ECE276B: Planning & Learning in Robotics Lecture 5: Configuration Space

Lecturer:

Nikolay Atanasov: natanasov@ucsd.edu

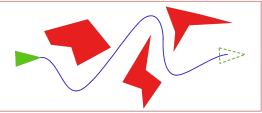
Teaching Assistants: Tianyu Wang: tiw161@eng.ucsd.edu Yongxi Lu: yol070@eng.ucsd.edu

UC San Diego

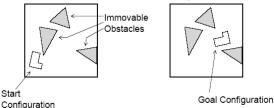
JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

The Shortest Path Problem and Motion Planning

 The shortest path (SP) problem is closely related to motion planning in robotics

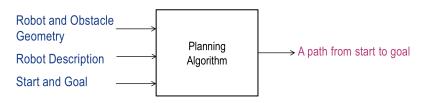


 We discussed a finite-space formulation of the SP problem but robot motion planning frequently requires continuous state and control spaces (also known as the **Piano Movers Problem**)

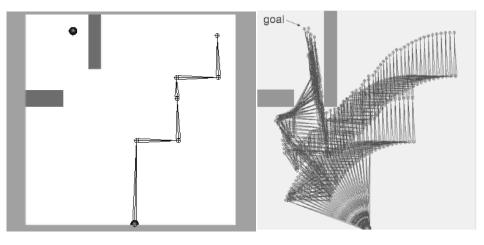


What is Motion Planning?

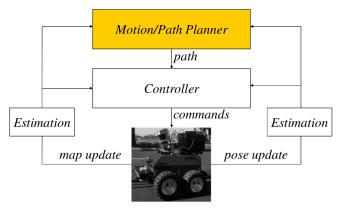
- Objective: find a feasible (and cost-minimal) path from the current configuration of the robot to its goal configuration
- Cost function: distance, time, energy, risk, etc.
- Constraints:
 - environmental constraints (e.g., obstacles)
 - dynamics/kinematics constraints of the robot



Example



Planning vs Control



- Historical distinction between planning (global reasoning) and control (local reasoning)
 - > Planning: the automatic generation of global collision-free trajectories
 - Control: the automatic generation of control inputs for local, reactive trajectory tracking
- Nowadays both interpreted as optimal control/reinforcement learning

Analyzing Motion Planning Algorithms

• Completeness: a planning algorithm is called complete if it:

- returns a feasible solution, if one exists;
- returns FAIL in finite time, otherwise

Optimality:

- ▶ a planning is optimal if it returns a path with shortest length J* among all possible paths from start to goal
- ▶ a planning algorithm is ϵ -suboptimal if it returns a path with length $J \leq \epsilon J^*$ for $\epsilon \geq 1$ and J^* the optimal length
- Efficiency: a planning algorithm is efficient if it finds a solution in the least possible time (for all inputs)
- Generality: can handle high-dimensional robots or environments and various obstacle or dynamics/kinematics constraints

Motion Planning Approaches

Exact algorithms in continuous space

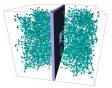
- Either find a solution or prove none exist
- Very computationally expensive
- Unsuitable for high-dimensional spaces

Search-based Planning

- Discretize the configuration space into a graph
- Solve the SP problem via a LC algorithm
- Computationally expensive in high-dim spaces
- Resolution completeness and suboptimality guarantees

Sampling-based Planning

- Sample the configuration space to construct a graph incrementally and construct a path from the samples
- Efficient in high-dim spaces but problems with "narrow passages"
- Weak completeness and optimality guarantees



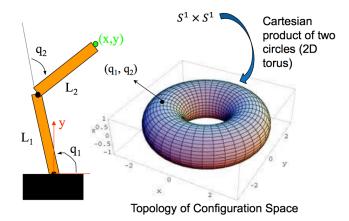
Configuration Space

- A configuration is a specification of the position of every point on a robot.
- A configuration q is usually expressed as a vector of the Degrees Of Freedom (DOF) of the robot:

$$q = (q_1, \ldots, q_n)$$

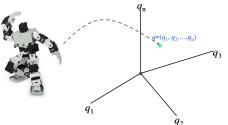
- ▶ 3 DOF: Differential drive robot $(x, y, \theta) \in SE(2)$
- 6 DOF: Quadrotor $(p, R) \in SE(3)$
- ▶ 7 DOF: 7-link manipulator (humanoid arm): $(\theta_1, \ldots, \theta_7) \in [-\pi, \pi)^7$
- Configuration space C is the set of all possible robot configurations. The dimension of C is the minimum number of DOF needed to completely specify a robot configuration.

Example: C-Space of a Two Link Manipulator



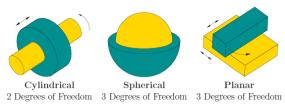
Degrees of Freedom of Robots with Joints

- An articulated object is a set of rigid bodies connected by joints.
- Examples of articulated robots: arms, humanoids



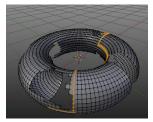
Revolute 1 Degree of Freedom

Screw 1 Degree of Freedom

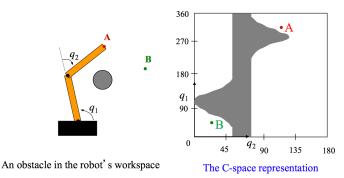


Obstacles in C-Space

- A configuration q is collision-free, or free, if the robot placed at q does not intersect any obstacles in the workspace
- ► The free space C_{free} ⊆ C is the set of all free configurations

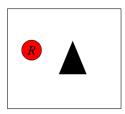


► The occupied space C_{obs} ⊆ C is the set of all configurations in which the robot collides either with an obstacle or with itself (self-collision)

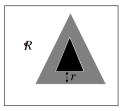


How do we compute C_{obs} ?

- ▶ Input: polygonal robot body *R* and polygonal obstacle *O* in environment
- **Output**: polygonal obstacle *CO* in configuration space
- Assumption: the robot translates only
- Idea:
 - Circular robot: expand all obstacles by the radius of the robot
 - Symmetric robot: Minkowski (set) sum
 - Asymmetric robot: Minkowski (set) difference



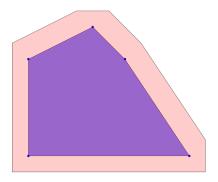
C-Space Transform



Cobs for Symmetric Robots

The obstacle CO in C-Space is obtained via the Minkowski sum of the obstacle set O and the robot set R:

$$CO = O \oplus R := \{a + b \mid a \in O, b \in R\}$$

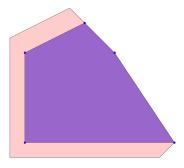


Cobs for Asymmetric Robots

In the general case when the robot is not symmetric about the origin, it turns out that the correct operation is the Minkowski difference:

$$CO = O \ominus R := \{a - b \mid a \in O, b \in R\}$$

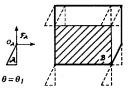
This means "flip" the robot and then take Minkowski sum

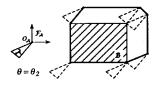


Properties of Cobs

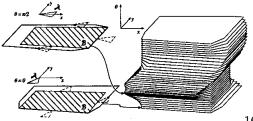
- ► Properties of Cobs
 - ▶ If *O* and *R* are **convex**, then *C*_{obs} is **convex**
 - If O and R are closed, then Cobs is closed
 - ▶ If *O* and *R* are **compact**, then *C*_{obs} is **compact**
 - ▶ If O and R are algebraic, then C_{obs} is algebraic
 - ▶ If *O* and *R* are **connected**, then *C*_{obs} is **connected**
- ► After a C-Space transform, planning can be done for a point robot
 - Advantage: planning for a point robot is very efficient
 - ▶ **Disadvantage**: need to transform the obstacles every time the map is updated (e.g., if the robot is circular, *O*(*n*) methods exist to compute distance transforms)
 - **Disadvantage**: very expensive to compute in higher dimensions
 - Alternative: plan in the original space and only check configurations of interest for collisions

Minkowski Sums in Higher Dimensions



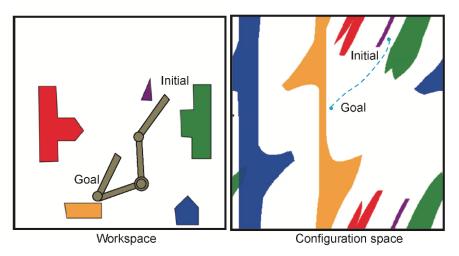


 The configuration space for a rigid non-circular robot in a 2D world is 3 dimensional



Configuration Space for Articulated Robots

- ► The configuration space for a *N*-DOF robot arm is *N*-dimensional
- Computing exact C-Space obstacles becomes complicated!



Motion Planning as Graph Search Problem

Motion planning as a shortest path problem on a graph:

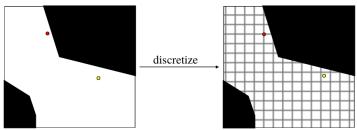
- 1. Decide:
 - a) pre-compute the C-Space
 - b) perform collision checking on the fly
- 2. Construct a graph representing the planning problem
- 3. Search the graph for a (hopefully, close-to-optimal) path
- Often collision checking, graph construction, and planning are all interleaved and performed on the fly

Graph Construction

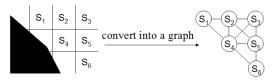
- Cell decomposition: decompose the free space into simple cells and represent its connectivity by the adjacency graph of these cells
 - X-connected grids
 - Tree decompositions
 - Lattice-based graphs
- Skeletonization: represent the connectivity of free space by a network of 1-D curves:
 - Visibility graphs
 - Generalized Voronoi diagrams
 - Other Roadmaps

X-connected Grid

1. Overlay a uniform grid over the C-space

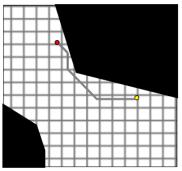


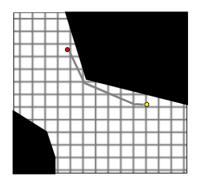
2. Convert the grid into a graph:



X-connected Grid

- How many neighbors?
 - 8-connected grid: paths restricted to 45° turns
 - 16-connected grid: paths restricted to 22.5° turns
 - 3-D (x, y, θ) discretization of SE(2)

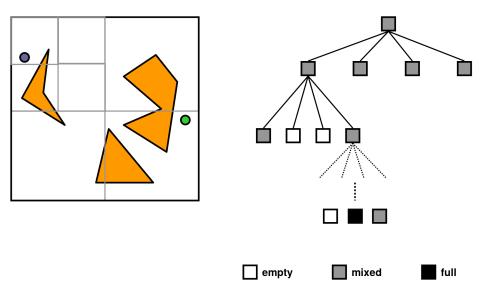




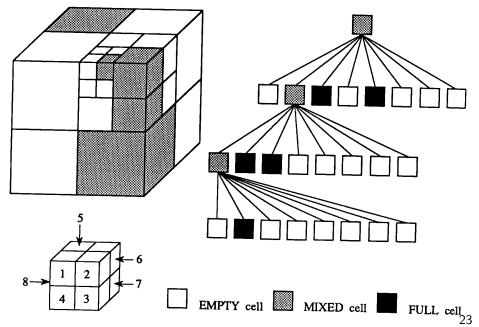
Problems:

- 1. What should we do with partially blocked cells?
- 2. Discretization leads to a very dense graph in high dimensions and many of the transitions are difficult to execute due to dynamics constraints

Quadtree Adaptive Decomposition

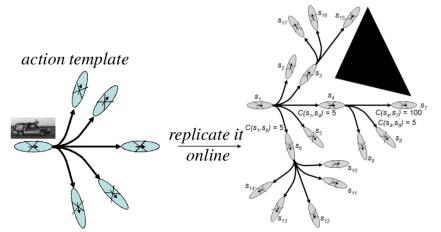


Octree Adaptive Decomposition



Lattice-based Graph

- Instead of dense discretization, construct a graph by a recursive application of a finite set of dynamically feasible motions (e.g., action template, motion primitive, movement primitive, macro action, etc.)
- Pros: sparse graph, feasible paths
- **Cons**: possible incompleteness

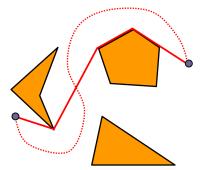


Visibility Graph

- Shakey Project, SRI [Nilsson, 1969]
- Also called Shortest Path Roadmap
- Shortest paths are like rubber-bands: if there is a collision-free path between two points, then there is a piecewise linear path that bends only at the obstacle vertices.

Visibility Graph:

- Nodes: start, goal, and all obstacle vertices
- Edges: between any two vertices that "see" each other, i.e., the edge does not qui intersect obstacles or is an obstacle edge





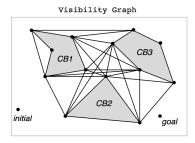
Visibility Graph Construction

Algorithm 1 Visibility Graph Construction		
1:	Input : q_I , q_G , polygonal obstacles	
2:	Output : visibility graph G	
3:	for every pair of nodes u, v do	$\triangleright O(n^2) \\ \triangleright O(n)$
4:	if segment (u, v) is an obstacle edge then	$\triangleright O(n)$
5:	insert edge (u, v) into G	
6:	else	
7:	for every obstacle edge e do	$\triangleright O(n)$
8:	if segment (u, v) intersects <i>e</i> then	
9:	break and go to line 3	
10:	insert $edge(u, v)$ into G	

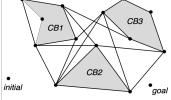
- ► Time complexity: O(n³) but can be reduced to O(n² log n) with rotational sweep or even to O(n²) with an optimal algorithm
- **Space complexity**: $O(n^2)$

Reduced Visibility Graph

- In fact, not all edges are needed
- Reduced visibility graph keep only edges between consecutive reflex vertices and bitangents
- A vertex of a polygonal obstacle is reflex if the exterior angle (computed in C_{free}) is larger than π
- ► A bitangent edge must touch two reflex vertices that are mutually visible from each other, and the the line must extend outward past each of them without poking into C_{obs}

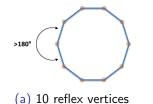


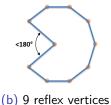




Reflex Vertices and Bitangents

 A vertex of a polygonal obstacle is reflex if the exterior angle (computed in C_{free}) is larger than π

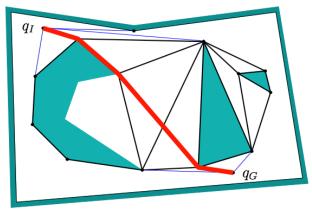




► A bitangent edge must touch two reflex vertices that are mutually visible from each other, and the the line must extend outward past each of them without poking into C_{obs}

Reduced Visibility Graph

- The reduced visibility graph includes edges between consecutive reflex vertices on C_{obs} and bitangent edges
- The shortest path in a reduced visibility graph is the shortest path between start q₁ and goal q_G



Visibility Graph

What do we need to construct a reduced visibility graph?

- Subroutine to check if a vertex is reflex
- Subroutine to check if two vertices are visible
- Subroutine to check if there exists a bitangent

Pros:

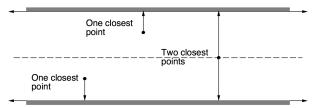
- independent of the size of the environment
- can make multiple shortest path queries for the same graph, i.e., the environment remains the same but the start and goal change

Cons:

- shortest paths always graze the obstacles
- hard to deal with a non-uniform cost function
- hard to deal with non-polygonal obstacles
- can get expensive in high dimensions with a lot of obstacles

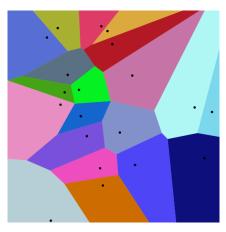
Generalized Voronoi Diagram

- Voronoi diagram: set of all points that are equidistant to two nearest obstacles
- Based on the idea of maximizing clearance instead of minimizing travel distance
- Also known as
 - maximum clearance roadmap (robotics)
 - skeletonization (computer vision)
 - retractions (topology)
- Suppose we have just two (linear) obstacles (e.g., a corridor). What is the set of points that keeps the robots as far away from the (C-Space) obstacles as possible?



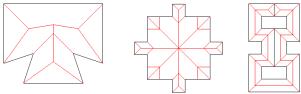
Voronoi Diagram

- Suppose we just have n point obstacles o_i
- The Voronoi cell of o_i is a subset of the plane that is closer to o_i than any other point
- Voronoi diagrams have many other applications, e.g., points represent fire stations and the Voronoi cells give their serving areas



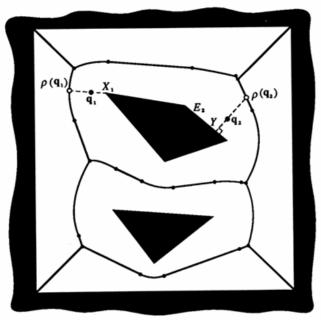
Voronoi Diagram

- Construction
 - Naive implementation: take every pair of obstacle features, compute locus of equally spaced points, and take the intersection
 - Efficient algorithms available, e.g., CGAL
 - Add a shortest path from start to the nearest segment of the diagram
 - Add a shortest path from goal to the nearest segment of the diagram



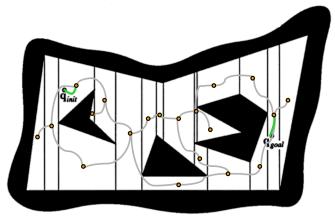
- Time complexity for *n* points in \mathbb{R}^d : $O(n \log n + n^{\lceil d/2 \rceil})$
- Space complexity: O(n)
- Pros:
 - paths tend to stay away from obstacles
 - independent of the size of the environment
- Cons:
 - difficult to construct in higher dimensions
 - can result in highly suboptimal paths

Voronoi Diagram



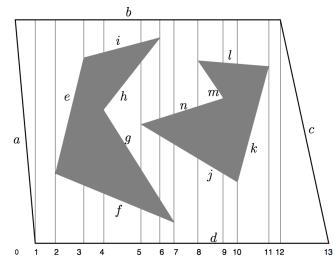
Trapezoidal Decomposition

- ► The free space C_{free} is represented by a collection of non-overlapping trapezoids whose union is exactly C_{free}:
- > Draw a vertical line from every vertex until you hit an obstacle
 - Nodes: trapezoid centroids and line midpoints
 - Edges: between every pair of nodes whose cells are adjacent

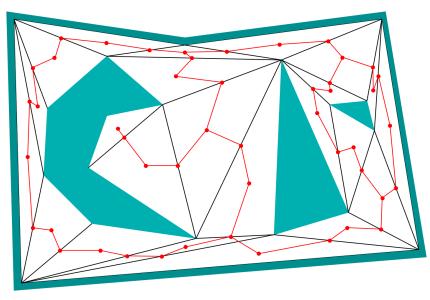


Cylindrical Decomposition

- Similar to trapezoidal decomposition, except the vertical lines continue after obstacles
- ► Generalizes better to high dimensions and complex configuration spaces



Triangular Decomposition



Probabilistic Roadmaps

- Construction:
 - Randomly sample valid configurations
 - Add edges between samples that are easy to connect with a simple local controller (e.g., follow straight line)
 - Add start and goal configurations to the graph with appropriate edges
- Pros and Cons:
 - Very popular: simple and highly effective in high dimensions
 - Can result in suboptimal paths, no guarantees on suboptimality
 - Difficulty with narrow passages

