ECE276B: Planning & Learning in Robotics Lecture 4: Deterministic Shortest Path

Lecturer:

Nikolay Atanasov: natanasov@ucsd.edu

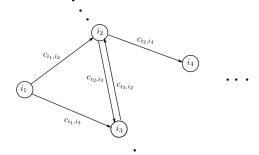
Teaching Assistants: Tianyu Wang: tiw161@eng.ucsd.edu Yongxi Lu: yol070@eng.ucsd.edu

UC San Diego

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

The Shortest Path (SP) Problem

Consider a graph with a finite vertex space V and a weighted edge space C := {(i, j, c_{ij}) ∈ V × V × ℝ ∪ {∞}} where c_{ij} denotes the arc length or cost from vertex i to vertex j.



- Objective: find the shortest path from a start node s to an end node t
- It turns out that the SP problem is equivalent to the standard finite-horizon finite-space deterministic optimal control problem

The Shortest Path (SP) Problem

- ▶ **Path**: an ordered list $Q := (i_1, i_2, ..., i_q)$ of nodes $i_k \in \mathcal{V}$.
- Set of all paths from $s \in \mathcal{V}$ to $\tau \in \mathcal{V}$: $\mathbb{Q}_{s,\tau}$.
- **Path Length**: sum of the arc lengths over the path: $J^Q = \sum_{t=1}^{q-1} c_{t,t+1}$.
- ▶ Objective: find a path Q^{*} = arg min J^Q that has the smallest length from node s ∈ V to node τ ∈ V
- ► Assumption: For all i ∈ V and for all Q ∈ Q_{i,i}, J^Q ≥ 0, i.e., there are no negative cycles in the graph and c_{i,i} = 0 for all i ∈ X.
- Solving SP problems:
 - map to a deterministic finite-state system and apply (backward) DP
 - label correcting methods (variants of a "forward" DP algorithm)

Deterministic Finite State (DFS) Optimal Control Problem

- Deterministic problem: closed-loop control does not offer any advantage over open-loop control
- Consider the standard problem with no disturbances w_t and finite state space X. Given x₀ ∈ X the goal is to construct an optimal control sequence u_{0:T-1} such that:

$$\min_{u_{0:T-1}} g_T(x_T) + \sum_{t=0}^{T-1} g_t(x_t, u_t)$$
s.t. $x_{t+1} = f(x_t, u_t), \ t = 0, \dots, T-1$
 $x_t \in \mathcal{X}, \ u_t \in \mathcal{U}(x_t),$

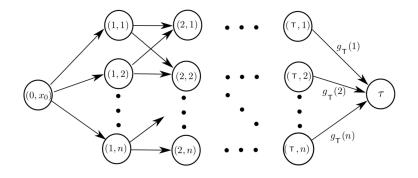
This problem can be solved via the Dynamic Programming algorithm

Equivalence of DFS and SP Problems (DFS to SP)

- ▶ We can construct a graph representation of the DFS problem.
- ► Every state $x_t \in \mathcal{X}$ at time t is represented by a node in the graph: $\mathcal{V} := \left(\bigcup_{t=0}^{T} \{(t, x_t) \mid x_t \in \mathcal{X}\}\right) \cup \{\tau\}$
- The given x_0 is the starting node $s := (0, x_0)$.
- An artificial terminal node τ is added with arc lengths to τ equal to the terminal costs of the DFS.
- ► The arc length between any two nodes is the (smallest) stage cost between them and is ∞ if there is no control that links them:

$$\mathcal{C} := \left\{ \left((t, x_t), (t+1, x_{t+1}), c \right) \middle| c = \min_{\substack{u \in \mathcal{U}(x_t) \\ \text{s.t. } x_{t+1} = f(x_t, u)}} g_t(x_t, u) \right\} \bigcup \left\{ \left((T, x_T), \tau, g_T(x_T) \right) \right\}$$

Equivalence of DFS and SP Problems (DFS to SP)



Equivalence of DFS and SP Problems (SP to DFS)

- Consider an SP problem with vertex space V, weighted edge space C, start node s ∈ V and terminal node τ ∈ V.
- Due to the assumption of no cycles with negative cost, the optimal path need not have more than |V| elements

• We can formulate the SP problem as a DFS with $T := |\mathcal{V}| - 1$ stages:

- State space: $\mathcal{X}_0 := \{s\}, \ \mathcal{X}_T := \{\tau\}, \ \mathcal{X}_t := \mathcal{V} \setminus \{\tau\} \text{ for } t = 1, \dots, T-1$
- Control space: $U_{T-1} := \{\tau\}$ and $U_t := V \setminus \{\tau\}$ for $t = 0, \dots, T-2$
- Dynamics: $x_{t+1} = u_t$ for $u_t \in U_t$, $t = 0, \dots, T-1$
- Costs: $g_T(\tau) := 0$ and $g_t(x_t, u_t) = c_{x_t, u_t}$ for $t = 0, \dots, T-1$

Dynamic Programming Applied to DFS and SP

▶ Due to the equivalence, the DFS/SP can be solved via the DP algorithm

$$V_{T}(\tau) = g_{T}(\tau) = 0,$$

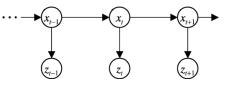
$$V_{T-1}(i) = \min_{u \in \mathcal{U}_{t}} (g_{t}(i, u) + V_{t+1}(u)) = c_{i,\tau}, \quad \forall i \in \mathcal{V} \setminus \{\tau\}$$

$$V_{t}(i) = \min_{u \in \mathcal{U}_{t}} (g_{t}(i, u) + V_{t+1}(u)) = \min_{j \in \mathcal{V} \setminus \{\tau\}} (c_{i,j} + V_{t+1}(j)), \ i \in \mathcal{V} \setminus \{\tau\}, t = T - 2, \dots, 0$$

- Remarks:
 - $V_t(i)$ is the optimal cost of getting from node *i* to node τ in T t steps
 - $V_0(s) = J^{Q^*}$
 - The algorithm can be terminated early if $V_t(i) = V_{t+1}(i)$, $\forall i \in \mathcal{V} \setminus \{\tau\}$
 - The SP problem is symmetric: an optimal path from s to τ is also a shortest path from τ to s, where all arc directions are flipped. This view leads to a "forward Dynamic Programming" algorithm.
 - There is no analog of forward DP for stochastic problems!
- ► Forward DP Algorithm: $V_t^F(j)$ is the optimal cost-to-arrive to node jfrom node s in t moves. Starting with $V_0^F(s) = 0$, iterate: $V_1^F(j) = c_{s,j}, \quad \forall j \in \mathcal{V} \setminus \{s\}$ $V_t^F(j) = \min_{i \in \mathcal{V} \setminus \{s\}} \left(c_{i,j} + V_{t-1}^F(i)\right), \quad j \in \mathcal{V} \setminus \{s\}, t = 2, ..., T$

Hidden Markov Models and the Viterbi Algorithm

- Remember the HMM model from ECE-276A:
- States: $x_t \in \mathcal{X} := \{1, \dots, N\}$
- ▶ Prior: $p_{0|0} \in [0, 1]^N$ with $p_{0|0}(i) := \mathbb{P}(x_0 = i)$
- Motion model: $P \in \mathbb{R}^{N \times N}$ with $P(i,j) = \mathbb{P}(x_{t+1} = i \mid x_t = j)$
- Observations: $z_t \in \mathcal{Z} := \{1, \dots, M\}$
- Observation model: $O \in \mathbb{R}^{M \times N}$ with $O(i,j) = \mathbb{P}(z_t = i \mid x_t = j)$
- ► One of the three basic HMM problems concerns the most likely sequence of states x_{0:T}:
 - ▶ Given an observation sequence z_{0:T} and model parameters (p_{0|0}, P, O), how do we choose a corresponding state sequence x_{0:T} which best "explains" the observations?



Viterbi Decoding

$$\delta_t(i) := \max_{x_{0:t-1}} p(x_{0:t-1}, x_t = i, z_{0:t})$$

$$\psi_t(i) := rgmax_{x_{t-1}} \max_{x_{0:t-2}} p(x_{0:t-1}, x_t = i, z_{0:t})$$

Likelihood of the observed sequence with the most likely state assignment up to t-1

State from the previous time that leads to the maximum for the current state at time t

► Initialize:

$$\begin{aligned} \delta_0(i) &= p(z_0 \mid x_0 = i) p(x_0 = i) = O(z_0, i) p_{0|0}(i) \\ \psi_0(i) &= 0 \end{aligned}$$

Forward Pass for $t = 1, \ldots, T$

$$\delta_{t}(i) = \max_{j} p(z_{t} \mid x_{t} = i) p_{a}(x_{t} = i \mid x_{t-1} = j) \delta_{t-1}(j) = \max_{j} O(z_{t}, i) P(i, j) \delta_{t-1}(j)$$

$$\psi_{t}(i) = \arg\max_{j} p(z_{t} \mid x_{t} = i) p_{a}(x_{t} = i \mid x_{t-1} = j) \delta_{t-1}(j) = \arg\max_{j} O(z_{t}, i) P(i, j) \delta_{t-1}(j)$$

$$p(x_{0:T}^{*}, z_{0:T}) = \max_{i} \delta_{T}(i)$$

$$x_{T}^{*} = \arg\max_{i} \delta_{T}(i)$$
Backward Pass for $t = T - 1, \dots, 0$:
$$x_{t}^{*} = \psi_{t+1}(x_{t+1}^{*})$$

Backward Pass for $t = T - 1, \ldots, 0$:

Viterbi Decoding

- By the conditioning rule, p(x_{0:T}, z_{0:T}) = p(x_{0:T} | z_{0:T})p(z_{0:T}). Since p(z_{0:T}) is fixed and positive, maximizing p(x_{0:T} | z_{0:T}) is equivalent to maximizing p(x_{0:T}, z_{0:T})
- Joint probability density function:

$$p(x_{0:T}, z_{0:T}) = \underbrace{p_{0|0}(x_{0})}_{\text{prior}} \prod_{t=0}^{T} \underbrace{O(z_{t}, x_{t})}_{\text{observation model}} \prod_{t=1}^{T} \underbrace{P(x_{t}, x_{t-1})}_{\text{motion model}}$$

▶ Idea: we can express $\max_{x_{0:T}} p(x_{0:T}, z_{0:T})$ as a shortest path problem:

$$\max_{x_{0:T}} \left(c_{s,(0,x_0)} + \sum_{t=1}^{T} c_{(t-1,x_{t-1}),(t,x_t)} \right)$$

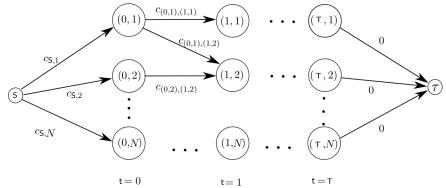
where:

$$c_{s,(0,x_0)} := -\log (p_{0|0}(x_0)O(z_0,x_0))$$

$$c_{(t-1,x_{t-1}),(t,x_t)} := -\log (P(x_t,x_{t-1})O(z_t,x_t))$$

Viterbi Decoding

 \blacktriangleright Construct a graph of state-time pairs with artificial starting node s and terminal node τ

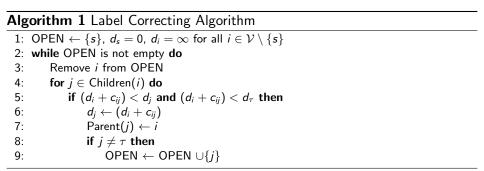


Computing the shortest path via the forward DP algorithm leads to the forward pass of the Viterbi algorithm!

Label Correcting Methods for the SP Problem

- The DP algorithm computes the shortest paths from all nodes to the goal. Often many nodes are not part of the shortest path from s to τ
- The label correcting (LC) algorithm is a general algorithm for SP problems that does not necessarily visit every node of the graph
- LC algorithms prioritize the visited nodes using the cost-to-arrive values
- Key Ideas:
 - ► Label d_i: keeps (an estimate of) the lowest cost from s to each visited node i ∈ V
 - ► Each time d_i is reduced, the labels d_j of the children of i can be corrected: d_j = d_i + c_{ij}
 - **OPEN**: set of nodes that can potentially be part of the shortest path to au

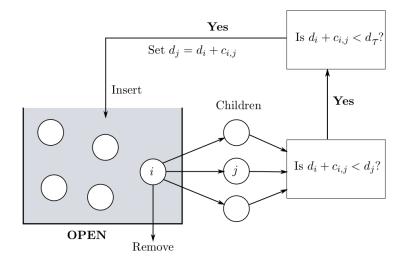
Label Correcting Algorithm



Theorem

If there exists at least one finite cost path from s to τ , then the Label Correcting (LC) algorithm terminates with $d_{\tau} = J^{Q^*}$ (the shortest path from s to τ). Otherwise, the LC algorithm terminates with $d_{\tau} = \infty$.

Label Correcting Algorithm



Label Correcting Algorithm Proof

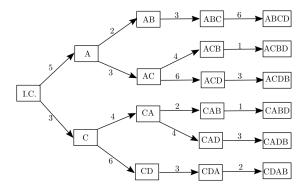
- 1. Claim: The LC algorithm terminates in a finite number of steps
 - Each time a node j enters OPEN, its label is decreased and becomes equal to the length of some path from s to j.
 - The number of distinct paths from s to j whose length is smaller than any given number is finite (no negative cycles assumption)
 - There can only be a finite number of label reductions for each node j
 - Since the LC algorithm removes nodes from OPEN in line 3, the algorithm will eventually terminate
- 2. Claim: The LC algorithm terminates with $d_{\tau} = \infty$ if there is no finite cost path from s to τ
 - A node $i \in \mathcal{V}$ is in OPEN only if there is a finite cost path from s to i
 - ► If there is no finite cost path from s to τ , then for any node i in OPEN $c_{i,\tau} = \infty$; otherwise there would be a finite cost path from s to τ
 - ► Since $c_{i,\tau} = \infty$ for every *i* in OPEN, line 5 ensures that d_{τ} is never updated and remains ∞

Label Correcting Algorithm Proof

- 3. Claim: The LC algorithm terminates with $d_{\tau} = J^{Q^*}$ if there is at least one finite cost path from s to τ
 - ▶ Let $Q^* = (s, i_1, i_2, ..., i_{q-2}, \tau) \in \mathbb{Q}_{s,\tau}$ be a shortest path from s to τ with length J^{Q^*}
 - ▶ By the principle of optimality Q^{*}_m := (s, i₁,..., i_m) is the shortest path from s to i_m with length J^{Q^{*}_m} for any m = 1,..., q 2
 - Suppose that $d_{\tau} > J^{Q^*}$ (proof by contradiction)
 - Since d_{τ} only decreases in the algorithm and every cost is nonnegative, $d_{\tau} > J^{Q_m^*}$ for all $m = 2, \dots, q-2$
 - ► Thus, i_{q-2} does not enter OPEN with $d_{i_{q-2}} = J^{Q^*_{q-2}}$ since if it did, then the next time i_{q-2} is removed from OPEN, d_{τ} would be updated to J_{Q^*}
 - ▶ Similarly, i_{q-3} will not enter OPEN with $d_{i_{q-3}} = J^{Q_{q-3}^*}$. Continuing this way, i_1 will not enter open with $d_{i_1} = J^{Q_1^*} = c_{s,i_1}$ but this happens at the first iteration of the algorithm, which is a contradiction!

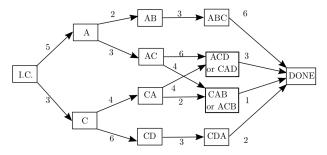
Example: Deterministic Scheduling Problem

- Consider a deterministic scheduling problem where 4 operations A, B, C, D are used to produce a product
- ► Rules: Operation A must occur before B, and C before D
- Cost: there is a transition cost between each two operations:



Example: Deterministic Scheduling Problem

The state transition diagram of the scheduling problem can be simplified in order to reduce the number of nodes

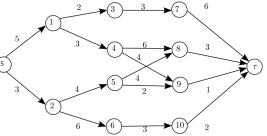


► This results in a DFS problem with T = 4, X₀ = {I.C.}, X₁ = {A, C}, X₂ = {AB, AC, CA, CD}, X₃ = {ABC, ACD or CAD, CAB or ACB, CDA}, X_T = {DONE}

We can map the DFS problem to a SP problem

Example: Deterministic Scheduling Problem

- We can map the DFS problem to a SP problem and apply the LC algorithm (s⁻
- Keeping track of the parents when a child node is added OPEN, it can be determined that a shortest path is (s, 2, 5, 9, τ) with total cost 10, which corresponds to (C, CA, CAB, CABD) in the original problem



Iteration	Remove	OPEN	d_{S}	d_1	d_2	d_3	d_4	d_5	d_6	d_7	d_8	d_9	d_{10}	d_{τ}
0	-	s	0	∞										
1	S	1,2	0	5	3	∞								
2	2	1,5,6	0	5	3	∞	∞	7	9	∞	∞	∞	∞	∞
3	6	1,5,10	0	5	3	∞	∞	7	9	∞	∞	∞	12	∞
4	10	1,5	0	5	3	∞	∞	7	9	∞	∞	∞	12	14
5	5	1,8,9	0	5	3	∞	∞	7	9	∞	11	9	12	14
6	9	1,8	0	5	3	∞	∞	7	9	∞	11	9	12	10
7	8	1	0	5	3	∞	∞	7	9	∞	11	9	12	10
8	1	3,4	0	5	3	7	8	7	9	∞	11	9	12	10
9	4	3	0	5	3	7	8	7	9	∞	11	9	12	10
10	3	-	0	5	3	7	8	7	9	∞	11	9	12	10

Specific Label Correcting Methods

- There is freedom in selecting the node to be removed from OPEN at each iteration, which gives rise to several different methods:
 - Breadth-first search (BFS) (Bellman-Ford Algorithm): "first-in, first-out" policy with OPEN implemented as a **queue**.
 - Depth-first search (DFS): "last-in, first-out" policy with OPEN implemented as a **stack**; often saves memory
 - **Best-first search** (**Dijkstra's Algorithm**): the node with minimum label $i^* = \arg \min d_i$ is removed, which guarantees that a node will enter OPEN i∈OPEN at most once. OPEN is implemented as a **priority queue**.
 - D'Esopo-Pape method: removes nodes at the top of OPEN. If a node has been in OPEN before it is inserted at the top; otherwise at the bottom.
 - **Small-label-first** (SLF): removes nodes at the top of OPEN. If $d_i \leq d_{TOP}$ node *i* is inserted at the top; otherwise at the bottom.
 - Large-label-last (LLL): the top node is compared with the average of OPEN and if it is larger, it is placed at the bottom of OPEN; otherwise it is removed. 21

A* Algorithm

The A* algorithm is a modification to the LC algorithm in which the requirement for admission to OPEN is strengthened:

from $d_i + c_{ij} < d_{\tau}$ to $d_i + c_{ij} + h_j < d_{\tau}$

where h_j is a positive lower bound on the optimal cost to get from node j to τ , known as **heuristic**.

- The more stringent criterion can reduce the number of iterations required by the LC algorithm
- The heuristic is constructed depending on special knowledge about the problem. The more accurately h_j estimates the optimal cost from j to τ, the more efficient the A* algorithm becomes!