## ECE276B: Planning \& Learning in Robotics Lecture 1: Markov Chains

Lecturer:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Tianyu Wang: tiw161@eng.ucsd.edu
Yongxi Lu: yol070@eng.ucsd.edu

# UCSanDiego 

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

## What is this class about?

- In ECE276A, we studied the fundamental problems of sensing and state estimation:
- how to model a robot's motion and observations
- how to estimate (a distribution of) the robot state $x_{t}$ from the history of observations $z_{0: t}$ and control inputs $u_{0: t-1}$
- In ECE276B, we will focus on the fundamental problems of planning and decision making:
- how to model tasks such as navigate to a goal without crashing or improve the state estimate by choosing informative observations
- how to select the controls $u_{0: t-1}$ that achieve these tasks
- References (not required):
- Dynamic Programming and Optimal Control: Bertsekas
- Planning Algorithms: LaValle (http://planning.cs.uiuc.edu)
- Reinforcement Learning: Sutton \& Barto (http://incompleteideas.net/book/the-book.html)
- Calculus of Variations and Optimal Control Theory: Liberzon (http://liberzon.csl.illinois.edu/teaching/cvoc.pdf)


## Logistics

- Course website: https://natanaso.github.io/ece276b
- Includes links to (sign up!):
- Piazza: discussion - it is your responsibility to check Piazza regularly because class announcements, updates, etc., will be posted there
- GradeScope: homework submissions and grades
- Four assignments (roughly 25\% each, detailed rubric online) including:
- theoretical homework
- programming assignments in python
- project report
- Grading:
- Letter grades will be assigned based on the class performance, i.e., there will be a "curve"
- Late policy: there will be a $10 \%$ penalty for submitting your work up to 1 week late. Work submitted more than a week late will receive 0 credit.


## Prerequisites

- Probability theory: random vectors, probability density functions, expectation, covariance, total probability, conditioning, Bayes rule
- Linear algebra/systems: eigenvalues, positive definiteness, linear systems of ODEs, matrix exponential
- Optimization: gradient descent, linear constraints, convex functions
- Programming: python/C++/Matlab, classes/objects, data structures (e.g., queue, list), data input/output, plotting
- It is up to you to judge if you are ready for this course!
- Consult with your classmates who took ECE276A
- Take a look at the ECE276A material: https://natanaso.github.io/ece276a/schedule.html
- If the first assignment in ECE276B seems hard, the rest will be hard as well


## Syllabus Snapshot

| Date | Lecture | Materials | Assignments |
| :--- | :--- | :--- | :--- |
| Jan 09 | Introduction, Markov Chains |  |  |
| Jan 11 | Markov Decision Processes | Bertsekas 1.1-1.2 |  |
| Jan 16 | Dynamic Programming | Bertsekas 1.3-1.4 | P1 |
| Jan 18 | Deterministic Shortest Path | Bertsekas 2.1-2.3 |  |
| Jan 23 | Configuration Space | LaValle 4.3, 6.2-6.3 |  |
| Jan 25 | Search-based Planning I | LaValle 2.1-2.3 |  |
| Jan 30 | Search-based Planning II | LaValle 5.5-5.6 |  |
| Feb 01 | Sampling-based Planning I |  |  |
| Feb 06 | Sampling-based Planning II | Bertsekas 7.1-7.3 |  |
| Feb 08 | TBD (Collision Checking, Non-holonomic Planning) |  |  |
| Feb 13 | Stochastic Shortest Path | Sutton-Barto 4.1-4.4 | P3 |
| Feb 15 | Bellman Equations I | Sutton-Barto 4.5-4.8 |  |
| Feb 20 | Bellman Equations II | Bertsekas 3.1-3.2 |  |
| Feb 22 | Continuous-time Optimal Control | Bertsekas 3.3-3.4 |  |
| Feb 27 | Linear Quadratic Control | Sutton-Barto 6-1-6.3 | P4 |
| Mar 01 | Pontryagin's Maximum Principle | Sutton-Barto 6.4-6.7 |  |
| Mar 06 | Model-free Prediction |  |  |
| Mar 08 | Model-free Control |  |  |
| Mar 13 | Value Function Approximation |  |  |
| Mar 15 | TBD (Exploration vs Exploitation) |  |  |

## Markov Chain

- A Markov Chain is a probabilistic model used to represent the evolution of a robot system
- The state $x_{t} \in\{1,2,3\}$ is fully observed (unlike HMM and Bayes filtering settings)
- The transitions are random, determined by a transition kernel but uncontrolled (just like in the HMM and Bayes filtering settings, the control input is known)
- A Markov Decision Process (MDP) is a Markov chain, whose transitions are controlled


$$
\begin{aligned}
P & =\left[\begin{array}{ccc}
0.6 & 0.3 & 0 \\
0.2 & 0.4 & 0.3 \\
0.2 & 0.3 & 0.7
\end{array}\right] \\
P_{i j} & =\mathbb{P}\left(x_{t+1}=i \mid x_{t}=j\right)
\end{aligned}
$$

## Motion Planning



## A* Search

- Invented by Hart, Nilsson and Raphael of Stanford Research Institute in 1968 for the Shakey robot
- Video: https://youtu.be/ qXdn6ynwpiI?t=3m55s



## Search-based Planning



- CMU's autonomous car used search-based planning in the DARPA Urban Challenge in 2007
- Likhachev and Ferguson, "Planning Long Dynamically Feasible Maneuvers for Autonomous Vehicles," IJRR'09
- Video: https://www.youtube.com/watch?v=4hFhl00i8KI
- Video: https://www.youtube.com/watch?v=qXZt-B7iUyw
- Paper: http://journals.sagepub.com/doi/pdf/10.1177/0278364909340445


## Sampling-based Planning



- RRT algorithm on the PR2 - planning with both arms (12 DOF)
- Karaman and Frazzoli, "Sampling-based algorithms for optimal motion planning," IJRR'11
- Video: https://www.youtube.com/watch?v=vW74bC-Ygb4
- Paper: http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761


## Sampling-based Planning



- RRT* algorithm on a race car - 270 degree turn
- Karaman and Frazzoli, "Sampling-based algorithms for optimal motion planning," IJRR'11
- Video: https://www.youtube.com/watch?v=p3nZHnOWhrg
- Video: https://www.youtube.com/watch?v=LKL5qRBiJaM
- Paper: http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761


## Dynamic Programming and Optimal Control



- Tassa, Mansard and Todorov, "Control-limited Differential Dynamic Programming," ICRA'14
- Video: https://www.youtube.com/watch?v=tCQSSkBH2NI
- Paper: http://ieeexplore.ieee.org/document/6907001/


## Model-free Reinforcement Learning



- Robot learns to flip pancakes
- Kormushev, Calinon and Caldwell, "Robot Motor Skill Coordination with EM-based Reinforcement Learning," IROS'10
- Video: https://www.youtube.com/watch?v=W_gxLKSsSIE
- Paper: http://www.dx.doi.org/10.1109/IROS.2010.5649089


## Applications of Optimal Control \& Reinforcement Learning


(a) Games

(b) Character Animation

(c) Robotics

(d) Autonomous Driving


Tits Bip Mrad ach

cilci heto for more information
(e) Marketing

(f) Computational Biology

## Problem Formulation

- Motion model: specifies how a dynamical system evolves

$$
x_{t+1}=f\left(x_{t}, u_{t}, w_{t}\right) \sim p_{f}\left(\cdot \mid x_{t}, u_{t}\right), \quad t=0, \ldots, T-1
$$

- discrete time $t \in\{0, \ldots, T\}$
- state $x_{t} \in \mathcal{X}$
- control $u_{t} \in \mathcal{U}\left(x_{t}\right)$ and $\mathcal{U}:=\bigcup_{x \in \mathcal{X}} \mathcal{U}(x)$
- motion noise $w_{t}$ (random vector) with known probability density function (pdf) and assumed conditionally independent of other disturbances $w_{\tau}$ for $\tau \neq t$ for given $x_{t}$ and $u_{t}$
- the motion model is specified by the nonlinear function $f$ or equivalently by the pdf $p_{f}$ of $x_{t+1}$ conditioned on $x_{t}$ and $u_{t}$
- Observation model: the state $x_{t}$ might not be observable but perceived through measurements:

$$
z_{t}=h\left(x_{t}, v_{t}\right) \sim p_{h}\left(\cdot \mid x_{t}\right), \quad t=0, \ldots, T
$$

- measurement noise $v_{t}$ (random vector) with known pdf and conditionally independent of other disturbances $v_{\tau}$ for $\tau \neq t$ for given $x_{t}$ and $w_{t}$ for all $t$
- the observation model is specified by the nonlinear function $h$ or equivalently by the pdf $p_{h}$ of $z_{t}$ conditioned on $x_{t}$


## Problem Formulation

- Markov Assumptions
- The state $x_{t+1}$ only depends on the

- Joint distribution:

$$
p\left(x_{0: T}, z_{0: T}, u_{0: T-1}\right)=\underbrace{p_{0 \mid 0}\left(x_{0}\right)}_{\text {prior }} \prod_{t=0}^{T} \underbrace{p_{h}\left(z_{t} \mid x_{t}\right)}_{\text {observation model }} \prod_{t=1}^{T} \underbrace{p_{f}\left(x_{t} \mid x_{t-1}, u_{t-1}\right)}_{\text {motion model }}
$$

- The Problem of Acting Optimally: Given a model $p_{f}$ of the system evolution and direct observations of its state $x_{t}$ (or prior pdf $p_{0 \mid 0}$ and observation model $p_{h}$ ) determine control inputs $u_{0: T-1}$ to minimize (maximize) a scalar-valued additive cost (reward) function:

$$
J_{0}^{u_{0}: T-1}\left(x_{0}\right):=\mathbb{E}_{x_{1: T}}[\underbrace{g_{T}\left(x_{T}\right)}_{\text {terminal cost }}+\sum_{t=0}^{T-1} \underbrace{g\left(x_{t}, u_{t}\right)}_{\text {stage cost }} \mid x_{0}, u_{0: T-1}]
$$

## Problem Solution: Control Policy

- The problem of acting optimally is called:
- Optimal Control (OC): when the models $p_{f}, p_{h}$ are known
- Reinforcement Learning (RL): when the models are unknown but samples can be obtained from them
- Inverse RL/OC: when the cost (reward) functions $g$ are unknown
- The solution to an OC/RL problem is a policy $\pi$
- Let $\pi_{t}\left(x_{t}\right)$ map a state $x_{t} \in \mathcal{X}$ to a feasible control input $u_{t} \in \mathcal{U}\left(x_{t}\right)$
- The sequence $\pi:=\left\{\pi_{0}(\cdot), \pi_{1}(\cdot), \ldots, \pi_{T-1}(\cdot)\right\}=\pi_{0: T-1}$ of functions $\pi_{t}$ is called an admissible control policy
- The cost (reward) of a policy $\pi \in \Pi$ (set of all admissible policies) is:

$$
J_{0}^{\pi}\left(x_{0}\right):=\mathbb{E}_{x_{1}: T}\left[g_{T}\left(x_{T}\right)+\sum_{t=0}^{T-1} g\left(x_{t}, \pi_{t}\left(x_{t}\right)\right) \mid x_{0}\right]
$$

- a policy $\pi^{*} \in \Pi$ is an optimal policy if $J_{0}^{\pi^{*}}\left(x_{0}\right) \leq J_{0}^{\pi}\left(x_{0}\right)$ for all $\pi \in \Pi$ and its cost will be denoted $J_{0}^{*}\left(x_{0}\right):=J_{0}^{\pi^{*}}\left(x_{0}\right)$
- Conventions differ in the control and machine learning communities:
- OC: minimization, cost, state $x$, control $u$, policy $\mu$
- RL: maximization, reward, state $s$, action a, policy $\pi$
- ECE276B: minimization, cost, state $x$, control $u$, policy $\pi$


## Further Observations

- Goal: select controls to minimize long-term cumulative costs
- Controls may have long-term consequences, e.g., delayed reward
- It may be better to sacrifice immediate reward to gain long-term rewards:
- A financial investment may take months to mature
- Refueling a helicopter might prevent a crash in several hours
- Blocking opponent moves might help winning chances many moves from now
- Information state: a sequence (history) of observations and control inputs $i_{t}:=z_{0}, u_{0}, \ldots, z_{t-1}, u_{t-1}, z_{t}$ used in the partially observable setting to estimate the (pdf of the) state $x_{t}$
- A policy fully defines the behavior of the robot/agent by specifying, at any given point in time, which controls to apply. Policies can be:
- stationary $\left(\pi \equiv \pi_{0} \equiv \pi_{1} \equiv \cdots\right) \subseteq$ non-stationary (time-dependent)
- deterministic $\left(u_{t}=\pi_{t}\left(x_{t}\right)\right) \subseteq$ stochastic $\left(u_{t} \sim \pi_{t}\left(\cdot \mid x_{t}\right)\right)$
- open-loop (a sequence $u_{0: T-1}$ regardless of $x_{t}$ or $i_{t}$ ) $\subseteq$ closed-loop ( $\pi_{t}$ depends on $x_{t}$ or $i_{t}$ )


## Problem Variations

- deterministic (no noise $v_{t}, w_{t}$ ) vs stochastic
- fully observable (no noise $v_{t}$ and $z_{t}=x_{t}$ ) vs partially observable
- fully observable: Markov Decision Process (MDP)
- partially observable: Partially Observable Markov Decision Process (POMDP)
- stationary vs nonstationary (time-dependent $p_{f, t}, p_{h, t}, g_{t}$ )
- finite vs continuous state space $\mathcal{X}$
- tabular approach vs function approximation (linear, SVM, neural nets,...)
- finite vs continuous control space $\mathcal{U}$ :
- tabular approach vs optimization problem to select next-best control
- discrete vs continuous time:
- finite-horizon discrete time: dynamic programming
- infinite-horizon $(T \rightarrow \infty)$ discrete time: Bellman equation (first-exit vs discounted vs average-reward)
- continuous time: Hamilton-Jacobi-Bellman (HJB) Partial Differential Equation (PDE)
- reinforcement learning ( $p_{f}, p_{h}$ are unknown) variants:
- Model-based RL: explicitly approximate models from experience and use optimal control algorithms
- Model-free RL: directly learn a control policy without approximating the motion/observation models


## Example: Inventory Control

- Consider the problem of keeping an item stocked in a warehouse:
- If there is too little, we will run out of it soon (not preferred).
- If there is too much, the storage cost will be high (not preferred).
- We can model this scenario as a discrete-time system:
- $x_{t} \in \mathbb{R}$ : stock available in the warehouse at the beginning of the $t$-th time period
- $u_{t} \in \mathbb{R}_{\geq 0}$ : stock ordered and immediately delivered at the beginning of the $t$-th time period (supply)
- $w_{t}$ : (random) demand during the $t$-th time period with known pdf. Note that excess demand is back-logged, i.e., corresponds to negative stock $x_{t}$
- Motion model: $x_{t+1}=x_{t}+u_{t}-w_{t}$
- Cost function: $\mathbb{E}\left[R\left(x_{T}\right)+\sum_{t=0}^{T-1}\left(r\left(x_{t}\right)+c u_{t}-p w_{t}\right)\right]$ where
- $p w_{t}$ : revenue
- $c u_{t}$ : cost of items
- $r\left(x_{t}\right)$ : penalizes too much stock or negative stock
- $R\left(x_{T}\right)$ : remaining items we cannot sell or demand that we cannot meet


## Example: Rubik's Cube

- Invented in 1974 by Ernõ Rubik
- Formalization
- State space: $\sim 4.33 \times 10^{19}$
- Actions: 12
- Reward: -1 for each time step
- Deterministic, Fully Observable
- The cube can be solved in 20 or fewer moves



## Example: Pole Balancing

- Move the cart left and right in order to keep the pole balanced
- Formalization
- State space: 4-D continuous $(x, \dot{x}, \theta, \dot{\theta})$
- Actions: $\{-N, N\}$
- Reward:
- 0 when in the goal region
- -1 when outside the goal region

- -100 when outside the feasible region
- Deterministic, Fully Observable


## Example: Chess

- Formalization
- State space: $\sim 10^{47}$
- Actions: from 0 to 218
- Reward: 0 each step, $\{-1,0,1\}$ at the end of the game
- Deterministic, opponent-dependent state transitions (can be modeled as a game)
- The size of the game tree is $10^{123}$



## Example: Grid World Navigation

- Navigate to a goal without crashing into obstacles
- Formalization
- State space: robot pose, e.g., 2-D position
- Actions: allowable robot movement, e.g., \{left, right, up, down\}
- Reward: -1 until the goal is reached; $-\infty$ if an obstacles is hit

- Can be deterministic or stochastic; fully or partially observable


## Definition of Markov Chain

- Stochastic process: an indexed collection of random variables $\left\{x_{0}, x_{1}, \ldots\right\}$ on a measurable space $(\mathcal{X}, \mathcal{F})$
- example: time series of weekly demands for a product
- A temporally homogeneous Markov chain is a stochastic process $\left\{x_{0}, x_{1}, \ldots\right\}$ of $(\mathcal{X}, \mathcal{F})$-valued random variables such that:
- $x_{0} \sim p_{0 \mid 0}(\cdot)$ for a prior probability density function on $(\mathcal{X}, \mathcal{F})$
- $\mathbb{P}\left(x_{t+1} \in A \mid x_{0: t}\right)=\mathbb{P}\left(x_{t+1} \in A \mid x_{t}\right)=\int_{A} p_{f}\left(x \mid x_{t}\right) d x$ for $A \in \mathcal{F}$ and a conditional pdf $p_{f}\left(\cdot \mid x_{t}\right)$ on $(\mathcal{X}, \mathcal{F})$
- Intuitive definition:
- In a Markov Chain the distribution of $x_{t+1} \mid x_{0: t}$ depends only on $x_{t}$ (a memoryless stochastic process)
- The state captures all information about the history, i.e., once the state is known, the history may be thrown away
- "The future is independent of the past given the present" (Markov Assumption)


## Formal Definition of Markov Chain

- A measurable space $(\mathcal{X}, \mathcal{F})$ is called nice (or standard Borel space) if it is isomorphic to a compact metric space with the Borel $\sigma$-algebra (i.e., there exists a one-to-one map $\phi$ from $\mathcal{X}$ into $\mathbb{R}^{n}$ such that both $\phi$ and $\phi^{-1}$ are measurable)
- A Markov transition kernel is a function $\mathbb{P}_{f}:(\mathcal{X}, \mathcal{F}) \rightarrow[0,1]$ on a nice space $(\mathcal{X}, \mathcal{F})$ such that:
- $\mathbb{P}_{f}(x, \cdot)$ is a probability measure on $(\mathcal{X}, \mathcal{F})$ for all $x \in S$
- $\mathbb{P}_{f}(\cdot, A)$ is measurable for all $A \in \mathcal{F}$
- A temporally homogeneous Markov chain is a sequence $\left\{x_{0}, x_{1}, \ldots\right\}$ of $(\mathcal{X}, \mathcal{F})$-valued random variables such that:
- $x_{0} \sim \mathbb{P}_{0 \mid 0}(\cdot)$ for a prior probability measure on $(\mathcal{X}, \mathcal{F})$
- $x_{t+1} \mid x_{0: t} \sim \mathbb{P}_{f}\left(x_{t}, \cdot\right)$ for a Markov transition kernel $\mathbb{P}_{f}$ on $(\mathcal{X}, \mathcal{F})$, i.e., the distribution of $x_{t+1} \mid x_{0: t}$ depends only on $x_{t}$ so that:
"the future is conditionally independent of the past, given the present"


## Markov Chain

A Markov Chain is a stochastic process defined by a tuple $\left(\mathcal{X}, p_{0 \mid 0}, p_{f}\right)$ :

- $\mathcal{X}$ is discrete/continuous set of states
- $p_{0 \mid 0}$ is a prior pmf/pdf defined on $\mathcal{X}$
- $p_{f}\left(\cdot \mid x_{t}\right)$ is a conditional pmf/pdf defined on $\mathcal{X}$ for given $x_{t} \in \mathcal{X}$ that specifies the stochastic process transitions. In the finite-dimensional case, the transition pmf is summarized by a matrix

$$
P_{i j}:=\mathbb{P}\left(x_{t+1}=i \mid x_{t}=j\right)=p_{f}\left(i \mid x_{t}=j\right)
$$

## Example: Student Markov Chain



## Example: Student Markov Chain

- Sample paths:
- C1 C2 C3 Pass Sleep
- C1 FB FB C1 C2 Sleep
- C1 C2 C3 Pub C2 C3 Pass Sleep
- C1 FB FB C1 C2 C3 Pub C1 FB FB FB C1 C2 Sleep

- Transition matrix:

$$
P=\left[\begin{array}{ccccccc}
0.9 & 0.5 & 0 & 0 & 0 & 0 & 0 \\
0.1 & 0 & 0 & 0 & 0.2 & 0 & 0 \\
0 & 0.5 & 0 & 0 & 0.4 & 0 & 0 \\
0 & 0 & 0.8 & 0 & 0.4 & 0 & 0 \\
0 & 0 & 0 & 0.4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.6 & 0 & 0 & 0 \\
0 & 0 & 0.2 & 0 & 0 & 1 & 1
\end{array}\right] \begin{gathered}
F B \\
C 1 \\
C 2 \\
C 3 \\
\text { Pub } \\
\text { Pass } \\
\text { Sleep }
\end{gathered}
$$

## Chapman-Kolmogorov Equation

- $n$-step transition probabilities of a time-homogeneous Markov chain on $\mathcal{X}=\{1, \ldots, N\}$

$$
P_{i j}^{(n)}:=\mathbb{P}\left(X_{t+n}=i \mid X_{t}=j\right)=\mathbb{P}\left(X_{n}=i \mid X_{0}=j\right)
$$

- Chapman-Kolmogorov: the $n$-step transition probabilities can be obtained recursively from the 1-step transition probabilities:

$$
\begin{aligned}
P_{i j}^{(m+n)} & =\sum_{k=1}^{N} P_{i k}^{(n)} P_{k j}^{(m)}, \quad 0 \leq t \leq n \\
P^{(n)} & =\underbrace{P \cdots P}_{n \text { times }}=P^{n}
\end{aligned}
$$

- Given the transition matrix $P$ and a vector $p_{0 \mid 0}$ of prior probabilities, the vector of probabilities after $t$ steps is:

$$
p_{t \mid t}=P^{t} p_{0 \mid 0}
$$

## Example: Student Markov Chain

$$
\begin{aligned}
P & =\left[\begin{array}{ccccccc}
0.9 & 0.5 & 0 & 0 & 0 & 0 & 0 \\
0.1 & 0 & 0 & 0 & 0.2 & 0 & 0 \\
0 & 0.5 & 0 & 0 & 0.4 & 0 & 0 \\
0 & 0 & 0.8 & 0 & 0.4 & 0 & 0 \\
0 & 0 & 0 & 0.4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.6 & 0 & 0 & 0 \\
0 & 0 & 0.2 & 0 & 0 & 1 & 1
\end{array}\right] \begin{array}{c}
F B \\
C 1 \\
C 2 \\
\text { C3 } \\
\text { Pub } \\
\text { Pass } \\
\text { Sleep }
\end{array} \\
P^{2} & =\left[\begin{array}{ccccccc}
0.86 & 0.45 & 0 & 0 & 0.1 & 0 & 0 \\
0.09 & 0.05 & 0 & 0.08 & 0 & 0 & 0 \\
0.05 & 0 & 0 & 0.16 & 0.1 & 0 & 0 \\
0 & 0.4 & 0 & 0.16 & 0.32 & 0 & 0 \\
0 & 0 & 0.32 & 0 & 0.16 & 0 & 0 \\
0 & 0 & 0.48 & 0 & 0.24 & 0 & 0 \\
0 & 0.1 & 0.2 & 0.6 & 0.08 & 1 & 1
\end{array}\right] \begin{array}{c}
\text { FB } \\
C 1 \\
C 2 \\
\text { C3 } \\
\text { Pub } \\
\text { Pass } \\
\text { Sleep }
\end{array} \\
P^{100} & =\left[\begin{array}{cccccccc}
0.01 & 0.01 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\text { FB } \\
\text { C1 } \\
0.99 & 0.99 & 1 & 1 & 1 & 1 & 1
\end{array}\right] \begin{array}{c}
\text { C2 } \\
\text { C3 } \\
\text { Pub } \\
\text { Pass } \\
\text { Sleep }
\end{array}
\end{aligned}
$$

## First Passage Time

- First Passage Time: the number of transitions necessary to go from $x_{0}$ to state $i$ for the first time (random variable $\tau_{i}:=\inf \left\{t \geq 1 \mid x_{t}=i\right\}$ )
- Recurrence Time: the first passage time to go from $x_{0}=i$ to $i$
- Probability of first passage in $n$ steps: $\rho_{i j}^{(n)}:=\mathbb{P}\left(\tau_{i}=n \mid x_{0}=j\right)$

$$
\begin{aligned}
\rho_{i j}^{(1)} & =P_{i j} \\
\rho_{i j}^{(2)} & \left.=\left[P^{2}\right]_{i j}-P_{i i} \rho_{i j}^{(1)} \quad \text { (first time we visit } i \text { should not be } 1!\right) \\
& \vdots \\
\rho_{i j}^{(n)} & =\left[P^{n}\right]_{i j}-\left[P^{n-1}\right]_{i i} \rho_{i j}^{(1)}-\left[P^{n-2}\right]_{i i} \rho_{i j}^{(2)}-\cdots-P_{i i} \rho_{i j}^{(n-1)}
\end{aligned}
$$

- Probability of first passage: $\rho_{i j}:=\mathbb{P}\left(\tau_{i}<\infty \mid x_{0}=j\right)=\sum_{n=1}^{\infty} \rho_{i j}^{(n)}$
- Number of visits to $i$ up to time $n$ :

$$
v_{i}^{(n)}:=\sum_{t=0}^{n} \mathbb{1}\left\{x_{t}=i\right\} \quad v_{i}:=\lim _{n \rightarrow \infty} v_{i}^{(n)}
$$

## Recurrence and Transience

- Absorbing state: a state $i$ such that $P_{i i}=1$
- Transient state: a state $i$ such that $\rho_{i i}<1$
- Recurrent state: a state $i$ such that $\rho_{i i}=1$
- Positive recurrent state: a recurrent state $i$ with $\mathbb{E}\left[\tau_{i} \mid x_{0}=i\right]<\infty$
- Null recurrent state: a recurrent state $i$ with $\mathbb{E}\left[\tau_{i} \mid x_{0}=i\right]=\infty$
- Periodic state: can only be visited at integer multiples of $t$
- Ergodic state: a positive recurrent state that is aperiodic


## Recurrence and Transience

## Total Number of Visits Lemma

$$
\mathbb{P}\left(v_{i} \geq k+1 \mid x_{0}=i\right)=\rho_{i i}^{k} \text { for all } k \geq 0
$$

Proof: By the (strong) Markov property and induction $\left(\mathbb{P}\left(v_{i} \geq k+1 \mid x_{0}=i\right)=\rho_{i i} \mathbb{P}\left(v_{i} \geq k \mid x_{0}=i\right)\right)$.

## $0-1$ Law for Total Number of Visits

$i$ is recurrent iff $\mathbb{E}\left[v_{i} \mid x_{0}=i\right]=\infty$
Proof: Since $v_{i}$ is discrete, we can write $v_{i}=\sum_{k=0}^{\infty} \mathbb{1}\left\{v_{i}>k\right\}$ and

$$
\mathbb{E}\left[v_{i} \mid x_{0}=i\right]=\sum_{k=0}^{\infty} \mathbb{P}\left(v_{i} \geq k+1 \mid x_{0}=i\right)=\sum_{k=0}^{\infty} \rho_{i i}^{k}=\frac{\rho_{i i}}{1-\rho_{i i}}
$$

## Theorem: Recurrence is contagious

$i$ is recurrent and $\rho_{j i}>0 \Rightarrow j$ is recurrent and $\rho_{i j}=1$

## Classification of Markov Chains

- Absorbing Markov Chain: contains at least one absorbing state that can be reached from every other state (not necessarily in one step)
- Irreducible Markov Chain: it is possible to go from every state to every state (not necessarily in one step)
- Ergodic Markov Chain: an aperiodic, irreducible and positive recurrent Markov chain
- Stationary distribution: a vector $w \in\left\{p \in[0,1]^{N} \mid \mathbf{1}^{T} p=1\right\}$ such that $P w=w$
- Absorbing chains have stationary distributions with nonzero elements only in absorbing states
- Ergodic chains have a unique stationary distribution (Perron-Frobenius Theorem)
- Some periodic chains only satisfy a weaker condition, where $w_{i}>0$ only for recurrent states and $w_{i}$ is the frequency $\frac{v_{i}^{(n)}}{n+1}$ of being in state $i$ as $n \rightarrow \infty$


## Absorbing Markov Chains

- Interesting questions:

Q1: On average, how mant times is the process in state i?
Q2: What is the probability that the state will eventually be absorbed?
Q3: What is the expected absorption time?
Q4: What is the probability of being absorbed by $i$ given that we started in $j$ ?

## Absorbing Markov Chains

- Canonical form: reorder the states so that the transient ones come first: $P=\left[\begin{array}{ll}Q & 0 \\ R & I\end{array}\right]$
- One can show that $P^{n}=\left[\begin{array}{cc}Q^{n} & 0 \\ * & 1\end{array}\right]$ and $Q^{n} \rightarrow 0$ as $n \rightarrow \infty$ Proof: If $i$ is transient, then $\rho_{i j}<\infty$ and from the 0-1 Law:

$$
\infty>\mathbb{E}\left[v_{i} \mid x_{0}=j\right]=\mathbb{E}\left[\sum_{n=0}^{\infty} \mathbb{1}\left\{x_{n}=i\right\} \mid x_{0}=j\right]=\sum_{n=0}^{\infty}\left[P^{n}\right]_{i j}
$$

- Fundamental matrix: $Z^{A}=(I-Q)^{-1}=\sum_{n=0}^{\infty} Q^{n}$ exists for an absorbing Markov chain
- Expected number of times the chain is in state $i: Z_{i j}^{A}=\mathbb{E}\left[v_{i} \mid x_{0}=j\right]$
- Expected absorption time when starting from state $j: \sum_{i} Z_{i j}^{A}$
- Let $B=R Z^{A}$. The probability of reaching absorbing state $i$ starting from state $j$ is $B_{i j}$


## Example: Drunkard's Walk

- Transition matrix:

$$
P=\left[\begin{array}{ccccc}
1 & 0.5 & 0 & 0 & 0 \\
0 & 0 & 0.5 & 0 & 0 \\
0 & 0.5 & 0 & 0.5 & 0 \\
0 & 0 & 0.5 & 0 & 0 \\
0 & 0 & 0 & 0.5 & 1
\end{array}\right]
$$

- Canonical form:

$$
P=\left[\begin{array}{ccccc}
0 & 0.5 & 0 & 0 & 0 \\
0.5 & 0 & 0.5 & 0 & 0 \\
0 & 0.5 & 0 & 0 & 0 \\
0.5 & 0 & 0 & 1 & 0 \\
0 & 0 & 0.5 & 0 & 1
\end{array}\right]
$$



- Fundamental matrix:

$$
Z^{A}=(I-Q)^{-1}=\left[\begin{array}{ccc}
1.5 & 1 & 0.5 \\
1 & 2 & 1 \\
0.5 & 1 & 1.5
\end{array}\right]
$$

## Perron-Frobenius Theorem

## Theorem

Let $P$ be the transition matrix of an irreducible, aperiodic, finite, time-homogeneous Markov chain with stationary distribution w. Then

- 1 is the eigenvalue of max modulus, i.e., $|\lambda|<1$ for all other eigenvalues
- 1 is a simple eigenvalue, i.e., the associated eigenspace and left-eigenspace have dimension 1
- The left eigenvector is $\mathbf{1}^{T}$, the unique eigenvector $w$ is nonnegative and

$$
\lim _{n \rightarrow \infty} P^{n}=w \mathbf{1}^{T}
$$

Hence, $w$ is the unique stationary distribution for the Markov chain and any initial distribution converges to it.

## Fundamental Matrix for Ergodic Chains

- We can try to get a fundamental matrix as in the absorbing case but $(I-P)^{-1}$ does not exist because $\mathbf{1}^{T} P=\mathbf{1}^{T}$ (Perron-Frobenius)
- $I+Q+Q^{2}+\ldots=(I-Q)^{-1}$ converges because $Q^{n} \rightarrow 0$
- Try $I+\left(P-w \mathbf{1}^{T}\right)+\left(P^{2}-w \mathbf{1}^{T}\right)+\ldots$ because $P^{n} \rightarrow w \mathbf{1}^{T}$ (Perron-Frobenius)
- Note that $P w \mathbf{1}^{T}=w \mathbf{1}^{T}$ and $\left(w \mathbf{1}^{T}\right)^{2}=w \mathbf{1}^{T} w \mathbf{1}^{T}=w \mathbf{1}^{T}$

$$
\begin{aligned}
\left(P-w \mathbf{1}^{T}\right)^{n} & =\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} P^{n-i}\left(w \mathbf{1}^{T}\right)^{i}=P^{n}+\sum_{i=1}^{n}(-1)^{i}\binom{n}{i}\left(w \mathbf{1}^{T}\right)^{i} \\
& =P^{n}+\underbrace{\left[\sum_{i=1}^{n}(-1)^{i}\binom{n}{i}\right]}_{(1-1)^{n}-1}\left(w \mathbf{1}^{T}\right)=P^{n}-w \mathbf{1}^{T}
\end{aligned}
$$

- Thus, the following inverse exists:

$$
I+\sum_{n=1}^{\infty}\left(P^{n}-w \mathbf{1}^{T}\right)=I+\sum_{n=1}^{\infty}\left(P-w \mathbf{1}^{T}\right)^{n}=\left(I-P+w \mathbf{1}^{T}\right)^{-1}
$$

## Fundamental Matrix for Ergodic Chains

- Fundamental matrix: $Z^{E}:=\left(I-P+w \mathbf{1}^{T}\right)^{-1}$ where $P$ is the transition matrix and $w$ is the stationary distribution.
- Properties: $Z^{E} w=w, \mathbf{1}^{T} Z^{E}=\mathbf{1}^{T}$, and $(I-P) Z^{E}=I-w \mathbf{1}^{T}$
- Mean first passage time: $m_{i j}:=\mathbb{E}\left[\tau_{i} \mid x_{0}=j\right]=\frac{Z_{i i}^{E}-Z_{i j}^{E}}{w_{i}}$


## Example: Land of Oz

- Transition matrix:

$$
P=\left[\begin{array}{ccc}
0.5 & 0.5 & 0.25 \\
0.25 & 0 & 0.25 \\
0.25 & 0.5 & 0.5
\end{array}\right]
$$

- Stationary distribution:

$$
w=\left[\begin{array}{lll}
0.4 & 0.2 & 0.4
\end{array}\right]^{T}
$$

- Fundamental matrix:

$$
\begin{aligned}
I-P+w \mathbf{1}^{T} & =\left[\begin{array}{ccc}
0.9 & -0.1 & 0.15 \\
-0.05 & 1.2 & -0.05 \\
0.15 & -0.1 & 0.9
\end{array}\right] \\
Z^{E} & =\left[\begin{array}{ccc}
1.147 & 0.08 & -0.187 \\
0.04 & 0.84 & 0.04 \\
-0.187 & 0.08 & 1.147
\end{array}\right]
\end{aligned}
$$



- Mean first passage time:

$$
m_{21}=\frac{z_{22}^{E}-Z_{21}^{E}}{w_{2}}=\frac{0.84-0.04}{0.2}=4
$$

