
ECE276B: Planning & Learning in Robotics
Lecture 4: Deterministic Shortest Path

Lecturer:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Tianyu Wang: tiw161@eng.ucsd.edu
Yongxi Lu: yol070@eng.ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:tiw161@eng.ucsd.edu
mailto:yol070@eng.ucsd.edu

The Shortest Path (SP) Problem
I Consider a graph with a finite vertex space V and a weighted edge space
C := {(i , j , cij) ∈ V × V × R ∪ {∞}} where cij denotes the arc length or
cost from vertex i to vertex j .

I Objective: find the shortest path from a start node s to an end node τ

I It turns out that the SP problem is equivalent to the standard
finite-horizon finite-space deterministic optimal control problem

2

The Shortest Path (SP) Problem

I Path: an ordered list Q := (i1, i2, . . . , iq) of nodes ik ∈ V.

I Set of all paths from s ∈ V to τ ∈ V: Qs,τ .

I Path Length: sum of the arc lengths over the path: JQ =
∑q−1

t=1 ct,t+1.

I Objective: find a path Q∗ = arg min
Q∈Qs,τ

JQ that has the smallest length

from node s ∈ V to node τ ∈ V

I Assumption: For all i ∈ V and for all Q ∈ Qi ,i , J
Q ≥ 0, i.e., there are

no negative cycles in the graph and ci ,i = 0 for all i ∈ X .

I Solving SP problems:
I map to a deterministic finite-state system and apply (backward) DP

I label correcting methods (variants of a “forward” DP algorithm)

3

Deterministic Finite State (DFS) Optimal Control Problem

I Deterministic problem: closed-loop control does not offer any advantage
over open-loop control

I Consider the standard problem with no disturbances wt and finite state
space X . Given x0 ∈ X the goal is to construct an optimal control
sequence u0:T−1 such that:

min
u0:T−1

gT (xT) +
T−1∑
t=0

gt(xt , ut)

s.t. xt+1 = f (xt , ut), t = 0, . . . ,T − 1

xt ∈ X , ut ∈ U(xt),

I This problem can be solved via the Dynamic Programming algorithm

4

Equivalence of DFS and SP Problems (DFS to SP)

I We can construct a graph representation of the DFS problem.

I Every state xt ∈ X at time t is represented by a node in the graph:

V :=

(
T⋃
t=0

{(t, xt) | xt ∈ X}

)
∪ {τ}

I The given x0 is the starting node s := (0, x0).

I An artificial terminal node τ is added with arc lengths to τ equal to the
terminal costs of the DFS.

I The arc length between any two nodes is the (smallest) stage cost
between them and is ∞ if there is no control that links them:

C :=

((t, xt), (t + 1, xt+1), c)

∣∣∣∣c = min
u∈U(xt)

s.t. xt+1=f (xt ,u)

gt(xt , u)

⋃
{((T , xT), τ, gT (xT))}

5

Equivalence of DFS and SP Problems (DFS to SP)

6

Equivalence of DFS and SP Problems (SP to DFS)

I Consider an SP problem with vertex space V, weighted edge space C,
start node s ∈ V and terminal node τ ∈ V.

I Due to the assumption of no cycles with negative cost, the optimal path
need not have more than |V| elements

I We can formulate the SP problem as a DFS with T := |V| − 1 stages:
I State space: X0 := {s}, XT := {τ}, Xt := V \ {τ} for t = 1, . . . ,T − 1

I Control space: UT−1 := {τ} and Ut := V \ {τ} for t = 0, . . . ,T − 2

I Dynamics: xt+1 = ut for ut ∈ Ut , t = 0, . . . ,T − 1

I Costs: gT (τ) := 0 and gt(xt , ut) = cxt ,ut for t = 0, . . . ,T − 1

7

Dynamic Programming Applied to DFS and SP
I Due to the equivalence, the DFS/SP can be solved via the DP algorithm

VT (τ) = gT (τ) = 0,

VT−1(i) = min
u∈Ut

(gt(i , u) + Vt+1(u)) = ci ,τ , ∀i ∈ V \ {τ}

Vt(i) = min
u∈Ut

(gt(i , u) + Vt+1(u)) = min
j∈V\{τ}

(ci ,j + Vt+1(j)) , i ∈ V \ {τ}, t = T − 2, . . . , 0

I Remarks:
I Vt(i) is the optimal cost of getting from node i to node τ in T − t steps
I V0(s) = JQ

∗

I The algorithm can be terminated early if Vt(i) = Vt+1(i), ∀i ∈ V \ {τ}
I The SP problem is symmetric: an optimal path from s to τ is also a

shortest path from τ to s, where all arc directions are flipped. This view
leads to a “forward Dynamic Programming” algorithm.

I There is no analog of forward DP for stochastic problems!

I Forward DP Algorithm: V F
t (j) is the optimal cost-to-arrive to node j

from node s in t moves. Starting with V F
0 (s) = 0, iterate:

V F
1 (j) = cs,j , ∀j ∈ V \ {s}

V F
t (j) = min

i∈V\{s}

(
ci ,j + V F

t−1(i)
)
, j ∈ V \ {s}, t = 2, . . . ,T

8

Hidden Markov Models and the Viterbi Algorithm
I Remember the HMM model from ECE-276A:

I States: xt ∈ X := {1, . . . ,N}

I Prior: p0|0 ∈ [0, 1]N with
p0|0(i) := P(x0 = i)

I Motion model: P ∈ RN×N with
P(i , j) = P(xt+1 = i | xt = j)

I Observations: zt ∈ Z := {1, . . . ,M}

I Observation model: O ∈ RM×N with
O(i , j) = P(zt = i | xt = j)

I One of the three basic HMM problems concerns the most likely
sequence of states x0:T :

I Given an observation sequence z0:T and model parameters (p0|0,P,O),
how do we choose a corresponding state sequence x0:T which best
“explains” the observations?

9

Viterbi Decoding
δt(i) := max

x0:t−1

p(x0:t−1, xt = i , z0:t) Likelihood of the observed se-
quence with the most likely state
assignment up to t − 1

ψt(i) := arg max
xt−1

max
x0:t−2

p(x0:t−1, xt = i , z0:t) State from the previous time that
leads to the maximum for the cur-
rent state at time t

I Initialize:
δ0(i) = p(z0 | x0 = i)p(x0 = i) = O(z0, i)p0|0(i)

ψ0(i) = 0

I Forward Pass for t = 1, . . . ,T

δt(i) = max
j

p(zt | xt = i)pa(xt = i | xt−1 = j)δt−1(j) = max
j

O(zt , i)P(i , j)δt−1(j)

ψt(i) = arg max
j

p(zt | xt = i)pa(xt = i | xt−1 = j)δt−1(j) = arg max
j

O(zt , i)P(i , j)δt−1(j)

p(x∗0:T , z0:T) = max
i
δT (i) x∗T = arg max

i
δT (i)

I Backward Pass for t = T − 1, . . . , 0: x∗t = ψt+1(x∗t+1)

10

Viterbi Decoding
I By the conditioning rule, p(x0:T , z0:T) = p(x0:T | z0:T)p(z0:T). Since

p(z0:T) is fixed and positive, maximizing p(x0:T | z0:T) is equivalent to
maximizing p(x0:T , z0:T)

I Joint probability density function:

p(x0:T , z0:T) = p0|0(x0)︸ ︷︷ ︸
prior

T∏
t=0

O(zt , xt)︸ ︷︷ ︸
observation model

T∏
t=1

P(xt , xt−1)︸ ︷︷ ︸
motion model

I Idea: we can express maxx0:T p(x0:T , z0:T) as a shortest path problem:

max
x0:T

(
cs,(0,x0) +

T∑
t=1

c(t−1,xt−1),(t,xt)

)
where:

cs,(0,x0) := − log
(
p0|0(x0)O(z0, x0)

)
c(t−1,xt−1),(t,xt) := − log (P(xt , xt−1)O(zt , xt))

11

Viterbi Decoding

I Construct a graph of state-time pairs with artificial starting node s and
terminal node τ

t

I Computing the shortest path via the forward DP algorithm leads to the
forward pass of the Viterbi algorithm!

12

Label Correcting Methods for the SP Problem

I The DP algorithm computes the shortest paths from all nodes to the
goal. Often many nodes are not part of the shortest path from s to τ

I The label correcting (LC) algorithm is a general algorithm for SP
problems that does not necessarily visit every node of the graph

I LC algorithms prioritize the visited nodes using the cost-to-arrive values

I Key Ideas:
I Label di : keeps (an estimate of) the lowest cost from s to each visited

node i ∈ V
I Each time di is reduced, the labels dj of the children of i can be

corrected: dj = di + cij

I OPEN: set of nodes that can potentially be part of the shortest path to τ

13

Label Correcting Algorithm

Algorithm 1 Label Correcting Algorithm
1: OPEN ← {s}, ds = 0, di =∞ for all i ∈ V \ {s}
2: while OPEN is not empty do
3: Remove i from OPEN
4: for j ∈ Children(i) do
5: if (di + cij) < dj and (di + cij) < dτ then
6: dj ← (di + cij)
7: Parent(j) ← i
8: if j 6= τ then
9: OPEN ← OPEN ∪{j}

Theorem

If there exists at least one finite cost path from s to τ , then the Label
Correcting (LC) algorithm terminates with dτ = JQ

∗
(the shortest path from

s to τ). Otherwise, the LC algorithm terminates with dτ =∞.

14

Label Correcting Algorithm

15

Label Correcting Algorithm Proof

1. Claim: The LC algorithm terminates in a finite number of steps
I Each time a node j enters OPEN, its label is decreased and becomes

equal to the length of some path from s to j .

I The number of distinct paths from s to j whose length is smaller than any
given number is finite (no negative cycles assumption)

I There can only be a finite number of label reductions for each node j

I Since the LC algorithm removes nodes from OPEN in line 3, the
algorithm will eventually terminate

2. Claim: The LC algorithm terminates with dτ =∞ if there is no finite
cost path from s to τ

I A node i ∈ V is in OPEN only if there is a finite cost path from s to i

I If there is no finite cost path from s to τ , then for any node i in OPEN
ci,τ =∞; otherwise there would be a finite cost path from s to τ

I Since ci,τ =∞ for every i in OPEN, line 5 ensures that dτ is never
updated and remains ∞

16

Label Correcting Algorithm Proof

3. Claim: The LC algorithm terminates with dτ = JQ
∗

if there is at least
one finite cost path from s to τ

I Let Q∗ = (s, i1, i2, . . . , iq−2, τ) ∈ Qs,τ be a shortest path from s to τ with
length JQ

∗

I By the principle of optimality Q∗m := (s, i1, . . . , im) is the shortest path
from s to im with length JQ

∗
m for any m = 1, . . . , q − 2

I Suppose that dτ > JQ
∗

(proof by contradiction)

I Since dτ only decreases in the algorithm and every cost is nonnegative,
dτ > JQ

∗
m for all m = 2, . . . , q − 2

I Thus, iq−2 does not enter OPEN with diq−2 = JQ
∗
q−2 since if it did, then

the next time iq−2 is removed from OPEN, dτ would be updated to JQ∗

I Similarly, iq−3 will not enter OPEN with diq−3 = JQ
∗
q−3 . Continuing this

way, i1 will not enter open with di1 = JQ
∗
1 = cs,i1 but this happens at the

first iteration of the algorithm, which is a contradiction!

17

Example: Deterministic Scheduling Problem

I Consider a deterministic scheduling problem where 4 operations A, B, C,
D are used to produce a product

I Rules: Operation A must occur before B, and C before D

I Cost: there is a transition cost between each two operations:

18

Example: Deterministic Scheduling Problem

I The state transition diagram of the scheduling problem can be simplified
in order to reduce the number of nodes

I This results in a DFS problem with T = 4, X0 = {I.C.}, X1 = {A,C},
X2 = {AB,AC,CA,CD}, X3 ={ABC,ACD or CAD,CAB or ACB,CDA},
XT = {DONE}

I We can map the DFS problem to a SP problem

19

Example: Deterministic Scheduling Problem

I We can map the DFS
problem to a SP problem
and apply the LC algorithm

I Keeping track of the
parents when a child node
is added OPEN, it can be
determined that a shortest
path is (s, 2, 5, 9, τ) with
total cost 10, which
corresponds to
(C ,CA,CAB,CABD) in
the original problem

20

Specific Label Correcting Methods
I There is freedom in selecting the node to be removed from OPEN at

each iteration, which gives rise to several different methods:
I Breadth-first search (BFS) (Bellman-Ford Algorithm): “first-in,

first-out” policy with OPEN implemented as a queue.

I Depth-first search (DFS): ”last-in, first-out” policy with OPEN
implemented as a stack; often saves memory

I Best-first search (Dijkstra’s Algorithm): the node with minimum label
i∗ = arg min

j∈OPEN
dj is removed, which guarantees that a node will enter OPEN

at most once. OPEN is implemented as a priority queue.

I D’Esopo-Pape method: removes nodes at the top of OPEN. If a node
has been in OPEN before it is inserted at the top; otherwise at the
bottom.

I Small-label-first (SLF): removes nodes at the top of OPEN. If di ≤ dTOP

node i is inserted at the top; otherwise at the bottom.

I Large-label-last (LLL): the top node is compared with the average of
OPEN and if it is larger, it is placed at the bottom of OPEN; otherwise it
is removed. 21

A* Algorithm

I The A* algorithm is a modification to the LC algorithm in which the
requirement for admission to OPEN is strengthened:

from di + cij < dτ to di + cij + hj < dτ

where hj is a positive lower bound on the optimal cost to get from node
j to τ , known as heuristic.

I The more stringent criterion can reduce the number of iterations
required by the LC algorithm

I The heuristic is constructed depending on special knowledge about the
problem. The more accurately hj estimates the optimal cost from j to τ ,
the more efficient the A* algorithm becomes!

22

