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The Shortest Path Problem and Motion Planning
I The shortest path (SP) problem is closely related to motion planning in

robotics

I We discussed a finite-space formulation of the SP problem but robot
motion planning frequently requires continuous state and control spaces
(also known as the Piano Movers Problem)
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What is Motion Planning?

I Objective: find a feasible (and cost-minimal) path from the current
configuration of the robot to its goal configuration

I Cost function: distance, time, energy, risk, etc.

I Constraints:
I environmental constraints (e.g., obstacles)
I dynamics/kinematics constraints of the robot
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Example
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Planning vs Control

I Historical distinction between planning (global reasoning) and control
(local reasoning)

I Planning: the automatic generation of global collision-free trajectories
I Control: the automatic generation of control inputs for local, reactive

trajectory tracking
I Nowadays both interpreted as optimal control/reinforcement learning
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Analyzing Motion Planning Algorithms

I Completeness: a planning algorithm is called complete if it:
I returns a feasible solution, if one exists;
I returns FAIL in finite time, otherwise

I Optimality:
I a planning is optimal if it returns a path with shortest length J∗ among all

possible paths from start to goal
I a planning algorithm is ε-suboptimal if it returns a path with length

J ≤ εJ∗ for ε ≥ 1 and J∗ - the optimal length

I Efficiency: a planning algorithm is efficient if it finds a solution in the
least possible time (for all inputs)

I Generality: can handle high-dimensional robots or environments and
various obstacle or dynamics/kinematics constraints
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Motion Planning Approaches

I Exact algorithms in continuous space
I Either find a solution or prove none exist
I Very computationally expensive
I Unsuitable for high-dimensional spaces

I Search-based Planning
I Discretize the configuration space into a graph
I Solve the SP problem via a LC algorithm
I Computationally expensive in high-dim spaces
I Resolution completeness and suboptimality

guarantees

I Sampling-based Planning
I Sample the configuration space to construct a graph

incrementally and construct a path from the samples
I Efficient in high-dim spaces but problems with

“narrow passages”
I Weak completeness and optimality guarantees
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Configuration Space

I A configuration is a specification of the position of every point on a
robot.

I A configuration q is usually expressed as a vector of the Degrees Of
Freedom (DOF) of the robot:

q = (q1, . . . , qn)

I 3 DOF: Differential drive robot (x , y , θ) ∈ SE (2)
I 6 DOF: Quadrotor (p,R) ∈ SE (3)
I 7 DOF: 7-link manipulator (humanoid arm): (θ1, . . . , θ7) ∈ [−π, π)7

I Configuration space C is the set of all possible robot configurations.
The dimension of C is the minimum number of DOF needed to
completely specify a robot configuration.
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Example: C-Space of a Two Link Manipulator
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Degrees of Freedom of Robots with Joints

I An articulated object is a set of
rigid bodies connected by joints.

I Examples of articulated robots:
arms, humanoids
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Obstacles in C-Space
I A configuration q is collision-free, or free, if

the robot placed at q does not intersect any
obstacles in the workspace

I The free space Cfree ⊆ C is the set of all free
configurations

I The occupied space Cobs ⊆ C is the set of all configurations in which
the robot collides either with an obstacle or with itself (self-collision)
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How do we compute Cobs?

I Input: polygonal robot body R and polygonal obstacle O in environment

I Output: polygonal obstacle CO in configuration space

I Assumption: the robot translates only

I Idea:
I Circular robot: expand all obstacles by the radius of the robot
I Symmetric robot: Minkowski (set) sum
I Asymmetric robot: Minkowski (set) difference
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Cobs for Symmetric Robots
I The obstacle CO in C-Space is obtained via the Minkowski sum of the

obstacle set O and the robot set R:

CO = O ⊕ R := {a + b | a ∈ O, b ∈ R}
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Cobs for Asymmetric Robots
I In the general case when the robot is not symmetric about the origin, it

turns out that the correct operation is the Minkowski difference:

CO = O 	 R := {a− b | a ∈ O, b ∈ R}
I This means “flip” the robot and then take Minkowski sum
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Properties of Cobs

I Properties of Cobs

I If O and R are convex, then Cobs is convex
I If O and R are closed, then Cobs is closed
I If O and R are compact, then Cobs is compact
I If O and R are algebraic, then Cobs is algebraic
I If O and R are connected, then Cobs is connected

I After a C-Space transform, planning can be done for a point robot
I Advantage: planning for a point robot is very efficient

I Disadvantage: need to transform the obstacles every time the map is
updated (e.g., if the robot is circular, O(n) methods exist to compute
distance transforms)

I Disadvantage: very expensive to compute in higher dimensions

I Alternative: plan in the original space and only check configurations of
interest for collisions

15



Minkowski Sums in Higher Dimensions

I The configuration space for
a rigid non-circular robot in
a 2D world is 3 dimensional
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Configuration Space for Articulated Robots

I The configuration space for a N-DOF robot arm is N-dimensional

I Computing exact C-Space obstacles becomes complicated!
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Motion Planning as Graph Search Problem

I Motion planning as a shortest path problem on a graph:
1. Decide:

a) pre-compute the C-Space
b) perform collision checking on the fly

2. Construct a graph representing the planning problem

3. Search the graph for a (hopefully, close-to-optimal) path

I Often collision checking, graph construction, and planning are all
interleaved and performed on the fly
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Graph Construction

I Cell decomposition: decompose the free space into simple cells and
represent its connectivity by the adjacency graph of these cells

I X-connected grids
I Tree decompositions
I Lattice-based graphs

I Skeletonization: represent the connectivity of free space by a network
of 1-D curves:

I Visibility graphs
I Generalized Voronoi diagrams
I Other Roadmaps
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X-connected Grid

1. Overlay a uniform grid over the C-space

2. Convert the grid into a graph:
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X-connected Grid
I How many neighbors?

I 8-connected grid: paths restricted to 45◦ turns
I 16-connected grid: paths restricted to 22.5◦ turns
I 3-D (x , y , θ) discretization of SE (2)

I Problems:
1. What should we do with partially blocked cells?
2. Discretization leads to a very dense graph in high dimensions and many of

the transitions are difficult to execute due to dynamics constraints
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Quadtree Adaptive Decomposition
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Octree Adaptive Decomposition
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Lattice-based Graph
I Instead of dense discretization, construct a graph by a recursive

application of a finite set of dynamically feasible motions (e.g., action
template, motion primitive, movement primitive, macro action, etc.)

I Pros: sparse graph, feasible paths
I Cons: possible incompleteness
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Visibility Graph

I Shakey Project, SRI [Nilsson, 1969]

I Also called Shortest Path Roadmap

I Shortest paths are like rubber-bands:
if there is a collision-free path between
two points, then there is a piecewise
linear path that bends only at the
obstacle vertices.

I Visibility Graph:
I Nodes: start, goal, and all obstacle

vertices
I Edges: between any two vertices that

“see” each other, i.e., the edge does not
intersect obstacles or is an obstacle edge
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Visibility Graph Construction

Algorithm 1 Visibility Graph Construction

1: Input: qI , qG , polygonal obstacles
2: Output: visibility graph G
3: for every pair of nodes u, v do . O(n2)
4: if segment(u, v) is an obstacle edge then . O(n)
5: insert edge(u, v) into G
6: else
7: for every obstacle edge e do . O(n)
8: if segment(u, v) intersects e then
9: break and go to line 3

10: insert edge(u, v) into G

I Time complexity: O(n3) but can be reduced to O(n2 log n) with
rotational sweep or even to O(n2) with an optimal algorithm

I Space complexity: O(n2)
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Reduced Visibility Graph
I In fact, not all edges are needed

I Reduced visibility graph – keep only edges between consecutive reflex
vertices and bitangents

I A vertex of a polygonal obstacle is reflex if the exterior angle (computed
in Cfree) is larger than π

I A bitangent edge must touch two reflex vertices that are mutually
visible from each other, and the the line must extend outward past each
of them without poking into Cobs
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Reflex Vertices and Bitangents
I A vertex of a polygonal obstacle is reflex if the exterior angle (computed

in Cfree) is larger than π

(a) 10 reflex vertices (b) 9 reflex vertices

I A bitangent edge must touch two reflex vertices that are mutually
visible from each other, and the the line must extend outward past each
of them without poking into Cobs
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Reduced Visibility Graph

I The reduced visibility graph includes edges between consecutive reflex
vertices on Cobs and bitangent edges

I The shortest path in a reduced visibility graph is the shortest path
between start qI and goal qG
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Visibility Graph

I What do we need to construct a reduced visibility graph?
I Subroutine to check if a vertex is reflex
I Subroutine to check if two vertices are visible
I Subroutine to check if there exists a bitangent

I Pros:
I independent of the size of the environment
I can make multiple shortest path queries for the same graph, i.e., the

environment remains the same but the start and goal change

I Cons:
I shortest paths always graze the obstacles
I hard to deal with a non-uniform cost function
I hard to deal with non-polygonal obstacles
I can get expensive in high dimensions with a lot of obstacles
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Generalized Voronoi Diagram
I Voronoi diagram: set of all points that are equidistant to two nearest

obstacles

I Based on the idea of maximizing clearance instead of minimizing travel
distance

I Also known as
I maximum clearance roadmap (robotics)
I skeletonization (computer vision)
I retractions (topology)

I Suppose we have just two (linear) obstacles (e.g., a corridor). What is
the set of points that keeps the robots as far away from the (C-Space)
obstacles as possible?
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Voronoi Diagram

I Suppose we just have n point
obstacles oi

I The Voronoi cell of oi is a subset
of the plane that is closer to oi than
any other point

I Voronoi diagrams have many other
applications, e.g., points represent
fire stations and the Voronoi cells
give their serving areas
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Voronoi Diagram
I Construction

I Naive implementation: take every pair of obstacle features, compute locus
of equally spaced points, and take the intersection

I Efficient algorithms available, e.g., CGAL
I Add a shortest path from start to the nearest segment of the diagram
I Add a shortest path from goal to the nearest segment of the diagram

I Time complexity for n points in Rd : O(n log n + ndd/2e)
I Space complexity: O(n)
I Pros:

I paths tend to stay away from obstacles
I independent of the size of the environment

I Cons:
I difficult to construct in higher dimensions
I can result in highly suboptimal paths 33



Voronoi Diagram
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Trapezoidal Decomposition
I The free space Cfree is represented by a collection of non-overlapping

trapezoids whose union is exactly Cfree :

I Draw a vertical line from every vertex until you hit an obstacle
I Nodes: trapezoid centroids and line midpoints
I Edges: between every pair of nodes whose cells are adjacent
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Cylindrical Decomposition
I Similar to trapezoidal decomposition, except the vertical lines continue

after obstacles

I Generalizes better to high dimensions and complex configuration spaces
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Triangular Decomposition
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Probabilistic Roadmaps
I Construction:

I Randomly sample valid configurations
I Add edges between samples that are easy to connect with a simple local

controller (e.g., follow straight line)
I Add start and goal configurations to the graph with appropriate edges

I Pros and Cons:
I Very popular: simple and highly effective in high dimensions
I Can result in suboptimal paths, no guarantees on suboptimality
I Difficulty with narrow passages
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