
ECE276B: Planning & Learning in Robotics
Lecture 15: Model-free Prediction

Lecturer:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Tianyu Wang: tiw161@eng.ucsd.edu
Yongxi Lu: yol070@eng.ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:tiw161@eng.ucsd.edu
mailto:yol070@eng.ucsd.edu

From Optimal Control To Reinforcement Learning
I Optimal Control:

I Discrete-time: dynamic programming, search-based planning,
sampling-based planning, model-based policy evaluation and improvement
via generalized policy iteration

I Continuous-time: Hamiltonian-Jacobi-Bellman partial differential
equation (HJB PDE), Pontryagin’s Minimum Principle (PMP), Linear
Quadratic Regulator (LQR), Linear Quadratic Gaussian (LQG)

I Reinforcement Learning: no knowledge of the Markov Decision
Process (MDP) motion model pf (x ′ | x , u) or cost function g(x , u) but
access to examples of system transitions and incurred costs

I Model-free Prediction: estimate the value function of an MDP with an
unknown transition model:

I Monte-Carlo (MC) Prediction
I Temporal-Difference (TD) Prediction

I Model-free Control: optimize the value function of an MDP with an
unknown transition model:

I On-policy MC Control: ε-greedy
I On-policy TD Control: SARSA
I Off-policy MC Control: Importance Sampling
I Off-policy TD Control: Q-Learning 2

Value Function

I Value Function: the expected long-term cost of following policy π
starting at state x :

V π(x) :=E

[∞∑
t=0

γtg(xt , π(xt))

∣∣∣∣x0 = x

]

=g(x , π(x)) + γE

[∞∑
t=1

γt−1g(xt , π(xt))

∣∣∣∣x0 = x

]
=g(x , π(x)) + γEx ′∼pf (·|x ,π(x))

[
V π(x ′)

]
I Value Iteration: computes the optimal value function

V ∗(x) := min
π

V π(x) = min
u∈U(x)

{
g(x , u) + γEx ′∼pf (·|x ,u)

[
V ∗(x ′)

]}

3

Action-Value (Q) Function

I Q Function: the expected long-term cost of taking action u in state x
and following policy π afterwards:

Qπ(x , u) :=g(x , u) + E

[∞∑
t=1

γtg(xt , π(xt))

∣∣∣∣x0 = x

]
=g(x , u) + γEx ′∼pf (·|x ,u)

[
V π(x ′)

]
=g(x , u) + γEx ′∼pf (·|x ,u)

[
Qπ(x ′, π(x ′))

]
I Q-Value Iteration: computes the optimal Q function

Q∗(x , u) := min
π

Qπ(x , u) =g(x , u) + γEx ′∼pf (·|x ,u)

[
min
π

V π(x ′)
]

=g(x , u) + γEx ′∼pf (·|x ,u)
[
V ∗(x ′)

]
=g(x , u) + γEx ′∼pf (·|x ,u)

[
min

u′∈U(x ′)
Q∗(x ′, u′)

]

4

Dynamic Programming Backup Operators

I Operators for policy-specific cost-to-go:
I Policy Evaluation Backup Operator:

Tπ[V](x) := H[x , π(x),V] = g(x , π(x)) + γEx′∼pf (·|x,π(x)) [V (x ′)]

I Policy Q-Evaluation Backup Operator:

Tπ[Q](x , u) := g(x , u) + γEx′∼pf (·|x,u) [Q(x ′, π(x ′))]

I Operators for the optimal cost-to-go:
I Value Iteration Backup Operator:

T∗[V](x) := min
u∈U(x)

H[x , u,V] = min
u∈U(x)

{
g(x , u) + γEx′∼pf (·|x,u) [V (x ′)]

}
I Q-Value Iteration Backup Operator:

T∗[Q](x , u) := g(x , u) + γEx′∼pf (·|x,u)

[
min

u′∈U(x′)
Q(x ′, u′)

]

5

Model-free Prediction
I The main idea of model-free prediction is to approximate the Policy

Evaluation backup operators Tπ[V] and Tπ[Q] using samples instead of
computing the expectation exactly:

I Monte-Carlo (MC) methods:
I Expected cost can be approximated by a sample average over whole

system trajectories
I Only applies to terminating problems: finite-horizon and SSP

I Temporal-Difference (TD) methods:
I Expected cost can be approximated by a sample average over a single

system transition and an estimate of the expected cost at the new state
I Applies to both finite- and infinite-horizon problems due to bootstrapping

I Sampling: cost-to-go estimates rely on samples:
I DP does not sample
I MC samples
I TD samples

I Bootstrapping: cost-to-go estimates rely on other cost-to-go estimates:

I DP bootstraps
I MC does not bootstrap
I TD bootstraps 6

Unified View of Reinforcement Learning

7

Monte-Carlo Policy Evaluation
I Applies only to terminating infinite-horizon problems

I Episode: a (random) sequence of states and controls from start to
termination under under policy π:

ρ := x0, u0, x1, u1, . . . , xT−1, uT−1, xT ∼ π

I Goal: approximate Jπ(x0) from several episodes ρ(k) := x
(k)
0:T , u

(k)
0:T−1

under policy π

I Recall that the long-term cost is the sum of discounted stage costs:

Gt(xt:T , ut:T−1) :=
T−1∑
τ=t

γτ−tg(xτ , uτ) + γT−tgT (xT)

I Monte-Carlo (MC) Policy Evaluation: uses the empirical mean of
long-term costs obtained from different episodes to approximate the
cost-to-go of π, i.e., the expected long-term cost:

Jπ(x) = E[Gt(ρ) | xt = x , ρ ∼ π] ≈ V π(x) :=
1

K

K∑
k=1

Gt(ρ
(k))

8

First-visit Monte-Carlo Policy Evaluation

I Prediction: estimate Jπ(x) from trajectory samples ρ(k) ∼ π

I For each state x and episode ρ(k), find the first time step t that state x
is visited in ρ(k) and increment:

I the number of visits to x : N(x)← N(x) + 1
I the long-term cost starting from x : C (x)← C (x) + Gt(ρ

(k))

I Approximate cost-to-go: Jπ(x) ≈ C(x)
N(x)

I Every-visit MC Policy Evaluation: same idea but the long-term costs
are averaged following every time step t that state x is visited in ρ(k)

9

First-visit MC Policy Evaluation

Algorithm 1 First-visit MC Policy Evaluation

1: Initialize V π(x), π(x), C (x)← ∅
2: loop
3: Generate ρ := (x0:T , u0:T−1) from π
4: for x ∈ ρ do
5: G ← return following first appearance of x in ρ
6: C (x)← C (x) ∪ {G}
7: V π(x)← avg(C (x))

I Every-visit MC would append to C (x) not a single return G but the
returns {G} following all appearances of x in ρ

10

Running Sample Average
I Consider a sequence x1, x2, . . . , of samples from a random variable
I Usual way of computing the sample mean: µk+1 = 1

k+1

∑k+1
j=1 xj

I Running sample average:

µk+1 =
1

k + 1

k+1∑
j=1

xj =
1

k + 1

xk+1 +
k∑

j=1

xj

 =
1

k + 1
(xk+1 + kµk)

= µk +
1

k + 1
(xk+1 − µk)

I Recency-weighted average: update µk using a step-size α 6= 1
k+1 :

µk+1 = µk + α(xk+1 − µk) = (1− α)kx1 +
k∑

j=1

α(1− α)k−jxj+1

I Robbins-Monro Step Sizes: convergence to the true mean is
guaranteed almost surely under the following conditions:

(independence from
initial conditions

)
∞∑
k=1

αk =∞
∞∑
k=1

α2
k <∞ (ensure convergence)

11

First-visit MC Policy Evaluation

Algorithm 2 First-visit MC Policy Evaluation

1: Initialize V (x), π(x)
2: loop
3: Generate ρ := (x0:T , u0:T−1) from π
4: for x ∈ ρ do
5: G ← return following first appearance of x in ρ
6: V π(x)← V π(x) + α(G − V π(x)) . Usual choice: α := 1

N(x)+1

I The recency-weighted updates can be useful to track the cost-to-go
average in non-stationary problems (i.e., forget old episodes)

12

Temporal-Difference Policy Evaluation
I Applies to both terminating and non-terminating settings (incomplete

episodes) since it relies on bootstrapping

I Bootstrapping: the cost-to-go estimate of state x relies on the
cost-to-go estimate of another state

I TD combines the sampling of MC with the bootstrapping of DP:

Jπ(x)
MC

=== E[Gt(ρ) | xt = x , ρ ∼ π]

MC
===E

[
T−1∑
τ=t

γτ−tg(xτ , uτ) + γT−tgT (xT) | xt = x , ρ ∼ π

]

=E

[
g(xt , ut) + γ

(
T−1∑
τ=t+1

γτ−t−1g(xτ , uτ) + γT−t−1gT (xT)

)
| xt = x , ρ ∼ π

]
TD(0)

=======
bootstrap

E [g(xt , ut) + γJπ(xt+1) | xt = x , ρ ∼ π]

TD(n)
=======
bootstrap

E

[
t+n∑
τ=t

γτ−tg(xτ , uτ) + γn+1Jπ(xt+n+1) | xt = x , ρ ∼ π

]

13

Temporal-Difference Policy Evaluation
I Prediction: estimate Jπ from trajectory samples ρ = x0:T , u0:T−1 ∼ π

I MC Policy Evaluation: updates the cost-to-go estimate V π(xt) toward
the long-term cost Gt(xt:T , ut:T−1):

V π(xt)← V π(xt) + α(Gt(xt:T , ut:T−1)− V π(xt))

I TD(0) Policy Evaluation: updates the cost-to-go estimate V π(xt)
towards an estimated long-term cost g(xt , ut) + γV π(xt+1):

V π(xt)← V π(xt) + α(g(xt , ut) + γV π(xt+1)− V π(xt))

I TD(n) Policy Evaluation: updates the cost-to-go estimate V π(xt)

towards an estimated long-term cost
t+n∑
τ=t

γτ−tg(xτ , uτ) + γn+1V π(xt+n+1):

V π(xt)← V π(xt)+α

(
t+n∑
τ=t

γτ−tg(xτ , uτ) + γn+1V π(xt+n+1)− V π(xt)

)
14

TD(n) Prediction

15

MC and TD Errors

I TD Target: G
(0)
t (ρ) := g(xt , ut) + γV π(xt+1)

I TD Error: measures the difference between the estimated value V π(xt)
and the better estimate g(xt , ut) + γV π(xt+1):

δt := g(xt , ut) + γV π(xt+1)− V π(xt)

I MC Error: a sum of TD errors:

Gt(xt:T , ut:T−1)− V π(xt) = g(xt , ut) + γGt+1(xt+1:T , ut+1:T−1)− V π(xt)

= δt + γ (Gt+1(xt+1:T , ut+1:T−1)− V π(xt+1))

= δt + γδt+1γ
2 (Gt+2(xt+2:T , ut+2:T−1)− V π(xt+2))

=
T−t−1∑
n=0

γnδt+n

16

Monte-Carlo Backup

V π(xt)← V π(xt) + α(Gt(xt:T , ut:T−1)− V π(xt))

17

Temporal-Difference Backup

V π(xt)← V π(xt) + α(g(xt , ut) + γV π(xt+1)− V π(xt))

18

Dynamic-Programming Backup

V π(xt)← g(xt , ut) + γExt+1∼pf (·|xt ,ut) [V π(xt+1)]

19

MC vs TD Policy Evaluation
I MC:

I Must wait until the end of an episode before updating V π(x)

I Works only for episodic (terminating) problems

I The MC estimates are zero bias but high variance (long-term cost
depends on many random transitions)

I Not very sensitive to initialization

I Has good convergence properties even with function approximation (i.e.,
non-tabular setting)

I TD:
I Can update V π(x) before knowing the complete episode and hence can

learn online, after each transition, regardless of subsequent controls

I Works in continuing (non-terminating) problems

I The TD estimates are biased but low variance (TD(0) target depends
on one random transition)

I More sensitive to initialization than MC

I May not converge with function approximation (i.e., non-tabular setting)20

Bias-Variance Trade-off

21

Bias-Variance Decomposition

I Given iid data D = {(xi , yi)}ni=1, a new independent sample (x, y), and
a regression model h(x,D) = ŷ , the expected squared error of h is:

E(x,y),D(h(x,D)− y)2 =Ex,D(h(x,D)− h̄(x))2︸ ︷︷ ︸
Variance (overfitting)

+Ex(h̄(x)− ȳ(x))2︸ ︷︷ ︸
Bias2 (underfitting)

+ E(x,y)(ȳ(x)− y)2︸ ︷︷ ︸
Noise

where h̄(x) := EDh(x,D) and ȳ(x) := E[y | x].

I Bias is independent of n and decreases with model complexity

I Variance decreases with n and increases with model complexity

I Occum’s Razor the best h from a family of good models H is the one
with the lowest complexity

22

Bias-Variance Decomposition

23

Example: Random Walk

24

Batch MC and TD Policy Evaluation
I MC and TD converge: V π(x)→ Jπ(x) as the number of sampled

episodes →∞ as long as αk is a Robbins-Monro sequence

I Batch setting: given finite experience {ρ(k)}Kk=1, repeatedly sample
k ∈ [1,K] and apply MC or TD to episode k

I Batch MC: converges to V π that best fits the observed costs:

V π(x) = arg min
V

K∑
k=1

Tk∑
t=0

(
Gt(ρ

(k))− V
)2
1{x (k)t = x}

I Batch TD(0): converges to V π of the maximum likelihood MDP
model that best fits the observed data

p̂f (x ′ | x , u) =
1

N(x , u)

K∑
k=1

Tk∑
t=1

1{x (k)t = x , u
(k)
t = u, x

(k)
t+1 = x ′}

ĝ(x , u) =
1

N(x , u)

K∑
k=1

Tk∑
t=1

1{x (k)t = x , u
(k)
t = u}g (k)

t

25

Averaging n-Step Returns

I Define the n-step return:

G
(n)
t (ρ) := g(xt , ut) + γg(xt+1, ut+1) + . . .+ γng(xt+n, ut+n) + γn+1V π(xt+n+1)

G
(0)
t (ρ) = g(xt , ut) + γV π(xt+1) (TD(0))

G
(1)
t (ρ) = g(xt , ut) + γg(xt+1, ut+1) + γ2V π(xt+2)

...

G
(∞)
t (ρ) = g(xt , ut) + γg(xt+1, ut+1) + . . .+ γT−t−1g(xT−1, uT−1) + γT−tg(xT) (MC)

I TD(n):

V π(xt)← V π(xt) + α(G
(n)
t (ρ)− V π(xt))

I Averaged-return TD: combines bootstrapping from several different
states:

V π(xt)← V π(xt) + α

(
1

2
G

(2)
t (ρ) +

1

2
G

(4)
t (ρ)− V π(xt)

)
I Can we combine information from all time-steps?

26

λ-Return and Forward-view TD(λ)
I λ-return: combines all n-step returns:

Gλ
t (ρ) = (1− λ)

∞∑
n=0

λnG
(n)
t (ρ)

I Forward-view TD(λ):

V π(xt)← V π(xt) +α
(
Gλ
t (ρ)− V π(xt)

)
I Like MC, the Gλ

t return can only be
computed from complete episodes

27

Backward-view TD(λ)
I Forward-view TD(λ) is equivalent to TD(0) for λ = 0 and to every-visit

MC for λ = 1

I Backward-view TD(λ) allows online updates from incomplete episodes

I Credit assignment problem: did the bell or the light cause the shock?

I Frequency heuristic: assigns credit to the most frequent states
I Recency heuristic: assigns credit to the most recent states
I Eligibility traces: combine both heuristics

et(x) = γλet−1(x) + 1{x = xt}

I Backward-view TD(λ): updates in proportion to the TD error δt and
the eligibility trace et(x):

V π(xt)← V π(xt) + α (g(xt , ut) + γV π(xt+1)− V π(xt)) et(xt)

28

Next Quarter (Really Soon)

I ECE272B: Dynamical Systems under Uncertainty
I More rigorous treatment of Markov Chain and MDP theory
I A more careful look at the partially observable case
I Check out Piazza for details and a tentative syllabus

I ECE276C: Robot Reinforcement Learning
I We only touched the surface of reinforcement learning; ECE276C will

continue the story
I Function Approximation, Policy Gradients, Deep neural networks in

Reinforcement Learning
I More details:

https://sites.google.com/site/mikeyip1/teaching/ece276c

29

https://sites.google.com/site/mikeyip1/teaching/ece276c

