ECE276B: Planning & Learning in Robotics Lecture 8: Sampling-based Planning

Lecturer:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants: Tianyu Wang: tiw161@eng.ucsd.edu Yongxi Lu: yol070@eng.ucsd.edu

UC San Diego

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Search-based vs Sampling-based Planning

Search-based planning:

- ▶ Generates a systematic discrete representation (graph) of C_{free}
- Searches the representation for a path guaranteeing to find one if it exists (resolution complete)
- Can interleave the representation construction with the search, i.e., adds nodes only when necessary
- Provides suboptimality bounds on the solution
- Can get computationally expensive in high dimensions

Search-based vs. Sampling-based Planning

- Sampling-based planning:
 - ▶ Generates a sparse sample-based representation (graph) of C_{free}
 - Searches the representation for a path guaranteeing that the probability of finding one if it exists approaches 1 as the number of iterations $\rightarrow \infty$ (probabilistically complete)
 - Can interleave the representation construction with the search, i.e., adds samples only when necessary
 - Provides asymptotic suboptimality bounds on the solution
 - Well-suited for high-dimensional planning as it is faster and requires less memory than search-based planning in many domains

Probabilistic Roadmap (PRM)

- Step 1. **Preprocessing Phase**: Build a roadmap (graph) \mathcal{G} which, hopefully, should be accessible from any point in C_{free}
 - ► Nodes: randomly sampled valid configurations x_i ∈ C_{free}
 - Edges: added between samples that are easy to connect with a simple local controller (e.g., follow straight line)

Step 2. Query Phase: Given a start configuration x_s and goal configuration x_{τ} , connect them to the roadmap \mathcal{G} using a local planner, then search the augmented roadmap for a shortest path from x_s to x_{τ}

Pros and Cons:

- Simple and highly effective in high dimensions
- Can result in suboptimal paths, no guarantees on suboptimality
- Difficulty with narrow passages
- Useful for multiple queries with different start and goal in the same environment

Step 1: Preprocessing Phase

Algorithm 1 Build Roadmap 1: *G*.init() for i = 1, ..., N do 2: 3: Sample x_{rand} if $x_{rand} \in C_{free}$ then 4: ▷ New sample 5: \mathcal{G} .add_vertex(x_{rand}) 6: for $x \in \mathsf{NEIGHBORHOOD}(x_{rand}, \mathcal{G})$ do ▷ Region around sample 7: if (not \mathcal{G} .same_component(x_{rand}, x)) and CONNECT(x_{rand}, x) then 8: \mathcal{G} .add_edge(x_{rand}, x) ▷ Can be connected by local planner

Step 1: Preprocessing Phase

- Efficient implementation of $x \in \text{NEIGHBORHOOD}(x_{rand}, \mathcal{G})$:
 - select all nodes within a fixed radius from x_{rand}
 - select K nodes closest to x_{rand}
 - select K (often just 1) closest points from each of the components in $\mathcal G$
- G.same_component(x_{rand}, x) may be replaced by "|Children(x)| < K"
- Sampling strategies:
 - ► Sample *x_{rand}* uniformly from *C_{free}*
 - Select an existing nodes with probability inversely proportional to how well connected it is and generate a random motion from it to get x_{rand}
 - Bias sampling towards obstacle boundaries
 - Bias sampling away from obstacles

PRM vs RRT

Rapidly Exploring Random Tree (RRT):

- One of the most popular planning techniques
- Introduced by Steven LaValle in 1998
- Many, many, many extensions and variants (articulated robots, kinematics, dynamics, differential constraints)
- ▶ PRM: a graph constructed from random samples. It can be search for a path whenever a start node x_s and goal node x_τ are specified. PRMs are well-suited for repeated planning between different pairs of x_s and x_τ (*multiple queries*)
- ► RRT: a tree is constructed from random samples with root x_s. The tree is grown until it contains a path to x_τ. RRTs are well-suited for single-shot planning between a single pair of x_s and x_τ (single query)
- There exist extensions of RRTs that try to reuse a previously constructed tree when replanning in response to map updates

Sample a new configuration x_{rand}, find the nearest neighbor x_{near} in G and connect them:

• If the nearest point x_{near} lies on an existing edge, then split the edge:

If there is an obstacle, the edge travels up to the obstacle boundary, as far as allowed by a collision detection algorithm

- What about the goal? Occasionally (e.g., every 100 iterations) add the goal configuration x_τ and see if it gets connected to the tree
- RRT can be implemented in the original workspace (need to do collision checking) or in configuration space
- Challenges with a C-Space implementation:
 - What distance function do we use to find the nearest configuration?
 - $\blacktriangleright\,$ e.g., distance along the surface of a torus for a 2 link manipulator
 - An edge represents a path in C-Space. How do we construct a collision-free path between two configurations?
 - ▶ We do not have to connect the configurations all the way. Instead, use a small step size *e* and a local steering function to get closer to the second configuration.

No preprocessing: starting with an initial configuration x_s build a graph (actually, tree) until the goal configuration x_{τ} is part of it

$\mathbf{A} = \mathbf{A} + \mathbf{A} +$ ١

Algorithm 3 Extend(7, x _{rand})		
1:	$x_{near} \leftarrow \text{NEARESTNEIGHBOR}(\mathcal{T}, x_{rand})$	
2:	$x_{new} \leftarrow \text{STEER}(x_{near}, x_{rand})$	▷ moves by at
3:	if $OBSTACLEFREE(x_{near}, x_{new})$ then	
4:	$\mathcal{T}.add_vertex(x_{\mathit{new}})$	
5:	$\mathcal{T}.add_edge(x_{\mathit{near}}, x_{\mathit{new}})$	
6:	if $x_{new} = x_{rand}$ then	
7:	return Reached	
8:	else	
9:	return Advanced	
10:	return Trapped	

▷ closest node in the tree t most ϵ from x_{near} towards x

• RRT without ϵ (called Rapidly Exploring Dense Tree (RDT)):

- ► Start node *x_s*
- ► Goal node *x*_τ
- Gray obstacles

- Sample *x_{rand}* in the workspace
- Steer from x_s towards x_{rand} by a fixed distance ϵ to get x_1
- If the segment from x_s to x_1 is collision-free, insert x_1 into the tree

- Sample *x_{rand}* in the workspace
- Find the closest node x_{near} to x_{rand}
- Steer from x_{near} towards x_{rand} by a fixed distance ϵ to get x_2
- If the segment from x_{near} to x_2 is collision-free, insert x_2 into the tree

- Sample *x_{rand}* in the workspace
- Find the closest node x_{near} to x_{rand}
- Steer from x_{near} towards x_{rand} by a fixed distance ϵ to get x_3
- If the segment from x_{near} to x_3 is collision-free, insert x_3 into the tree

- Sample *x_{rand}* in the workspace
- Find the closest node x_{near} to x_{rand}
- Steer from x_{near} towards x_{rand} by a fixed distance ϵ to get x_3
- If the segment from x_{near} to x_3 is collision-free, insert x_3 into the tree

- \blacktriangleright Continue until a node that is a distance ϵ from the goal is generated
- > Either terminate the algorithm or search for additional feasible paths

Sampling in RRTs

► The vanilla RRT algorithm provides uniform coverage of space

> Alternatively, the growth may be biased by the largest Voronoi region

Sampling in RRTs

Goal-biased sampling: with probability (1 − p_g), x_{rand} is chosen as a uniform sample in C_{free} and with probability p_g, x_{rand} = x_τ

Handling Robot Dynamics with Steer()

- Steer() extends the tree towards a given random sample x_{rand}
- Consider a car-like robot with non-holonomic constraints (can't slide sideways) in SE(2). Obtaining a feasible path from x_{rand} = (0,0,90°) to x_{near} = (1,0,90°) is as hard as the original problem
- Steer() resolves this by not requiring the motion to get all the way to x_{rand}. We just apply the best control input for a fixed duration to obtain x_{new} and a dynamically feasible trajectory to it

Example: 5 DOF Kinodynamic Planning for a Car

Bug Traps

 Growing two trees, one from start and one for goal, often has better performance in practice.

Bi-directional RRT

Algorithm 4 BALANCED_BIDIRECTIONAL_RRT(x_s, x_τ)

1: \mathcal{T}_a .init (x_s) ; \mathcal{T}_b .init (x_τ) ; 2: for i = 1 ... N do 3. Sample xrand $x_{near} \leftarrow \text{NEARESTNEIGHBOR}(\mathcal{T}_a, x_{rand})$ 4: 5: $x_c \leftarrow \text{STEER}(x_{near}, x_{rand})$ 6: if $x_c \neq x_{near}$ then 7: \mathcal{T}_a .add_vertex(x_c) 8: \mathcal{T}_a .add_edge(x_{near}, x_c) 9: $x'_{near} \leftarrow \text{NEARESTNEIGHBOR}(\mathcal{T}_b, x_c)$ $x'_{c} \leftarrow \text{STEER}(x'_{near}, x_{c})$ 10: if $x'_c \neq x'_{near}$ then 11: 12: \mathcal{T}_{h} .add_vertex(x_{c}^{\prime}) 13: \mathcal{T}_{b} .add_edge (x'_{near}, x'_{c}) if $x'_c = x_c$ then return SOLUTION 14: if $|\mathcal{T}_b| < |\mathcal{T}_a|$ then SWAP $(\mathcal{T}_a, \mathcal{T}_b)$ 15: 16: FAILURE

RRT-Connect

- J. Kuffner and S. LaValle, "RRT-Connect: An Efficient Approach to Single-Query Path Planning," ICRA'00
- Bi-directional tree + relax the ϵ constraint on tree growth

Algorithm 5 RRT_CONNECT (x_s, x_τ)

```
1: \mathcal{T}_a.init(x_s); \mathcal{T}_b.init(x_\tau);
 2: for k = 1 ... K do
 3:
           Sample x<sub>rand</sub>
 4:
           if not EXTEND(\mathcal{T}_a, x_{rand}) = Trapped then
                 if CONNECT(\mathcal{T}_b, x_{new}) = Reached then
 5:
                                                                                             \triangleright x_{new} was just added to \mathcal{T}_a
                      return PATH(\mathcal{T}_a, \mathcal{T}_b)
 6:
 7:
           SWAP(\mathcal{T}_a, \mathcal{T}_b)
      return Failure
 8.
 9:
      function CONNECT(\mathcal{T}, x)
10:
11:
           repeat
12:
                 S \leftarrow \text{EXTEND}(\mathcal{T}, x)
13:
           until not (S = Advanced)
14:
           return S
                                                                                                                                  24
```


One tree is grown to a random target

The new node becomes a target for the other tree

Determine the nearest node to the target

Try to add a new collision-free branch

If successful, keep extending the branch

If successful, keep extending the branch

If successful, keep extending the branch

▶ If the branch reaches all the way to the target, a feasible path is found!

▶ If the branch reaches all the way to the target, a feasible path is found!

Example: RRT-Connect

Example: RRT-Connect

Example: RRT-Connect

Why are RRTs so popular?

- The algorithm is very simple once the following subroutines are implemented:
 - Random sample generator
 - Nearest neighbor
 - Collision checker
 - Steer
- Pros:
 - Sparse exploration requires little memory and computation
 - RRTs find feasible paths quickly in practice
 - Can add heuristics on top, e.g., bias the sampling towards the goal
- Cons:
 - Solutions can be highly sub-optimal and require path smoothing as a post-processing step
 - The smoothed path is still restricted to the same homotopy class

Path Smoothing

- Start with the initial point (1)
- Make connections to subsequent points in the path (2), (3), (4), ...
- When a connection collides with obstacles, add the previous waypoint to the smoothed path
- Continue smoothing from this point on

Search-based vs Sampling-based Planning

- ► RRT:
 - Sparse exploration requires little memory and computation
 - Solutions can be highly sub-optimal and require post-processing (path smoothing) which may be difficult
- Weighted A*:
 - Systematic exploration may require a lot of memory and computation
 - Returns a path with (sub-)optimality guarantees

RRT Guarantees

- RRT and RRT-Connect are probabilistically complete: the probability that a feasible path will be found if one exists, approaches 1 exponentially as the number of samples approaches infinity
- ► Assuming C_{free} is connected, bounded, and open, for any $x \in C_{free}$, $\lim_{N \to \infty} \mathbb{P}(||x - x_{near}|| < \epsilon) = 1$, where x_{near} is the closest node to x in \mathcal{T}
- RRT is not optimal: the probability that RRT converges to an optimal solution, as the number of samples approaches infinity, is zero under reasonable technical assumptions (S. Karaman, E. Frazzoli, RSS'10)
- > Problem: once we build an RRT we never modify it

RRT*

- S. Karaman, E. Frazzoli, "Incremental Sampling-based Algorithms for Optimal Motion Planning," RSS'10
- RRT*: RRT + rewiring of the tree to ensure asymptotic optimality

```
Algorithm 1: Body of RRT and RRG Algorithms
1 V \leftarrow \{x_{init}\}; E \leftarrow \emptyset; i \leftarrow 0;
2 while i < N do</p>
        G \leftarrow (V, E):
     x_{\text{rand}} \leftarrow \text{Sample}(i); i \leftarrow i+1;
      (V, E) \leftarrow \texttt{Extend}(G, x_{rand});
 Algorithm 2: Extend<sub>BBT</sub>
1 V' \leftarrow V : E' \leftarrow E :
2 x_{\text{nearest}} \leftarrow \text{Nearest}(G, x);
x_{\text{new}} \leftarrow \texttt{Steer}(x_{\text{nearest}}, x);
4 if ObstacleFree(x_{\text{nearest}}, x_{\text{new}}) then
5 | V' \leftarrow V' \cup \{x_{\text{new}}\};
6 E' \leftarrow E' \cup \{(x_{\text{nearest}}, x_{\text{new}})\};
7 return G' = (V', E')
```

```
Algorithm 4: Extend<sub>BBT*</sub>
 1 V' \leftarrow V: E' \leftarrow E:
2 x_{\text{nearest}} \leftarrow \text{Nearest}(G, x);
3 x_{\text{new}} \leftarrow \text{Steer}(x_{\text{nearest}}, x);
4 if ObstacleFree(x_{nearest}, x_{new}) then
       V' \leftarrow V' \cup \{x_{new}\};
          x_{\min} \leftarrow x_{\text{nearest}};
6
         X_{\text{near}} \leftarrow \text{Near}(G, x_{\text{new}}, |V|);
7
          for all x_{\text{near}} \in X_{\text{near}} do
8
                if ObstacleFree(x_{near}, x_{new}) then
9
                      c' \leftarrow \text{Cost}(x_{\text{near}}) + c(\text{Line}(x_{\text{near}}, x_{\text{new}}));
10
                      if c' < \text{Cost}(x_{\text{new}}) then
11
                        x_{\min} \leftarrow x_{\text{near}};
12
          E' \leftarrow E' \cup \{(x_{\min}, x_{new})\};
13
          for all x_{near} \in X_{near} \setminus \{x_{min}\} do
14
                if ObstacleFree(x_{new}, x_{near}) and
15
                Cost(x_{near}) >
                Cost(x_{new}) + c(Line(x_{new}, x_{neer})) then
                      x_{\text{parent}} \leftarrow \text{Parent}(x_{\text{pear}});
16
                     E' \leftarrow E' \setminus \{(x_{\text{parent}}, x_{\text{pear}})\};
17
                     E' \leftarrow E' \cup \{(x_{\text{new}}, x_{\text{near}})\};
is return G' = (V', E')
                                                                                                47
```

RRT*: Extend Step

- Generate a new potential node x_{new} identically to RRT
- \blacktriangleright Instead of finding the closest node in the tree, find all nodes within a neighborhood ${\cal N}$
- ► Let $x_{nearest} = \underset{x_{near} \in \mathcal{N}}{\arg \min g_{x_{near}} + c_{x_{near}, x_{new}}}$, i.e., the node in \mathcal{N} that lies on

the currently known shortest path from x_s to x_{new}

- Add node: $\mathcal{V} \leftarrow \mathcal{V} \cup \{x_{new}\}$
- Add edge: $\mathcal{E} \leftarrow \mathcal{E} \cup \{(x_{nearest}, x_{new})\}$
- Set the label of x_{new} to $g_{x_{new}} = g_{x_{nearest}} + c_{x_{nearest},x_{new}}$

RRT*: Rewire Step

- ► Check all nodes x_{near} ∈ N to see if re-routing through x_{new} reduces the path length (label correcting!):
- If $g_{x_{new}} + c_{x_{new},x_{near}} < g_{x_{near}}$, then remove the edge between x_{near} and its parent and add a new edge between x_{near} and x_{new}

RRT vs RRT*

- Same nodes in the tree, only the edge connections are different. Notice how the RRT* edges are almost straight lines (optimal paths).
- S. Karaman and E. Frazzoli, "Incremental Sampling-based Algorithms for Optimal Motion Planning," International Journal of Robotics Research, 2010.

RRT vs RRT*

- Same nodes in the tree, only the edge connections are different. Notice how the RRT* edges are almost straight lines (optimal paths).
- S. Karaman and E. Frazzoli, "Incremental Sampling-based Algorithms for Optimal Motion Planning," International Journal of Robotics Research, 2010.