2} \tilde{x}^{T} \tilde{Q}_{t} \tilde{x}=\frac{1}{2} \tilde{x}^{T}\left(D_{t}^{T} D_{t}\right) \tilde{x} \quad D_{t} \tilde{x}_{t}:=\left[\begin{array}{ll}
1 & -x_{t}^{*}
\end{array}\right] \tilde{x}_{t}=x_{t}-x_{t}^{*}
\end{aligned}
$$

- If the target/goal is stationary, we can instead include it in the state \tilde{x} and use $D:=\left[\begin{array}{ll}l & -I\end{array}\right]$. This has the advantage that the resulting policy is independent of x^{*} and can be used for any target x^{*}.

