ECE276B: Planning & Learning in Robotics Lecture 16: Model-free Control

Lecturer:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants: Tianyu Wang: tiw161@eng.ucsd.edu Yongxi Lu: yol070@eng.ucsd.edu

UC San Diego

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Generalized Policy Iteration

• **Policy Evaluation**: Given π , compute V^{π} :

$$V^{\pi}(x) = g(x,\pi(x)) + \gamma \mathbb{E}_{x' \sim p_f(\cdot | x,\pi(x))} \left[V^{\pi}(x')
ight], \quad orall x \in \mathcal{X}$$

• **Policy Improvement**: Given V^{π} obtain a new policy π' :

$$\pi'(x) = \arg\min_{u \in \mathcal{U}(x)} \left\{ g(x, u) + \gamma \mathbb{E}_{x' \sim p_f(\cdot | x, u)} \left[V^{\pi}(x') \right] \right\}, \quad \forall x \in \mathcal{X}$$

Policy Improvement Theorem

Let π and π' be deterministic policies such that $V^{\pi}(x) \ge Q^{\pi}(x, \pi'(x))$ for all $x \in \mathcal{X}$. Then, π' is at least as good as π , i.e., $V^{\pi}(x) \ge V^{\pi'}(x)$ for all $x \in \mathcal{X}$

► Proof:

$$V^{\pi}(x) \ge Q^{\pi}(x, \pi'(x)) = g(x, \pi'(x)) + \gamma \mathbb{E}_{x' \sim p_{f}(\cdot x, \pi'(x))} V^{\pi}(x')$$

$$\ge g(x, \pi'(x)) + \gamma \mathbb{E}_{x' \sim p_{f}(\cdot x, \pi'(x))} Q^{\pi}(x', \pi'(x'))$$

$$= g(x, \pi'(x)) + \gamma \mathbb{E}_{x' \sim p_{f}(\cdot x, \pi'(x))} \{g(x', \pi'(x')) + \gamma \mathbb{E}_{x'' \sim p_{f}(\cdot x', \pi'(x'))} V^{\pi}(x'')\}$$

$$\ge \cdots \ge \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^{t} g(x_{t}, \pi'(x_{t})) \middle| x_{0} = x \right] = V^{\pi'}(x)$$

Model-free Generalized Policy Iteration

► **Policy Evaluation**: given π , GPI iterates \mathcal{T}_{π} to compute V^{π} : $DP : \mathcal{T}_{\pi}[V](x) = g(x, \pi(x)) + \gamma \mathbb{E}_{x' \sim p_{f}(\cdot | x, \pi(x))} [V(x')]$ $TD : \mathcal{T}_{\pi}[V](x_{t}) \approx V(x_{t}) + \alpha [g(x_{t}, u_{t}) + \gamma V(x_{t+1}) - V(x_{t})]$ $MC : \mathcal{T}_{\pi}[V](x_{t}) \approx V(x_{t}) + \alpha \left[\sum_{k=0}^{T-t-1} \gamma^{k} g(x_{t+k}, u_{t+k}) + \gamma^{T-t} g_{T}(x_{T}) - V(x_{t})\right]$

or alternatively Q^{π} :

$$DP: \mathcal{T}_{\pi}[Q](x, u) = g(x, u) + \gamma \mathbb{E}_{x' \sim \rho_{f}(\cdot | x, u)} \left[Q(x', \pi(x')) \right]$$

$$TD: \mathcal{T}_{\pi}[Q](x_{t}, u_{t}) \approx Q(x_{t}, u_{t}) + \alpha \left[g(x_{t}, u_{t}) + \gamma Q(x_{t+1}, u_{t+1}) - Q(x_{t}, u_{t}) \right]$$

$$MC: \mathcal{T}_{\pi}[Q](x_{t}, u_{t}) \approx Q(x_{t}, u_{t}) + \alpha \left[\sum_{k=0}^{T-t-1} \gamma^{k} g(x_{t+k}, u_{t+k}) + \gamma^{T-t} g_{T}(x_{T}) - Q(x_{t}, u_{t}) \right]$$

• **Policy Improvement**: given V^{π} or Q^{π} compute improved π' :

$$Q^{\pi}(x, u) = g(x, u) + \gamma \mathbb{E}_{x' \sim p_f(\cdot | x, u)} \left[V^{\pi}(x') \right]$$
$$\pi'(x) = \underset{u \in \mathcal{U}(x)}{\operatorname{arg\,min}} Q^{\pi}(x, u)$$

Model-free Generalized Policy Iteration

- Policy Evaluation: use MC or TD to estimate Q^π instead of V^π so that the policy improvement step is model-free, i.e., can compute min_u Q^π(x, u) without knowing p_f
- Policy Improvement: the fact that Q^π is approximation still causes some problems:
 - Picking the "best" control according to the current estimate Q^π might not be the actual best control
 - If a deterministic policy is used for Evaluation/Improvement, one will observe returns for only one of the possible controls at each state and also might not visit many states. Hence, estimating Q^{π} will not be possible at those never-visited states and controls

Example: Greedy Control Selection (David Silver)

- There are two doors in front of you
- You open the left door and get reward 0 V(left) = +0
- You open the right door and get reward +1
 V(right) = +1
- You open the right door and get reward +3
 V(right) = +3
- You open the right door and get reward +2
 V(right) = +2
- Are you sure you have chosen the best door?

"Behind one door is tenure - behind the other is flipping burgers at McDonald's."

Model-free Control

- Two ideas to ensure that you do not commit to the (wrong) controls too early and continue exploring the state and control spaces:
 - 1. **Exploring Starts**: in each episode $\rho^{(k)} \sim \pi$, choose initial state-control pairs with non-zero probability among all possible pairs $\mathcal{X} \times \mathcal{U}$
 - ε-Soft Policy: use a stochastic policy under which every control has a non-zero probability of being chosen and hence every reachable state will have non-zero probability of being encountered

First-visit MC Policy Iteration with Exploring Starts

Algorithm 1 MC Policy Iteration with Exploring Starts

1: Init: $Q(x, u), \pi(x)$ for all $x \in \mathcal{X}$ and $u \in \mathcal{U}$

2: **loop**

- 3: Choose $(x_0, u_0) \in \mathcal{X} \times \mathcal{U}$ randomly
- 4: Generate an episode $\rho = x_0, u_0, x_1, u_1, \dots, x_{T-1}, u_{t-1}, x_T$ from π
- 5: for each x, u in ρ do
- 6: $G \leftarrow$ return following the first occurrence of x, u

7:
$$Q(x, u) \leftarrow Q(x, u) + \alpha (G - Q(x, u))$$

8: for each x in ρ do

9:
$$\pi(x) \leftarrow \arg\min Q(x, u)$$

▷ exploring starts!

$\epsilon\text{-}\mathsf{Greedy}$ Exploration

- As an alternative to exploring starts, to ensure continual exploration it must be possible to encounter all |U(x)| controls at state x with non-zero probability
- ► e-Greedy Policy a stochastic policy that picks the best control according to Q(x, u) in the policy improvement step but ensures that all other controls are selected with a small (non-zero) probability:

$$\pi(u \mid x) = \begin{cases} 1 - \epsilon + \frac{\epsilon}{|\mathcal{U}(x)|} & \text{if } u = \underset{u' \in \mathcal{U}(x)}{\arg \min} Q(x, u') \\ \frac{\epsilon}{|\mathcal{U}(x)|} & \text{otherwise} \end{cases}$$

$\epsilon\text{-}\mathsf{Greedy}$ Policy Improvement

Theorem: ϵ -Greedy Policy Improvement

For any ϵ -soft policy π , the ϵ -greedy policy π' with respect to Q^{π} is an improvement, i.e., $V^{\pi'}(x) \leq V^{\pi}(x)$ for all $x \in \mathcal{X}$

Proof:

$$\begin{split} \mathbb{E}_{u' \sim \pi'(\cdot|x)} \left[Q^{\pi}(x, u') \right] &= \sum_{u' \in \mathcal{U}(x)} \pi'(u' \mid x) Q^{\pi}(x, u') \\ &= \frac{\epsilon}{|\mathcal{U}(x)|} \sum_{u' \in \mathcal{U}(x)} Q^{\pi}(x, u') + (1 - \epsilon) \min_{u \in \mathcal{U}(x)} Q^{\pi}(x, u) \\ &\leq \frac{\epsilon}{|\mathcal{U}(x)|} \sum_{u' \in \mathcal{U}(x)} Q^{\pi}(x, u') + (1 - \epsilon) \sum_{u \in \mathcal{U}(x)} \frac{\pi(u \mid x) - \frac{\epsilon}{|\mathcal{U}(x)|}}{1 - \epsilon} Q^{\pi}(x, u) \\ &= \sum_{u \in \mathcal{U}(x)} \pi(u \mid x) Q^{\pi}(x, u) = V^{\pi}(x) \end{split}$$

▶ Then, from the policy improvement theorem, $V^{\pi'}(x) \leq V^{\pi}(x)$, $\forall x \in \mathcal{X}$

First-visit MC Policy Iteration with ϵ -Greedy Improvement

Algorithm 2 First-visit MC Policy Iteration with ϵ -Greedy Improvement

 $= 11^{*}$

1: Init:
$$Q(x, u)$$
, $\pi(u|x)$ (ϵ -soft policy) for all $x \in \mathcal{X}$ and $u \in \mathcal{U}$

2: **loop**

- 3: Generate an episode $\rho := x_0, u_0, x_1, u_1, \dots, x_{T-1}, u_{t-1}, x_T$ from π
- 4: for each x, u in ρ do
- 5: $G \leftarrow$ return following the first occurrence of x, u

6:
$$Q(x, u) \leftarrow Q(x, u) + \alpha (G - Q(x, u))$$

7: for each
$$x$$
 in ρ do

8:
$$u^* \leftarrow \arg\min_u Q(x, u)$$

9: $\pi(u|x) \leftarrow \begin{cases} 1 - \epsilon + \frac{\epsilon}{|\mathcal{U}(x)|} & \text{if } u \end{cases}$

$$\pi(u|x) \leftarrow \begin{cases} \frac{\epsilon}{|\mathcal{U}(x)|} & \text{if } u \neq u \end{cases}$$

Temporal-Difference Control

► TD prediction has several advantages over MC prediction:

- Works with incomplete episodes
- Lower variance
- Can perform online updates after every transition
- To use TD instead of MC in a complete policy iteration algorithm, we still need to trade-off exploration and exploitation:
 - Apply TD to Q(x, u) for policy evaluation
 - Can update Q(x, u) after every transition within an episode
 - ▶ Use an *ϵ*-greedy policy for policy improvement

TD Policy Iteration with ϵ -Greedy Improvement (SARSA)

SARSA: estimates the action-value function Q^π using TD updates after every S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1} transition:

 $Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \alpha \left[g(x_t, u_t) + \gamma Q(x_{t+1}, u_{t+1}) - Q(x_t, u_t)\right]$

▶ Ensures exploration via an *e*-greedy policy in the policy improvement step

Algorithm 3 SARSA

1: Init:
$$Q(x, u)$$
 for all $x \in \mathcal{X}$ and all $u \in \mathcal{U}$

2: **loop**

- 3: $\pi \leftarrow \epsilon$ -greedy policy derived from Q
- 4: Generate episode $\rho := (x_{0:T}, u_{0:T-1})$ from π

5: for
$$(x, u, x', u') \in \rho$$
 do

6:
$$Q(x, u) \leftarrow Q(x, u) + \alpha [g(x, u) + \gamma Q(x', u') - Q(x, u)]$$

Convergence of Model-free Policy Iteration

• Greedy in the Limit with Infinite Exploitation (GLIE):

- ► All state-control pairs are explored infinitely many times: $\lim_{k\to\infty} N(x, u) = \infty$
- The ϵ -greedy policy converges to a greedy policy

$$\lim_{k\to\infty} \pi_k(u \mid x) = \mathbb{1}\{u = \arg\min_{u'\in\mathcal{U}(x)} Q(x, a')\}$$

• Example: If $\epsilon_k = \frac{1}{k}$, then ϵ -greedy is GLIE

Theorem: Convergence of MC Policy Iteration

GLIE MC Policy Iteration converges to the optimal action-value function, $Q(x, u) \rightarrow Q^*(x, u)$ as the number of episodes $k \rightarrow \infty$

Theorem: Convergence of TD Policy Iteration

SARSA converges to the optimal action-value function, $Q(x, u) \rightarrow Q^*(x, u)$ as $k \rightarrow \infty$ as long as:

- The sequence of ϵ -greedy policies $\pi_k(u \mid x)$ is GLIE
- The sequence of step sizes α_k is Robbins-Monro

On-Policy vs Off-Policy Learning

- **On-policy Prediction**: estimate V^{π} or Q^{π} using experience from π
- Off-policy Prediction: estimate V^{π} or Q^{π} using experience from μ
- On-policy methods:
 - evaluate or improve the policy that is used to make decisions
 - require well-designed exploration functions
 - empirically successful with function approximation
- Off-policy methods:
 - evaluate or improve a different policy from the (behavior) policy used to generate data
 - can use an effective exploratory policy to generate data while learning about an optimal policy
 - can learn from observing humans or other agents
 - can re-use experience from old policies π_1 , π_2 , ..., π_{n-1}
 - can learn about multiple policies while following one policy
 - have problems with function approximation and eligibility traces

Importance Sampling for Off-policy Learning

- To use returns generated from μ to evaluate π, we need to re-weight the stage-costs according to the similarity (i.e., likelihood) of states encountered by the two different policies
- Importance Sampling: estimates the expectation of a function with respect to a different distribution:

$$\mathbb{E}_{x \sim p(\cdot)}[f(x)] = \int p(x)f(x)dx$$
$$= \int q(x)\frac{p(x)}{q(x)}f(x)dx = \mathbb{E}_{x \sim q(\cdot)}\left[\frac{p(x)}{q(x)}f(x)\right]$$

Importance Sampling for Off-policy MC Learning

To use returns generated from μ to evaluate π via MC, weight the long-term cost G_t via importance-sampling corrections along the whole episode:

$$G_t^{\pi/\mu} = \frac{\pi(u_t|x_t)}{\mu(u_t|x_t)} \frac{\pi(u_{t+1}|x_{t+1})}{\mu(u_{t+1}|x_{t+1})} \cdots \frac{\pi(u_{T-1}|x_{T-1})}{\mu(u_{T-1}|x_{T-1})} G_t$$

• Update the value estimate towards the *corrected return*:

$$V(x_t) \leftarrow V(x_t) + \alpha \left(\mathbf{G}_t^{\pi/\mu} - V(x_t) \right)$$

Importance sampling in MC can dramatically increase the variance and cannot be used if μ is zero when π is non-zero

Importance Sampling for Off-policy TD Learning

To use returns generated from μ to evaluate π via TD, weight the TD target g(x, u) + γV(x') by importance sampling:

$$V(x_t) \leftarrow V(x_t) + \alpha \left(\frac{\pi(u_t \mid x_t)}{\mu(u_t \mid x_t)} \left(g(x_t, u_t) + \gamma V(x_{t+1}) \right) - V(x_t) \right)$$

Importance sampling in TD is much lower variance than in MC and the policies need to be similar (i.e., μ should not be zero when π is non-zero) over a single step only

Off-policy TD Control without Importance Sampling

- Q-Learning (Watkins, 1989): one of the early breakthroughs in reinforcement learning was the development of an off-policy TD algorithm that does not use importance sampling
- Q-Learning approximates $\mathcal{T}_*[Q](x, u)$ directly using samples:

$$Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \alpha \left[g(x_t, u_t) + \gamma \min_{u \in \mathcal{U}(x_{t+1})} Q(x_{t+1}, u) - Q(x_t, u_t) \right]$$

The learned Q function eventually approximates Q* regardless of the policy being followed!

Theorem

Q-Learning converges almost surely to Q^* assuming that all state-control pairs continue to be updated and the learning rate α is chosen via the usual Robbins-Monro stochastic approximation condition

C. J. Watkins and P. Dayan. "Q-learning," Machine learning, 1992.

Q-Learning: Off-policy TD Learning

Algorithm 4 Q-Learning

1: Init: Q(x, u) for all $x \in \mathcal{X}$ and all $u \in \mathcal{U}$

2: **loop**

- 3: $\pi \leftarrow \epsilon$ -greedy policy derived from Q
- 4: Generate episode $\rho := (x_{0:T}, u_{0:T-1})$ from π
- 5: for $(x, u, x') \in \rho$ do
- 6: $Q(x, u) \leftarrow Q(x, u) + \alpha \left[g(x, u) + \gamma \min_{u'} Q(x', u') Q(x, u)\right]$

Relationship Between DP and TD

Full Backups (DP)	Sample Backups (TD)
Policy Evaluation	TD Prediction
$V(x) \leftarrow \mathcal{T}_{\pi}[V](x) = g(x, \pi(x)) + \gamma \mathbb{E}_{x'}\left[V(x')\right]$	$V(x) \leftarrow V(x) + \alpha(g(x, u) + \gamma V(x') - V(x))$
Policy Q-Evaluation	SARSA
$Q(x, u) \leftarrow \mathcal{T}_{\pi}[Q](x, u) = g(x, u) + \gamma \mathbb{E}_{x'}\left[Q(x', \pi(x'))\right]$	$Q(x, u) \leftarrow Q(x, u) + \alpha(g(x, u) + \gamma Q(x', u') - Q(x, u))$
Value Iteration	N/A
$V(x) \leftarrow \mathcal{T}_*[V](x) = \min_{u} \left\{ g(x, u) + \gamma \mathbb{E}_{x'} \left[V(x') \right] \right\}$	
Q-Value Iteration	Q-Learning
$Q(x, u) \leftarrow \mathcal{T}_*[Q](x, u) = g(x, u) + \gamma \mathbb{E}_{x'} \left[\min_{u'} Q(x', u') \right]$	$\left Q(x,u) \leftarrow Q(x,u) + \alpha \left(g(x,u) + \gamma \min_{u'} Q(x',u') - Q(x,u) \right) \right $

Batch Sampling-based Q-Value Iteration

Algorithm 5 Batch Sampling-based Q-Value Iteration

1: Init: $Q^{(0)}(x, u)$ for all $x \in \mathcal{X}$ and all $u \in \mathcal{U}$

2: **loop**

- 3: $\pi \leftarrow \epsilon$ -greedy policy derived from Q
- 4: Generate episodes $\{\rho^{(k)}\}_{k=1}^{K}$ from π

5: **for**
$$(x, u) \in \mathcal{X} \times \mathcal{U}$$
 do
6: $Q^{(i+1)} = \frac{1}{K} \sum_{k=1}^{K} \frac{\sum_{t=0}^{T} \mathcal{T}_{*}[Q^{(i)}](x_{t}^{(k)}, u_{t}^{(k)}, x_{t+1}^{(k)}) \mathbb{1}\{(x_{t}^{(k)}, u_{t}^{(k)}) = (x, u)\}}{\sum_{t=0}^{T} \mathbb{1}\{(x_{t}^{(k)}, u_{t}^{(k)}) = (x, u)\}}$

▶ Batch Sampling-based Q-Value Iteration behaves like Q⁽ⁱ⁺¹⁾ = T_{*}[Q⁽ⁱ⁾] + noise. Does it actually converge?

Least-squares Backup Version

$$P_{Q^{(i+1)}(x, u)} = \text{mean} \left\{ \mathcal{T}_{*}[Q^{(i)}](x_{t}^{(k)}, u_{t}^{(k)}, x_{t+1}^{(k)}), \forall k, t \text{ such that } (x_{t}^{(k)}, u_{t}^{(k)}) = (x, u) \right\}$$

$$P_{Q^{(i+1)}(x, u)} = \arg \min_{q} \sum_{k=1}^{K} \sum_{k=1}^{K} \|x^{(k)} - x\|^{2} \right\}$$

$$Q^{(i+1)}(x, u) = \arg \min_{q} \sum_{k=1}^{K} \sum_{t=1}^{K} \|\mathcal{T}_{*}[Q^{(i)}](x_{t}^{(k)}, u_{t}^{(k)}, x_{t+1}^{(k)}) - q\|^{2}$$

$$Q^{(i+1)} = \arg \min_{Q} \sum_{k=1}^{K} \sum_{t=0}^{T} \|\mathcal{T}_{*}[Q^{(i)}](x_{t}^{(k)}, u_{t}^{(k)}, x_{t+1}^{(k)}) - Q(x_{t}^{(k)}, u_{t}^{(k)})\|^{2}$$

Algorithm 6 Batch Least-squares Q-Value Iteration

1: Init:
$$Q^{(0)}(x, u)$$
 for all $x \in \mathcal{X}$ and all $u \in \mathcal{U}$

2: **loop**

3:
$$\pi \leftarrow \epsilon$$
-greedy policy derived from Q

4: Generate episodes
$$\{\rho^{(k)}\}_{k=1}^{K}$$
 from π
5: $Q^{(i+1)} = \arg\min_{Q} \sum_{k=1}^{K} \sum_{t=0}^{T} \left\| \mathcal{T}_{*}[Q^{(i)}](x_{t}^{(k)}, u_{t}^{(k)}, x_{t+1}^{(k)}) - Q(x_{t}^{(k)}, u_{t}^{(k)}) \right\|^{2}$

Small Steps in the Backup Direction

- Full backup: $Q^{(i+1)} \leftarrow \mathcal{T}_*[Q^{(i)}]$
- ▶ Partial backup: $Q^{(i+1)} \leftarrow \epsilon \mathcal{T}_*[Q^{(i)}] + (1-\epsilon)Q^{(i)}$
- Equivalent to a gradient step on squared error:

$$Q^{(i+1)} \leftarrow \epsilon \mathcal{T}_*[Q^{(i)}] + (1-\epsilon)Q^{(i)} = Q^{(i)} - \epsilon \left(Q^{(i)} - \mathcal{T}_*[Q^{(i)}]\right)$$
$$= Q^{(i)} - \epsilon \left(\frac{1}{2}\nabla_Q \|Q^{(i)} - \mathcal{T}_*[Q^{(i)}]\|^2\Big|_{Q=Q^{(i)}} + \text{noise}\right)$$

- ▶ Behaves like stochastic gradient descent on L(Q) := ¹/₂ ||T_{*}[Q] Q||² but the objective is changing, i.e., T_{*}[Q⁽ⁱ⁾] is a moving target. Does it converge?
- Stochastic Approximation Theory: a "partial update" to ensure contraction + appropriate step size € implies convergence to the contraction fixed point: lim_{i→∞} Q⁽ⁱ⁾ = Q*
- T. Jaakkola, M. Jordan, S. Singh, "On the convergence of stochastic iterative dynamic programming algorithms," Neural computation, 1994.3

Least-squares Partial Backup Version

Algorithm 7 Batch Gradient Least-squares Q-Value Iteration

1: Init: $Q^{(0)}(x, u)$ for all $x \in \mathcal{X}$ and all $u \in \mathcal{U}$

2: **loop**

- 3: $\pi \leftarrow \epsilon$ -greedy policy derived from Q
- 4: Generate episodes $\{\rho^{(k)}\}_{k=1}^{K}$ from π

5:
$$Q^{(i+1)}(x,u) \leftarrow Q^{(i)}(x,u) + \frac{\epsilon}{2} \nabla_Q \sum_{k=1}^{\kappa} \sum_{t=0}^{I-1} \|\mathcal{T}_*[Q^{(i)}](x_t^{(k)}, u_t^{(k)}, x_{t+1}^{(k)}) - Q(x_t^{(k)}, u_t^{(k)})\|^2$$

• Watkins Q-learning is a special case with T = 1