
ECE276B: Planning & Learning in Robotics
Lecture 5: Configuration Space

Lecturer:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Tianyu Wang: tiw161@eng.ucsd.edu
Yongxi Lu: yol070@eng.ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:tiw161@eng.ucsd.edu
mailto:yol070@eng.ucsd.edu


The Shortest Path Problem and Motion Planning
I The shortest path (SP) problem is closely related to motion planning in

robotics

I We discussed a finite-space formulation of the SP problem but robot
motion planning frequently requires continuous state and control spaces
(also known as the Piano Movers Problem)

2



What is Motion Planning?

I Objective: find a feasible (and cost-minimal) path from the current
configuration of the robot to its goal configuration

I Cost function: distance, time, energy, risk, etc.

I Constraints:
I environmental constraints (e.g., obstacles)
I dynamics/kinematics constraints of the robot

3



Example

4



Planning vs Control

I Historical distinction between planning (global reasoning) and control
(local reasoning)

I Planning: the automatic generation of global collision-free trajectories
I Control: the automatic generation of control inputs for local, reactive

trajectory tracking
I Nowadays both interpreted as optimal control/reinforcement learning

5



Analyzing Motion Planning Algorithms

I Completeness: a planning algorithm is called complete if it:
I returns a feasible solution, if one exists;
I returns FAIL in finite time, otherwise

I Optimality:
I a planning is optimal if it returns a path with shortest length J∗ among all

possible paths from start to goal
I a planning algorithm is ε-suboptimal if it returns a path with length

J ≤ εJ∗ for ε ≥ 1 and J∗ - the optimal length

I Efficiency: a planning algorithm is efficient if it finds a solution in the
least possible time (for all inputs)

I Generality: can handle high-dimensional robots or environments and
various obstacle or dynamics/kinematics constraints

6



Motion Planning Approaches

I Exact algorithms in continuous space
I Either find a solution or prove none exist
I Very computationally expensive
I Unsuitable for high-dimensional spaces

I Search-based Planning
I Discretize the configuration space into a graph
I Solve the SP problem via a LC algorithm
I Computationally expensive in high-dim spaces
I Resolution completeness and suboptimality

guarantees

I Sampling-based Planning
I Sample the configuration space to construct a graph

incrementally and construct a path from the samples
I Efficient in high-dim spaces but problems with

“narrow passages”
I Weak completeness and optimality guarantees

7



Configuration Space

I A configuration is a specification of the position of every point on a
robot.

I A configuration q is usually expressed as a vector of the Degrees Of
Freedom (DOF) of the robot:

q = (q1, . . . , qn)

I 3 DOF: Differential drive robot (x , y , θ) ∈ SE (2)
I 6 DOF: Quadrotor (p,R) ∈ SE (3)
I 7 DOF: 7-link manipulator (humanoid arm): (θ1, . . . , θ7) ∈ [−π, π)7

I Configuration space C is the set of all possible robot configurations.
The dimension of C is the minimum number of DOF needed to
completely specify a robot configuration.

8



Example: C-Space of a Two Link Manipulator

9



Degrees of Freedom of Robots with Joints

I An articulated object is a set of
rigid bodies connected by joints.

I Examples of articulated robots:
arms, humanoids

10



Obstacles in C-Space
I A configuration q is collision-free, or free, if

the robot placed at q does not intersect any
obstacles in the workspace

I The free space Cfree ⊆ C is the set of all free
configurations

I The occupied space Cobs ⊆ C is the set of all configurations in which
the robot collides either with an obstacle or with itself (self-collision)

11



How do we compute Cobs?

I Input: polygonal robot body R and polygonal obstacle O in environment

I Output: polygonal obstacle CO in configuration space

I Assumption: the robot translates only

I Idea:
I Circular robot: expand all obstacles by the radius of the robot
I Symmetric robot: Minkowski (set) sum
I Asymmetric robot: Minkowski (set) difference

12



Cobs for Symmetric Robots
I The obstacle CO in C-Space is obtained via the Minkowski sum of the

obstacle set O and the robot set R:

CO = O ⊕ R := {a + b | a ∈ O, b ∈ R}

13



Cobs for Asymmetric Robots
I In the general case when the robot is not symmetric about the origin, it

turns out that the correct operation is the Minkowski difference:

CO = O 	 R := {a− b | a ∈ O, b ∈ R}
I This means “flip” the robot and then take Minkowski sum

14



Properties of Cobs

I Properties of Cobs

I If O and R are convex, then Cobs is convex
I If O and R are closed, then Cobs is closed
I If O and R are compact, then Cobs is compact
I If O and R are algebraic, then Cobs is algebraic
I If O and R are connected, then Cobs is connected

I After a C-Space transform, planning can be done for a point robot
I Advantage: planning for a point robot is very efficient

I Disadvantage: need to transform the obstacles every time the map is
updated (e.g., if the robot is circular, O(n) methods exist to compute
distance transforms)

I Disadvantage: very expensive to compute in higher dimensions

I Alternative: plan in the original space and only check configurations of
interest for collisions

15



Minkowski Sums in Higher Dimensions

I The configuration space for
a rigid non-circular robot in
a 2D world is 3 dimensional

16



Configuration Space for Articulated Robots

I The configuration space for a N-DOF robot arm is N-dimensional

I Computing exact C-Space obstacles becomes complicated!

17



Motion Planning as Graph Search Problem

I Motion planning as a shortest path problem on a graph:
1. Decide:

a) pre-compute the C-Space
b) perform collision checking on the fly

2. Construct a graph representing the planning problem

3. Search the graph for a (hopefully, close-to-optimal) path

I Often collision checking, graph construction, and planning are all
interleaved and performed on the fly

18



Graph Construction

I Cell decomposition: decompose the free space into simple cells and
represent its connectivity by the adjacency graph of these cells

I X-connected grids
I Tree decompositions
I Lattice-based graphs

I Skeletonization: represent the connectivity of free space by a network
of 1-D curves:

I Visibility graphs
I Generalized Voronoi diagrams
I Other Roadmaps

19



X-connected Grid

1. Overlay a uniform grid over the C-space

2. Convert the grid into a graph:

20



X-connected Grid
I How many neighbors?

I 8-connected grid: paths restricted to 45◦ turns
I 16-connected grid: paths restricted to 22.5◦ turns
I 3-D (x , y , θ) discretization of SE (2)

I Problems:
1. What should we do with partially blocked cells?
2. Discretization leads to a very dense graph in high dimensions and many of

the transitions are difficult to execute due to dynamics constraints
21



Quadtree Adaptive Decomposition

22



Octree Adaptive Decomposition

23



Lattice-based Graph
I Instead of dense discretization, construct a graph by a recursive

application of a finite set of dynamically feasible motions (e.g., action
template, motion primitive, movement primitive, macro action, etc.)

I Pros: sparse graph, feasible paths
I Cons: possible incompleteness

24



Visibility Graph

I Shakey Project, SRI [Nilsson, 1969]

I Also called Shortest Path Roadmap

I Shortest paths are like rubber-bands:
if there is a collision-free path between
two points, then there is a piecewise
linear path that bends only at the
obstacle vertices.

I Visibility Graph:
I Nodes: start, goal, and all obstacle

vertices
I Edges: between any two vertices that

“see” each other, i.e., the edge does not
intersect obstacles or is an obstacle edge

25



Visibility Graph Construction

Algorithm 1 Visibility Graph Construction

1: Input: qI , qG , polygonal obstacles
2: Output: visibility graph G
3: for every pair of nodes u, v do . O(n2)
4: if segment(u, v) is an obstacle edge then . O(n)
5: insert edge(u, v) into G
6: else
7: for every obstacle edge e do . O(n)
8: if segment(u, v) intersects e then
9: break and go to line 3

10: insert edge(u, v) into G

I Time complexity: O(n3) but can be reduced to O(n2 log n) with
rotational sweep or even to O(n2) with an optimal algorithm

I Space complexity: O(n2)

26



Reduced Visibility Graph
I In fact, not all edges are needed

I Reduced visibility graph – keep only edges between consecutive reflex
vertices and bitangents

I A vertex of a polygonal obstacle is reflex if the exterior angle (computed
in Cfree) is larger than π

I A bitangent edge must touch two reflex vertices that are mutually
visible from each other, and the the line must extend outward past each
of them without poking into Cobs

27



Reflex Vertices and Bitangents
I A vertex of a polygonal obstacle is reflex if the exterior angle (computed

in Cfree) is larger than π

(a) 10 reflex vertices (b) 9 reflex vertices

I A bitangent edge must touch two reflex vertices that are mutually
visible from each other, and the the line must extend outward past each
of them without poking into Cobs

28



Reduced Visibility Graph

I The reduced visibility graph includes edges between consecutive reflex
vertices on Cobs and bitangent edges

I The shortest path in a reduced visibility graph is the shortest path
between start qI and goal qG

29



Visibility Graph

I What do we need to construct a reduced visibility graph?
I Subroutine to check if a vertex is reflex
I Subroutine to check if two vertices are visible
I Subroutine to check if there exists a bitangent

I Pros:
I independent of the size of the environment
I can make multiple shortest path queries for the same graph, i.e., the

environment remains the same but the start and goal change

I Cons:
I shortest paths always graze the obstacles
I hard to deal with a non-uniform cost function
I hard to deal with non-polygonal obstacles
I can get expensive in high dimensions with a lot of obstacles

30



Generalized Voronoi Diagram
I Voronoi diagram: set of all points that are equidistant to two nearest

obstacles

I Based on the idea of maximizing clearance instead of minimizing travel
distance

I Also known as
I maximum clearance roadmap (robotics)
I skeletonization (computer vision)
I retractions (topology)

I Suppose we have just two (linear) obstacles (e.g., a corridor). What is
the set of points that keeps the robots as far away from the (C-Space)
obstacles as possible?

31



Voronoi Diagram

I Suppose we just have n point
obstacles oi

I The Voronoi cell of oi is a subset
of the plane that is closer to oi than
any other point

I Voronoi diagrams have many other
applications, e.g., points represent
fire stations and the Voronoi cells
give their serving areas

32



Voronoi Diagram
I Construction

I Naive implementation: take every pair of obstacle features, compute locus
of equally spaced points, and take the intersection

I Efficient algorithms available, e.g., CGAL
I Add a shortest path from start to the nearest segment of the diagram
I Add a shortest path from goal to the nearest segment of the diagram

I Time complexity for n points in Rd : O(n log n + ndd/2e)
I Space complexity: O(n)
I Pros:

I paths tend to stay away from obstacles
I independent of the size of the environment

I Cons:
I difficult to construct in higher dimensions
I can result in highly suboptimal paths 33



Voronoi Diagram

34



Trapezoidal Decomposition
I The free space Cfree is represented by a collection of non-overlapping

trapezoids whose union is exactly Cfree :

I Draw a vertical line from every vertex until you hit an obstacle
I Nodes: trapezoid centroids and line midpoints
I Edges: between every pair of nodes whose cells are adjacent

35



Cylindrical Decomposition
I Similar to trapezoidal decomposition, except the vertical lines continue

after obstacles

I Generalizes better to high dimensions and complex configuration spaces

36



Triangular Decomposition

37



Probabilistic Roadmaps
I Construction:

I Randomly sample valid configurations
I Add edges between samples that are easy to connect with a simple local

controller (e.g., follow straight line)
I Add start and goal configurations to the graph with appropriate edges

I Pros and Cons:
I Very popular: simple and highly effective in high dimensions
I Can result in suboptimal paths, no guarantees on suboptimality
I Difficulty with narrow passages

38


