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Generalized Policy Iteration
I Policy Evaluation: Given π, compute V π:

V π(x) = g(x , π(x)) + γEx ′∼pf (·|x ,π(x))
[
V π(x ′)

]
, ∀x ∈ X

I Policy Improvement: Given V π obtain a new policy π′:

π′(x) = arg min
u∈U(x)

{
g(x , u) + γEx ′∼pf (·|x ,u)

[
V π(x ′)

]}
, ∀x ∈ X

Policy Improvement Theorem

Let π and π′ be deterministic policies such that V π(x) ≥ Qπ(x , π′(x)) for all
x ∈ X . Then, π′ is at least as good as π, i.e., V π(x) ≥ V π′(x) for all x ∈ X

I Proof:
V π(x) ≥ Qπ(x , π′(x)) = g(x , π′(x)) + γEx ′∼pf (·x ,π′(x))V

π(x ′)

≥ g(x , π′(x)) + γEx ′∼pf (·x ,π′(x))Q
π(x ′, π′(x ′))

= g(x , π′(x)) + γEx ′∼pf (·x ,π′(x))
{
g(x ′, π′(x ′)) + γEx ′′∼pf (·x ′,π′(x ′))V

π(x ′′)
}

≥ · · · ≥ E

[ ∞∑
t=0

γtg(xt , π
′(xt))

∣∣∣∣x0 = x

]
= V π′(x)
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Model-free Generalized Policy Iteration
I Policy Evaluation: given π, GPI iterates Tπ to compute V π:

DP : Tπ[V ](x) = g(x , π(x)) + γEx ′∼pf (·|x ,π(x))
[
V (x ′)

]
TD : Tπ[V ](xt) ≈ V (xt) + α [g(xt , ut) + γV (xt+1)− V (xt)]

MC : Tπ[V ](xt) ≈ V (xt) + α

[
T−t−1∑
k=0

γkg(xt+k , ut+k) + γT−tgT (xT )− V (xt)

]
or alternatively Qπ:

DP : Tπ[Q](x , u) = g(x , u) + γEx ′∼pf (·|x ,u)
[
Q(x ′, π(x ′))

]
TD : Tπ[Q](xt , ut) ≈ Q(xt , ut) + α [g(xt , ut) + γQ(xt+1, ut+1)− Q(xt , ut)]

MC : Tπ[Q](xt , ut) ≈ Q(xt , ut) + α

[
T−t−1∑
k=0

γkg(xt+k , ut+k) + γT−tgT (xT )− Q(xt , ut)

]

I Policy Improvement: given V π or Qπ compute improved π′:

Qπ(x , u) = g(x , u) + γEx ′∼pf (·|x ,u)
[
V π(x ′)

]
π′(x) = arg min

u∈U(x)
Qπ(x , u)
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Model-free Generalized Policy Iteration

I Policy Evaluation: use MC or TD to estimate Qπ instead of V π so
that the policy improvement step is model-free, i.e., can compute
minu Q

π(x , u) without knowing pf

I Policy Improvement: the fact that Qπ is approximation still causes
some problems:

I Picking the “best” control according to the current estimate Qπ might
not be the actual best control

I If a deterministic policy is used for Evaluation/Improvement, one will
observe returns for only one of the possible controls at each state and also
might not visit many states. Hence, estimating Qπ will not be possible at
those never-visited states and controls
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Example: Greedy Control Selection (David Silver)

I There are two doors in front of you

I You open the left door and get reward 0
V (left) = +0

I You open the right door and get reward +1
V (right) = +1

I You open the right door and get reward +3
V (right) = +3

I You open the right door and get reward +2
V (right) = +2

I Are you sure you have chosen the best door?
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Model-free Control

I Two ideas to ensure that you do not commit to the (wrong) controls
too early and continue exploring the state and control spaces:

1. Exploring Starts: in each episode ρ(k) ∼ π, choose initial state-control
pairs with non-zero probability among all possible pairs X × U

2. ε-Soft Policy: use a stochastic policy under which every control has a
non-zero probability of being chosen and hence every reachable state will
have non-zero probability of being encountered
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First-visit MC Policy Iteration with Exploring Starts

Algorithm 1 MC Policy Iteration with Exploring Starts
1: Init: Q(x , u), π(x) for all x ∈ X and u ∈ U
2: loop
3: Choose (x0, u0) ∈ X × U randomly . exploring starts!
4: Generate an episode ρ = x0, u0, x1, u1, . . . , xT−1, ut−1, xT from π
5: for each x , u in ρ do
6: G ← return following the first occurrence of x , u
7: Q(x , u)← Q(x , u) + α (G − Q(x , u))

8: for each x in ρ do
9: π(x)← arg min

u
Q(x , u)
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ε-Greedy Exploration

I As an alternative to exploring starts, to ensure continual exploration it
must be possible to encounter all |U(x)| controls at state x with
non-zero probability

I ε-Greedy Policy a stochastic policy that picks the best control
according to Q(x , u) in the policy improvement step but ensures that all
other controls are selected with a small (non-zero) probability:

π(u | x) =

1− ε+ ε
|U(x)| if u = arg min

u′∈U(x)
Q(x , u′)

ε
|U(x)| otherwise
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ε-Greedy Policy Improvement

Theorem: ε-Greedy Policy Improvement

For any ε-soft policy π, the ε-greedy policy π′ with respect to Qπ is an
improvement, i.e., V π′(x) ≤ V π(x) for all x ∈ X

I Proof:

Eu′∼π′(·|x)
[
Qπ(x , u′)

]
=

∑
u′∈U(x)

π′(u′ | x)Qπ(x , u′)

=
ε

|U(x)|
∑

u′∈U(x)

Qπ(x , u′) + (1− ε) min
u∈U(x)

Qπ(x , u)

≤ ε

|U(x)|
∑

u′∈U(x)

Qπ(x , u′) + (1− ε)
∑

u∈U(x)

π(u | x)− ε
|U(x)|

1− ε
Qπ(x , u)

=
∑

u∈U(x)

π(u | x)Qπ(x , u) = V π(x)

I Then, from the policy improvement theorem, V π′(x) ≤ V π(x), ∀x ∈ X
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First-visit MC Policy Iteration with ε-Greedy Improvement

Algorithm 2 First-visit MC Policy Iteration with ε-Greedy Improvement
1: Init: Q(x , u), π(u|x) (ε-soft policy) for all x ∈ X and u ∈ U
2: loop
3: Generate an episode ρ := x0, u0, x1, u1, . . . , xT−1, ut−1, xT from π
4: for each x , u in ρ do
5: G ← return following the first occurrence of x , u
6: Q(x , u)← Q(x , u) + α (G − Q(x , u))

7: for each x in ρ do
8: u∗ ← arg min

u
Q(x , u)

9: π(u|x)←

{
1− ε+ ε

|U(x)| if u = u∗

ε
|U(x)| if u 6= u∗
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Temporal-Difference Control

I TD prediction has several advantages over MC prediction:
I Works with incomplete episodes
I Lower variance
I Can perform online updates after every transition

I To use TD instead of MC in a complete policy iteration algorithm, we
still need to trade-off exploration and exploitation:

I Apply TD to Q(x , u) for policy evaluation
I Can update Q(x , u) after every transition within an episode
I Use an ε-greedy policy for policy improvement
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TD Policy Iteration with ε-Greedy Improvement (SARSA)

I SARSA: estimates the action-value function Qπ using TD updates after
every St ,At ,Rt+1,St+1,At+1 transition:

Q(xt , ut)← Q(xt , ut) + α [g(xt , ut) + γQ(xt+1, ut+1)− Q(xt , ut)]

I Ensures exploration via an ε-greedy policy in the policy improvement step

Algorithm 3 SARSA

1: Init: Q(x , u) for all x ∈ X and all u ∈ U
2: loop
3: π ← ε-greedy policy derived from Q
4: Generate episode ρ := (x0:T , u0:T−1) from π
5: for (x , u, x ′, u′) ∈ ρ do
6: Q(x , u)← Q(x , u) + α [g(x , u) + γQ(x ′, u′)− Q(x , u)]
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Convergence of Model-free Policy Iteration
I Greedy in the Limit with Infinite Exploitation (GLIE):

I All state-control pairs are explored infinitely many times: lim
k→∞

N(x , u) =∞
I The ε-greedy policy converges to a greedy policy

lim
k→∞

πk(u | x) = 1{u = arg min
u′∈U(x)

Q(x , a′)}

I Example: If εk = 1
k , then ε-greedy is GLIE

Theorem: Convergence of MC Policy Iteration

GLIE MC Policy Iteration converges to the optimal action-value function,
Q(x , u)→ Q∗(x , u) as the number of episodes k →∞

Theorem: Convergence of TD Policy Iteration

SARSA converges to the optimal action-value function, Q(x , u)→ Q∗(x , u)
as k →∞ as long as:

I The sequence of ε-greedy policies πk(u | x) is GLIE

I The sequence of step sizes αk is Robbins-Monro
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On-Policy vs Off-Policy Learning

I On-policy Prediction: estimate V π or Qπ using experience from π

I Off-policy Prediction: estimate V π or Qπ using experience from µ

I On-policy methods:
I evaluate or improve the policy that is used to make decisions
I require well-designed exploration functions
I empirically successful with function approximation

I Off-policy methods:
I evaluate or improve a different policy from the (behavior) policy used to

generate data
I can use an effective exploratory policy to generate data while learning

about an optimal policy
I can learn from observing humans or other agents
I can re-use experience from old policies π1, π2, . . . , πn−1
I can learn about multiple policies while following one policy
I have problems with function approximation and eligibility traces
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Importance Sampling for Off-policy Learning

I To use returns generated from µ to evaluate π, we need to re-weight the
stage-costs according to the similarity (i.e., likelihood) of states
encountered by the two different policies

I Importance Sampling: estimates the expectation of a function with
respect to a different distribution:

Ex∼p(·)[f (x)] =

∫
p(x)f (x)dx

=

∫
q(x)

p(x)

q(x)
f (x)dx = Ex∼q(·)

[
p(x)

q(x)
f (x)

]
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Importance Sampling for Off-policy MC Learning

I To use returns generated from µ to evaluate π via MC, weight the
long-term cost Gt via importance-sampling corrections along the whole
episode:

G
π/µ
t =

π(ut |xt)
µ(ut |xt)

π(ut+1|xt+1)

µ(ut+1|xt+1)
· · · π(uT−1|xT−1)

µ(uT−1|xT−1)
Gt

I Update the value estimate towards the corrected return:

V (xt)← V (xt) + α
(
G
π/µ
t − V (xt)

)
I Importance sampling in MC can dramatically increase the variance and

cannot be used if µ is zero when π is non-zero
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Importance Sampling for Off-policy TD Learning

I To use returns generated from µ to evaluate π via TD, weight the TD
target g(x , u) + γV (x ′) by importance sampling:

V (xt)← V (xt) + α

(
π(ut | xt)
µ(ut | xt)

(g(xt , ut) + γV (xt+1))− V (xt)

)
I Importance sampling in TD is much lower variance than in MC and the

policies need to be similar (i.e., µ should not be zero when π is
non-zero) over a single step only
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Off-policy TD Control without Importance Sampling

I Q-Learning (Watkins, 1989): one of the early breakthroughs in
reinforcement learning was the development of an off-policy TD
algorithm that does not use importance sampling

I Q-Learning approximates T∗[Q](x , u) directly using samples:

Q(xt , ut)← Q(xt , ut)+α

[
g(xt , ut) + γ min

u∈U(xt+1)
Q(xt+1, u)− Q(xt , ut)

]
I The learned Q function eventually approximates Q∗ regardless of the

policy being followed!

Theorem

Q-Learning converges almost surely to Q∗ assuming that all state-control
pairs continue to be updated and the learning rate α is chosen via the usual
Robbins-Monro stochastic approximation condition

I C. J. Watkins and P. Dayan. “Q-learning,” Machine learning, 1992.
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Q-Learning: Off-policy TD Learning

Algorithm 4 Q-Learning

1: Init: Q(x , u) for all x ∈ X and all u ∈ U
2: loop
3: π ← ε-greedy policy derived from Q
4: Generate episode ρ := (x0:T , u0:T−1) from π
5: for (x , u, x ′) ∈ ρ do
6: Q(x , u)← Q(x , u) + α [g(x , u) + γminu′ Q(x ′, u′)− Q(x , u)]
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Relationship Between DP and TD

Full Backups (DP) Sample Backups (TD)

Policy Evaluation TD Prediction
V (x)← Tπ[V ](x) = g(x , π(x)) + γEx ′

[
V (x ′)

]
V (x)← V (x) + α(g(x , u) + γV (x ′)− V (x))

Policy Q-Evaluation SARSA
Q(x , u)← Tπ[Q](x , u) = g(x , u) + γEx ′

[
Q(x ′, π(x ′))

]
Q(x , u)← Q(x , u) + α(g(x , u) + γQ(x ′, u′)− Q(x , u))

Value Iteration N/A
V (x)← T∗[V ](x) = min

u

{
g(x , u) + γEx ′

[
V (x ′)

]}
Q-Value Iteration Q-Learning

Q(x , u)← T∗[Q](x , u) = g(x , u) + γEx ′

[
min
u′

Q(x ′, u′)

]
Q(x , u)← Q(x , u) + α

(
g(x , u) + γmin

u′
Q(x ′, u′)− Q(x , u)

)
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Batch Sampling-based Q-Value Iteration

Algorithm 5 Batch Sampling-based Q-Value Iteration

1: Init: Q(0)(x , u) for all x ∈ X and all u ∈ U
2: loop
3: π ← ε-greedy policy derived from Q
4: Generate episodes {ρ(k)}Kk=1 from π
5: for (x , u) ∈ X × U do

6: Q(i+1) =
1

K

K∑
k=1

∑T
t=0 T∗[Q(i)](x

(k)
t , u

(k)
t , x

(k)
t+1)1{(x (k)t , u

(k)
t ) = (x , u)}∑T

t=0 1{(x
(k)
t , u

(k)
t ) = (x , u)}

I Batch Sampling-based Q-Value Iteration behaves like
Q(i+1) = T∗[Q(i)] + noise. Does it actually converge?
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Least-squares Backup Version
I Q(i+1)(x , u) = mean

{
T∗[Q(i)](x

(k)
t , u

(k)
t , x

(k)
t+1), ∀k , t such that (x

(k)
t , u

(k)
t ) = (x , u)

}
I mean

{
x (k) = arg min

x

∑K
k=1 ‖x (k) − x‖2

}
I Q(i+1)(x , u) = arg min

q

K∑
k=1

∑
(x

(k)
t ,u

(k)
t )=(x ,u)

∥∥∥T∗[Q(i)](x
(k)
t , u

(k)
t , x

(k)
t+1)− q

∥∥∥2
I Q(i+1) = arg min

Q

K∑
k=1

T∑
t=0

∥∥∥T∗[Q(i)](x
(k)
t , u

(k)
t , x

(k)
t+1)− Q(x

(k)
t , u

(k)
t )
∥∥∥2

Algorithm 6 Batch Least-squares Q-Value Iteration

1: Init: Q(0)(x , u) for all x ∈ X and all u ∈ U
2: loop
3: π ← ε-greedy policy derived from Q
4: Generate episodes {ρ(k)}Kk=1 from π

5: Q(i+1) = arg min
Q

K∑
k=1

T∑
t=0

∥∥∥T∗[Q(i)](x
(k)
t , u

(k)
t , x

(k)
t+1)− Q(x

(k)
t , u

(k)
t )
∥∥∥2
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Small Steps in the Backup Direction
I Full backup: Q(i+1) ← T∗[Q(i)]

I Partial backup: Q(i+1) ← εT∗[Q(i)] + (1− ε)Q(i)

I Equivalent to a gradient step on squared error:

Q(i+1) ← εT∗[Q(i)] + (1− ε)Q(i) = Q(i) − ε
(
Q(i) − T∗[Q(i)]

)
= Q(i) − ε

(
1

2
∇Q‖Q(i) − T∗[Q(i)]‖2

∣∣∣∣
Q=Q(i)

+ noise

)
I Behaves like stochastic gradient descent on L(Q) := 1

2‖T∗[Q]−Q‖2 but

the objective is changing, i.e., T∗[Q(i)] is a moving target. Does it
converge?

I Stochastic Approximation Theory: a “partial update” to ensure
contraction + appropriate step size ε implies convergence to the
contraction fixed point: limi→∞Q(i) = Q∗

I T. Jaakkola, M. Jordan, S. Singh, “On the convergence of stochastic
iterative dynamic programming algorithms,” Neural computation, 1994.23



Least-squares Partial Backup Version

Algorithm 7 Batch Gradient Least-squares Q-Value Iteration

1: Init: Q(0)(x , u) for all x ∈ X and all u ∈ U
2: loop
3: π ← ε-greedy policy derived from Q
4: Generate episodes {ρ(k)}Kk=1 from π

5: Q(i+1)(x , u)← Q(i)(x , u) +
ε

2
∇Q

K∑
k=1

T−1∑
t=0

‖T∗[Q(i)](x
(k)
t , u

(k)
t , x

(k)
t+1)− Q(x

(k)
t , u

(k)
t )‖2

I Watkins Q-learning is a special case with T = 1
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