ECE276B: Planning \& Learning in Robotics Lecture 4: Deterministic Shortest Path

Lecturer:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Tianyu Wang: tiw161@eng.ucsd.edu
Yongxi Lu: yol070@eng.ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

The Shortest Path (SP) Problem

- Consider a graph with a finite vertex space \mathcal{V} and a weighted edge space $\mathcal{C}:=\left\{\left(i, j, c_{i j}\right) \in \mathcal{V} \times \mathcal{V} \times \mathbb{R} \cup\{\infty\}\right\}$ where $c_{i j}$ denotes the arc length or cost from vertex i to vertex j.

- Objective: find the shortest path from a start node s to an end node τ
- It turns out that the SP problem is equivalent to the standard finite-horizon finite-space deterministic optimal control problem

The Shortest Path (SP) Problem

- Path: an ordered list $Q:=\left(i_{1}, i_{2}, \ldots, i_{q}\right)$ of nodes $i_{k} \in \mathcal{V}$.
- Set of all paths from $s \in \mathcal{V}$ to $\tau \in \mathcal{V}: \mathbb{Q}_{s, \tau}$.
- Path Length: sum of the arc lengths over the path: $J^{Q}=\sum_{t=1}^{q-1} c_{t, t+1}$.
- Objective: find a path $Q^{*}=\arg \min J^{Q}$ that has the smallest length from node $s \in \mathcal{V}$ to node $\tau \in \mathcal{V}$
- Assumption: For all $i \in \mathcal{V}$ and for all $Q \in \mathbb{Q}_{i, i}, J^{Q} \geq 0$, ie., there are no negative cycles in the graph and $c_{i, i}=0$ for all $i \in \mathcal{X}$.
- Solving SP problems:
- map to a deterministic finite-state system and apply (backward) DP
- label correcting methods (variants of a "forward" DP algorithm)

Deterministic Finite State (DFS) Optimal Control Problem

- Deterministic problem: closed-loop control does not offer any advantage over open-loop control
- Consider the standard problem with no disturbances w_{t} and finite state space \mathcal{X}. Given $x_{0} \in \mathcal{X}$ the goal is to construct an optimal control sequence $u_{0: T-1}$ such that:

$$
\begin{aligned}
\min _{u_{0: T-1}} & g_{T}\left(x_{T}\right)+\sum_{t=0}^{T-1} g_{t}\left(x_{t}, u_{t}\right) \\
\text { s.t. } & x_{t+1}=f\left(x_{t}, u_{t}\right), t=0, \ldots, T-1 \\
& x_{t} \in \mathcal{X}, u_{t} \in \mathcal{U}\left(x_{t}\right)
\end{aligned}
$$

- This problem can be solved via the Dynamic Programming algorithm

Equivalence of DFS and SP Problems (DFS to SP)

- We can construct a graph representation of the DFS problem.
- Every state $x_{t} \in \mathcal{X}$ at time t is represented by a node in the graph:

$$
\mathcal{V}:=\left(\bigcup_{t=0}^{T}\left\{\left(t, x_{t}\right) \mid x_{t} \in \mathcal{X}\right\}\right) \cup\{\tau\}
$$

- The given x_{0} is the starting node $s:=\left(0, x_{0}\right)$.
- An artificial terminal node τ is added with arc lengths to τ equal to the terminal costs of the DFS.
- The arc length between any two nodes is the (smallest) stage cost between them and is ∞ if there is no control that links them:
$\mathcal{C}:=\left\{\left(\left(t, x_{t}\right),\left(t+1, x_{t+1}\right), c\right) \mid c=\min _{\substack{u \in \mathcal{U}\left(x_{t}\right) \\ \text { s.t. } x_{t+1}=f\left(x_{t}, u\right)}} g_{t}\left(x_{t}, u\right)\right\} \bigcup\left\{\left(\left(T, x_{T}\right), \tau, g_{T}\left(x_{T}\right)\right)\right\}$

Equivalence of DFS and SP Problems (DFS to SP)

Equivalence of DFS and SP Problems (SP to DFS)

- Consider an SP problem with vertex space \mathcal{V}, weighted edge space \mathcal{C}, start node $s \in \mathcal{V}$ and terminal node $\tau \in \mathcal{V}$.
- Due to the assumption of no cycles with negative cost, the optimal path need not have more than $|\mathcal{V}|$ elements
- We can formulate the SP problem as a DFS with $T:=|\mathcal{V}|-1$ stages:
- State space: $\mathcal{X}_{0}:=\{s\}, \mathcal{X}_{T}:=\{\tau\}, \mathcal{X}_{t}:=\mathcal{V} \backslash\{\tau\}$ for $t=1, \ldots, T-1$
- Control space: $\mathcal{U}_{T-1}:=\{\tau\}$ and $\mathcal{U}_{t}:=\mathcal{V} \backslash\{\tau\}$ for $t=0, \ldots, T-2$
- Dynamics: $x_{t+1}=u_{t}$ for $u_{t} \in \mathcal{U}_{t}, t=0, \ldots, T-1$
- Costs: $g_{T}(\tau):=0$ and $g_{t}\left(x_{t}, u_{t}\right)=c_{x_{t}, u_{t}}$ for $t=0, \ldots, T-1$

Dynamic Programming Applied to DFS and SP

- Due to the equivalence, the DFS/SP can be solved via the DP algorithm

$$
\begin{aligned}
V_{T}(\tau) & =g_{T}(\tau)=0, \\
V_{T-1}(i) & =\min _{u \in \mathcal{U}_{t}}\left(g_{t}(i, u)+V_{t+1}(u)\right)=c_{i, \tau}, \quad \forall i \in \mathcal{V} \backslash\{\tau\} \\
V_{t}(i) & =\min _{u \in \mathcal{U}_{t}}\left(g_{t}(i, u)+V_{t+1}(u)\right)=\min _{j \in \mathcal{V} \backslash\{\tau\}}\left(c_{i, j}+V_{t+1}(j)\right), i \in \mathcal{V} \backslash\{\tau\}, t=T-2, \ldots, 0
\end{aligned}
$$

- Remarks:
- $V_{t}(i)$ is the optimal cost of getting from node i to node τ in $T-t$ steps
- $V_{0}(s)=J^{Q^{*}}$
- The algorithm can be terminated early if $V_{t}(i)=V_{t+1}(i), \forall i \in \mathcal{V} \backslash\{\tau\}$
- The SP problem is symmetric: an optimal path from s to τ is also a shortest path from τ to s, where all arc directions are flipped. This view leads to a "forward Dynamic Programming" algorithm.
- There is no analog of forward DP for stochastic problems!
- Forward DP Algorithm: $V_{t}^{F}(j)$ is the optimal cost-to-arrive to node j from node s in t moves. Starting with $V_{0}^{F}(s)=0$, iterate:

$$
\begin{aligned}
& V_{1}^{F}(j)=c_{s, j}, \quad \forall j \in \mathcal{V} \backslash\{s\} \\
& V_{t}^{F}(j)=\min _{i \in \mathcal{V} \backslash\{s\}}\left(c_{i, j}+V_{t-1}^{F}(i)\right), \quad j \in \mathcal{V} \backslash\{s\}, t=2, \ldots, T
\end{aligned}
$$

Hidden Markov Models and the Viterbi Algorithm

- Remember the HMM model from ECE-276A:
- States: $x_{t} \in \mathcal{X}:=\{1, \ldots, N\}$
- Prior: $p_{0 \mid 0} \in[0,1]^{N}$ with $p_{0 \mid 0}(i):=\mathbb{P}\left(x_{0}=i\right)$
- Motion model: $P \in \mathbb{R}^{N \times N}$ with
$P(i, j)=\mathbb{P}\left(x_{t+1}=i \mid x_{t}=j\right)$
- Observations: $z_{t} \in \mathcal{Z}:=\{1, \ldots, M\}$

- Observation model: $O \in \mathbb{R}^{M \times N}$ with
$O(i, j)=\mathbb{P}\left(z_{t}=i \mid x_{t}=j\right)$
- One of the three basic HMM problems concerns the most likely sequence of states $x_{0: T}$:
- Given an observation sequence $z_{0: T}$ and model parameters ($p_{0 \mid 0}, P, O$), how do we choose a corresponding state sequence $x_{0: T}$ which best "explains" the observations?

Viterbi Decoding

$$
\delta_{t}(i):=\max _{x_{0: t}} p\left(x_{0: t-1}, x_{t}=i, z_{0: t}\right)
$$

Likelihood of the observed sequence with the most likely state assignment up to $t-1$
$\psi_{t}(i):=\underset{x_{t-1}}{\arg \max } \max _{x_{0: t-2}} p\left(x_{0: t-1}, x_{t}=i, z_{0: t}\right)$
State from the previous time that leads to the maximum for the current state at time t

- Initialize:

$$
\delta_{0}(i)=p\left(z_{0} \mid x_{0}=i\right) p\left(x_{0}=i\right)=O\left(z_{0}, i\right) p_{0 \mid 0}(i)
$$

$$
\psi_{0}(i)=0
$$

- Forward Pass for $t=1, \ldots, T$

$$
\begin{aligned}
& \delta_{t}(i)=\max _{j} p\left(z_{t} \mid x_{t}=i\right) p_{a}\left(x_{t}=i \mid x_{t-1}=j\right) \delta_{t-1}(j)=\max _{j} O\left(z_{t}, i\right) P(i, j) \delta_{t-1}(j) \\
& \psi_{t}(i)=\underset{j}{\arg \max } p\left(z_{t} \mid x_{t}=i\right) p_{a}\left(x_{t}=i \mid x_{t-1}=j\right) \delta_{t-1}(j)=\underset{j}{\arg \max } O\left(z_{t}, i\right) P(i, j) \delta_{t-1}(j) \\
& p\left(x_{0: T}^{*}, z_{0: T}\right)=\max _{i} \delta_{T}(i) \\
& x_{T}^{*}=\underset{i}{\arg \max } \delta_{T}(i)
\end{aligned}
$$

- Backward Pass for $t=T-1, \ldots, 0$:

$$
x_{t}^{*}=\psi_{t+1}\left(x_{t+1}^{*}\right)
$$

Viterbi Decoding

- By the conditioning rule, $p\left(x_{0: T}, z_{0: T}\right)=p\left(x_{0: T} \mid z_{0: T}\right) p\left(z_{0: T}\right)$. Since $p\left(z_{0: T}\right)$ is fixed and positive, maximizing $p\left(x_{0: T} \mid z_{0: T}\right)$ is equivalent to maximizing $p\left(x_{0: T}, z_{0: T}\right)$
- Joint probability density function:

$$
p\left(x_{0: T}, z_{0: T}\right)=\underbrace{p_{0 \mid 0}\left(x_{0}\right)}_{\text {prior }} \prod_{t=0}^{T} \underbrace{O\left(z_{t}, x_{t}\right)}_{\text {observation model }} \prod_{t=1}^{T} \underbrace{P\left(x_{t}, x_{t-1}\right)}_{\text {motion model }}
$$

- Idea: we can express $\max _{x_{0: T}} p\left(x_{0: T}, z_{0: T}\right)$ as a shortest path problem:

$$
\max _{x_{0}: T}\left(c_{s,\left(0, x_{0}\right)}+\sum_{t=1}^{T} c_{\left(t-1, x_{t-1}\right),\left(t, x_{t}\right)}\right)
$$

where:

$$
\begin{aligned}
c_{s,\left(0, x_{0}\right)} & :=-\log \left(p_{0 \mid 0}\left(x_{0}\right) O\left(z_{0}, x_{0}\right)\right) \\
c_{\left(t-1, x_{t-1}\right),\left(t, x_{t}\right)} & :=-\log \left(P\left(x_{t}, x_{t-1}\right) O\left(z_{t}, x_{t}\right)\right)
\end{aligned}
$$

Viterbi Decoding

- Construct a graph of state-time pairs with artificial starting node s and terminal node τ

- Computing the shortest path via the forward DP algorithm leads to the forward pass of the Viterbi algorithm!

Label Correcting Methods for the SP Problem

- The DP algorithm computes the shortest paths from all nodes to the goal. Often many nodes are not part of the shortest path from s to τ
- The label correcting (LC) algorithm is a general algorithm for SP problems that does not necessarily visit every node of the graph
- LC algorithms prioritize the visited nodes using the cost-to-arrive values
- Key Ideas:
- Label d_{i} : keeps (an estimate of) the lowest cost from s to each visited node $i \in \mathcal{V}$
- Each time d_{i} is reduced, the labels d_{j} of the children of i can be corrected: $d_{j}=d_{i}+c_{i j}$
- OPEN: set of nodes that can potentially be part of the shortest path to τ

Label Correcting Algorithm

Algorithm 1 Label Correcting Algorithm

```
1: OPEN \(\leftarrow\{s\}, d_{s}=0, d_{i}=\infty\) for all \(i \in \mathcal{V} \backslash\{s\}\)
while OPEN is not empty do
Remove \(i\) from OPEN
for \(j \in\) Children( \(i\) ) do
if \(\left(d_{i}+c_{i j}\right)<d_{j}\) and \(\left(d_{i}+c_{i j}\right)<d_{\tau}\) then
\(d_{j} \leftarrow\left(d_{i}+c_{i j}\right)\)
Parent \((j) \leftarrow i\)
if \(j \neq \tau\) then
OPEN \(\leftarrow\) OPEN \(\cup\{j\}\)
```


Theorem

If there exists at least one finite cost path from s to τ, then the Label Correcting (LC) algorithm terminates with $d_{\tau}=J^{Q^{*}}$ (the shortest path from s to τ). Otherwise, the LC algorithm terminates with $d_{\tau}=\infty$.

Label Correcting Algorithm

Label Correcting Algorithm Proof

1. Claim: The LC algorithm terminates in a finite number of steps

- Each time a node j enters OPEN, its label is decreased and becomes equal to the length of some path from s to j.
- The number of distinct paths from s to j whose length is smaller than any given number is finite (no negative cycles assumption)
- There can only be a finite number of label reductions for each node j
- Since the LC algorithm removes nodes from OPEN in line 3, the algorithm will eventually terminate

2. Claim: The LC algorithm terminates with $d_{\tau}=\infty$ if there is no finite cost path from s to τ

- A node $i \in \mathcal{V}$ is in OPEN only if there is a finite cost path from s to i
- If there is no finite cost path from s to τ, then for any node i in OPEN $c_{i, \tau}=\infty$; otherwise there would be a finite cost path from s to τ
- Since $c_{i, \tau}=\infty$ for every i in OPEN, line 5 ensures that d_{τ} is never updated and remains ∞

Label Correcting Algorithm Proof

3. Claim: The LC algorithm terminates with $d_{\tau}=J Q^{*}$ if there is at least one finite cost path from s to τ

- Let $Q^{*}=\left(s, i_{1}, i_{2}, \ldots, i_{q-2}, \tau\right) \in \mathbb{Q}_{s, \tau}$ be a shortest path from s to τ with length $J^{Q^{*}}$
- By the principle of optimality $Q_{m}^{*}:=\left(s, i_{1}, \ldots, i_{m}\right)$ is the shortest path from s to i_{m} with length J_{m}^{*} for any $m=1, \ldots, q-2$
- Suppose that $d_{\tau}>J Q^{*}$ (proof by contradiction)
- Since d_{τ} only decreases in the algorithm and every cost is nonnegative, $d_{\tau}>J^{Q_{m}^{*}}$ for all $m=2, \ldots, q-2$
- Thus, i_{q-2} does not enter OPEN with $d_{i_{q-2}}=J^{Q_{q-2}^{*}}$ since if it did, then the next time i_{q-2} is removed from OPEN, d_{τ} would be updated to $J_{Q^{*}}$
- Similarly, i_{q-3} will not enter OPEN with $d_{i_{q-3}}=J^{Q_{q-3}^{*}}$. Continuing this way, i_{1} will not enter open with $d_{i_{1}}=J_{1}^{Q_{1}^{*}}=c_{s, i_{1}}$ but this happens at the first iteration of the algorithm, which is a contradiction!

Example: Deterministic Scheduling Problem

- Consider a deterministic scheduling problem where 4 operations A, B, C, D are used to produce a product
- Rules: Operation A must occur before B, and C before D
- Cost: there is a transition cost between each two operations:

Example: Deterministic Scheduling Problem

- The state transition diagram of the scheduling problem can be simplified in order to reduce the number of nodes

- This results in a DFS problem with $T=4, \mathcal{X}_{0}=\{$ I.C. $\}, \mathcal{X}_{1}=\{\mathrm{A}, \mathrm{C}\}$, $\mathcal{X}_{2}=\{\mathrm{AB}, \mathrm{AC}, \mathrm{CA}, \mathrm{CD}\}, \mathcal{X}_{3}=\{\mathrm{ABC}, \mathrm{ACD}$ or CAD, CAB or $\mathrm{ACB}, \mathrm{CDA}\}$, $\mathcal{X}_{T}=\{D O N E\}$
- We can map the DFS problem to a SP problem

Example: Deterministic Scheduling Problem

- We can map the DFS problem to a SP problem and apply the LC algorithm

Specific Label Correcting Methods

- There is freedom in selecting the node to be removed from OPEN at each iteration, which gives rise to several different methods:
- Breadth-first search (BFS) (Bellman-Ford Algorithm): "first-in, first-out" policy with OPEN implemented as a queue.
- Depth-first search (DFS): "last-in, first-out" policy with OPEN implemented as a stack; often saves memory
- Best-first search (Dijkstra's Algorithm): the node with minimum label $i^{*}=\arg \min d_{j}$ is removed, which guarantees that a node will enter OPEN $j \in$ OPEN at most once. OPEN is implemented as a priority queue.
- D'Esopo-Pape method: removes nodes at the top of OPEN. If a node has been in OPEN before it is inserted at the top; otherwise at the bottom.
- Small-label-first (SLF): removes nodes at the top of OPEN. If $d_{i} \leq d_{T O P}$ node i is inserted at the top; otherwise at the bottom.
- Large-label-last (LLL): the top node is compared with the average of OPEN and if it is larger, it is placed at the bottom of OPEN; otherwise it is removed.

A* Algorithm

- The \mathbf{A}^{*} algorithm is a modification to the LC algorithm in which the requirement for admission to OPEN is strengthened:

$$
\text { from } d_{i}+c_{i j}<d_{\tau} \text { to } d_{i}+c_{i j}+h_{j}<d_{\tau}
$$

where h_{j} is a positive lower bound on the optimal cost to get from node j to τ, known as heuristic.

- The more stringent criterion can reduce the number of iterations required by the LC algorithm
- The heuristic is constructed depending on special knowledge about the problem. The more accurately h_{j} estimates the optimal cost from j to τ, the more efficient the A^{*} algorithm becomes!

