ECE276B: Planning \& Learning in Robotics Lecture 8: Sampling-based Planning

Lecturer:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Tianyu Wang: tiw161@eng.ucsd.edu
Yongxi Lu: yol070@eng.ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Search-based vs Sampling-based Planning

- Search-based planning:
- Generates a systematic discrete representation (graph) of $C_{\text {free }}$
- Searches the representation for a path guaranteeing to find one if it exists (resolution complete)
- Can interleave the representation construction with the search, i.e., adds nodes only when necessary
- Provides suboptimality bounds on the solution
- Can get computationally expensive in high dimensions

Search-based vs. Sampling-based Planning

- Sampling-based planning:
- Generates a sparse sample-based representation (graph) of $C_{\text {free }}$
- Searches the representation for a path guaranteeing that the probability of finding one if it exists approaches 1 as the number of iterations $\rightarrow \infty$ (probabilistically complete)
- Can interleave the representation construction with the search, i.e., adds samples only when necessary
- Provides asymptotic suboptimality bounds on the solution
- Well-suited for high-dimensional planning as it is faster and requires less memory than search-based planning in many domains

Probabilistic Roadmap (PRM)

Step 1. Preprocessing Phase: Build a roadmap (graph) \mathcal{G} which, hopefully, should be accessible from any point in $C_{\text {free }}$

- Nodes: randomly sampled valid configurations $x_{i} \in C_{f r e e}$
- Edges: added between samples that are easy to connect with a simple local controller (e.g., follow straight line)

Step 2. Query Phase: Given a start configuration x_{s} and goal configuration x_{τ}, connect them to the roadmap \mathcal{G} using a local planner, then search the augmented roadmap for a shortest path from x_{s} to x_{τ}

- Pros and Cons:
- Simple and highly effective in high dimensions
- Can result in suboptimal paths, no guarantees on suboptimality
- Difficulty with narrow passages
- Useful for multiple queries with different start and goal in the same environment

Step 1: Preprocessing Phase

Algorithm 1 Build Roadmap

1: \mathcal{G}.init()
2: for $i=1, \ldots, N$ do
3: \quad Sample $x_{\text {rand }}$
4: \quad if $x_{\text {rand }} \in \mathcal{C}_{\text {free }}$ then
\triangleright New sample
5: $\quad \mathcal{G}$.add_vertex $\left(x_{\text {rand }}\right)$
6: \quad for $x \in \operatorname{NEIGHBORHOOD}\left(x_{\text {rand }}, \mathcal{G}\right)$ do
\triangleright Region around sample if (not \mathcal{G}.same_component $\left(x_{\text {rand }}, x\right)$) and CONNECT $\left(x_{\text {rand }}, x\right)$ then \mathcal{G}.add_edge $\left(x_{\text {rand }}, x\right)$
\triangleright Can be connected by local planner

Step 1: Preprocessing Phase

- Efficient implementation of $x \in \operatorname{NEIGHBORHOOD}\left(x_{\text {rand }}, \mathcal{G}\right)$:
- select all nodes within a fixed radius from $x_{\text {rand }}$
- select K nodes closest to $x_{\text {rand }}$
- select K (often just 1) closest points from each of the components in \mathcal{G}
- \mathcal{G}.same_component $\left(x_{\text {rand }}, x\right)$ may be replaced by " \mid Children $(x) \mid<K$ "
- Sampling strategies:
- Sample $x_{\text {rand }}$ uniformly from $C_{\text {free }}$
- Select an existing nodes with probability inversely proportional to how well connected it is and generate a random motion from it to get $x_{\text {rand }}$
- Bias sampling towards obstacle boundaries
- Bias sampling away from obstacles

PRM vs RRT

- Rapidly Exploring Random Tree (RRT):
- One of the most popular planning techniques
- Introduced by Steven LaValle in 1998
- Many, many, many extensions and variants (articulated robots, kinematics, dynamics, differential constraints)
- PRM: a graph constructed from random samples. It can be search for a path whenever a start node x_{s} and goal node x_{τ} are specified. PRMs are well-suited for repeated planning between different pairs of x_{s} and x_{τ} (multiple queries)
- RRT: a tree is constructed from random samples with root x_{s}. The tree is grown until it contains a path to x_{τ}. RRTs are well-suited for single-shot planning between a single pair of x_{s} and x_{τ} (single query)
- There exist extensions of RRTs that try to reuse a previously constructed tree when replanning in response to map updates

Rapidly Exploring Random Tree (RRT)

- Sample a new configuration $x_{\text {rand }}$, find the nearest neighbor $x_{\text {near }}$ in \mathcal{G} and connect them:

- If the nearest point $x_{\text {near }}$ lies on an existing edge, then split the edge:

- If there is an obstacle, the edge travels up to the obstacle boundary, as far as allowed by a collision detection algorithm

Rapidly Exploring Random Tree (RRT)

- What about the goal? Occasionally (e.g., every 100 iterations) add the goal configuration x_{τ} and see if it gets connected to the tree
- RRT can be implemented in the original workspace (need to do collision checking) or in configuration space
- Challenges with a C-Space implementation:
- What distance function do we use to find the nearest configuration?
- egg., distance along the surface of a torus for a 2 link manipulator
- An edge represents a path in C-Space. How do we construct a collision-free path between two configurations?
- We do not have to connect the configurations all the way. Instead, use a small step size ϵ and a local steering function to get closer to the second configuration.

Rapidly Exploring Random Tree (RRT)

- No preprocessing: starting with an initial configuration x_{s} build a graph (actually, tree) until the goal configuration x_{τ} is part of it

Algorithm 2 Build_RRT(x_{s})

```
1: \mathcal{T.init}(\mp@subsup{x}{s}{})
2: for i=1\ldotsN do
3: Sample }\mp@subsup{x}{\mathrm{ rand }}{
4: Extend (\mathcal{T},\mp@subsup{x}{\mathrm{ rand }}{})
```

5: return \mathcal{T}
Algorithm 3 Extend $\left(\mathcal{T}, x_{\text {rand }}\right)$
1: $x_{\text {near }} \leftarrow \operatorname{NearestNeighbor}\left(\mathcal{T}, x_{\text {rand }}\right)$
2: $x_{\text {new }} \leftarrow \operatorname{STEER}\left(x_{\text {near }}, x_{\text {rand }}\right)$
3: if ObstacleFree($\left.x_{\text {near }}, x_{\text {new }}\right)$ then
4: $\quad \mathcal{T}$.add_vertex $\left(x_{\text {new }}\right)$
5: $\quad \mathcal{T}$.add_edge $\left(x_{\text {near }}, x_{\text {new }}\right)$
6: \quad if $x_{\text {new }}=x_{\text {rand }}$ then
7: return Reached
8: else
9: return Advanced
10: return Trapped

Rapidly Exploring Random Tree (RRT)

- RRT without ϵ (called Rapidly Exploring Dense Tree (RDT)):

45 iterations

- RRT with ϵ

Example: RRT Algorithm

- Start node x_{s}
- Goal node x_{τ}
- Gray obstacles

Example: RRT Algorithm

- Sample $x_{\text {rand }}$ in the workspace
- Steer from x_{s} towards $x_{\text {rand }}$ by a fixed distance ϵ to get x_{1}
- If the segment from x_{s} to x_{1} is collision-free, insert x_{1} into the tree

Example: RRT Algorithm

- Sample $x_{\text {rand }}$ in the workspace
- Find the closest node $x_{\text {near }}$ to $x_{\text {rand }}$
- Steer from $x_{n e a r}$ towards $x_{\text {rand }}$ by a fixed distance ϵ to get x_{2}
- If the segment from $x_{\text {near }}$ to x_{2} is collision-free, insert x_{2} into the tree

Example: RRT Algorithm

- Sample $x_{\text {rand }}$ in the workspace
- Find the closest node $x_{\text {near }}$ to $x_{\text {rand }}$
- Steer from $x_{n e a r}$ towards $x_{\text {rand }}$ by a fixed distance ϵ to get x_{3}
- If the segment from $x_{\text {near }}$ to x_{3} is collision-free, insert x_{3} into the tree

Example: RRT Algorithm

- Sample $x_{\text {rand }}$ in the workspace
- Find the closest node $x_{\text {near }}$ to $x_{\text {rand }}$
- Steer from $x_{n e a r}$ towards $x_{\text {rand }}$ by a fixed distance ϵ to get x_{3}
- If the segment from $x_{\text {near }}$ to x_{3} is collision-free, insert x_{3} into the tree

Example: RRT Algorithm

- Continue until a node that is a distance ϵ from the goal is generated
- Either terminate the algorithm or search for additional feasible paths

Sampling in RRTs

- The vanilla RRT algorithm provides uniform coverage of space

- Alternatively, the growth may be biased by the largest Voronoi region

Sampling in RRTs

- Goal-biased sampling: with probability $\left(1-p_{g}\right), x_{\text {rand }}$ is chosen as a uniform sample in $C_{\text {free }}$ and with probability $p_{g}, x_{\text {rand }}=x_{\tau}$

(a) $p_{g}=0$

(b) $p_{g}=0.1$

(c) $p_{g}=0.5$

Handling Robot Dynamics with Steer()

- Steer() extends the tree towards a given random sample $x_{\text {rand }}$
- Consider a car-like robot with non-holonomic constraints (can't slide sideways) in $S E(2)$. Obtaining a feasible path from $x_{\text {rand }}=\left(0,0,90^{\circ}\right)$ to $x_{\text {near }}=\left(1,0,90^{\circ}\right)$ is as hard as the original problem
- Steer() resolves this by not requiring the motion to get all the way to $x_{\text {rand }}$. We just apply the best control input for a fixed duration to obtain $x_{\text {new }}$ and a dynamically feasible trajectory to it

Example: 5 DOF Kinodynamic Planning for a Car

Bug Traps

- Growing two trees, one from start and one for goal, often has better performance in practice.

(c)

(d)

Bi-directional RRT

Algorithm 4 BALANCED_BIDIRECTIONAL_RRT $\left(x_{s}, x_{\tau}\right)$

```
    1: }\mp@subsup{\mathcal{T}}{a}{*}.\operatorname{init}(\mp@subsup{x}{s}{});\mp@subsup{\mathcal{T}}{b}{}.\operatorname{init}(\mp@subsup{x}{\tau}{})
    2: for i=1...N do
    3: Sample }\mp@subsup{x}{\mathrm{ rand}}{
    4: }\quad\mp@subsup{x}{near}{}\leftarrow\operatorname{NEARESTNEIGHBOR}(\mp@subsup{\mathcal{T}}{a}{},\mp@subsup{x}{\mathrm{ rand }}{}
    5: }\quad\mp@subsup{x}{c}{}\leftarrow\operatorname{STEER}(\mp@subsup{x}{near}{},\mp@subsup{x}{\mathrm{ rand }}{}
    6: if }\mp@subsup{x}{c}{}\not=\mp@subsup{x}{\mathrm{ near }}{}\mathrm{ then
    7: }\quad\mp@subsup{\mathcal{T}}{a}{}.\mathrm{ add_vertex ( }\mp@subsup{x}{c}{}
    8: }\quad\mp@subsup{\mathcal{T}}{a}{a}\mathrm{ .add_edge( }(\mp@subsup{x}{\mathrm{ near }}{},\mp@subsup{x}{c}{}
        x near }\leftarrow\operatorname{NEARESTNEIGHBOR}(\mp@subsup{\mathcal{T}}{b}{},\mp@subsup{x}{c}{}
        xc
        if }\mp@subsup{x}{c}{\prime}\not=\mp@subsup{x}{near}{\prime}\mathrm{ then
            \mp@subsup{\mathcal{T}}{b}{\prime}}\mathrm{ .add_vertex ( }\mp@subsup{x}{c}{\prime}\mathrm{ )
            \mp@subsup{\mathcal{T}}{b}{\prime}}\mathrm{ .add_edge( (x near,},\mp@subsup{x}{c}{\prime}
        if }\mp@subsup{x}{c}{\prime}=\mp@subsup{x}{c}{}\mathrm{ then return SOLUTION
    if }|\mp@subsup{\mathcal{T}}{b}{}|<|\mp@subsup{\mathcal{T}}{a}{}|\mathrm{ then }\operatorname{SwAP}(\mp@subsup{\mathcal{T}}{a}{},\mp@subsup{\mathcal{T}}{b}{}
    16: FAILURE
```


RRT-Connect

- J. Kuffner and S. LaValle, "RRT-Connect: An Efficient Approach to Single-Query Path Planning," ICRA'00
- Bidirectional tree + relax the ϵ constraint on tree growth

Algorithm 5 RRT_CONNECT $\left(x_{s}, x_{\tau}\right)$

1: $\mathcal{T}_{\text {a }} \cdot \operatorname{init}\left(x_{s}\right) ; \mathcal{T}_{b} \cdot \operatorname{init}\left(x_{\tau}\right)$;
2: for $k=1 \ldots K$ do
3: \quad Sample $X_{\text {rand }}$
4: if not $\operatorname{ExtEnd}\left(\mathcal{T}_{\mathfrak{a}}, x_{\text {rand }}\right)=$ Trapped then
5: if $\operatorname{Connect}\left(\mathcal{T}_{b}, x_{\text {new }}\right)=$ Reached then
$\triangleright x_{\text {new }}$ was just added to \mathcal{T}_{a}
6: return $\operatorname{Path}\left(\mathcal{T}_{a}, \mathcal{T}_{b}\right)$
7: $\quad \operatorname{SwAP}\left(\mathcal{T}_{a}, \mathcal{T}_{b}\right)$
8: return Failure
9:
10: function $\operatorname{Connect}(\mathcal{T}, x)$
11: repeat
12: $\quad S \leftarrow \operatorname{Extend}(\mathcal{T}, x)$
13: until not ($S=$ Advanced)
14: return S

Example: Single RRT-Connect Iteration

Example: Single RRT-Connect Iteration

- One tree is grown to a random target

Example: Single RRT-Connect Iteration

- The new node becomes a target for the other tree

Example: Single RRT-Connect Iteration

- Determine the nearest node to the target

Example: Single RRT-Connect Iteration

- Try to add a new collision-free branch

Example: Single RRT-Connect Iteration

- If successful, keep extending the branch

Example: Single RRT-Connect Iteration

- If successful, keep extending the branch

Example: Single RRT-Connect Iteration

- If successful, keep extending the branch

Example: Single RRT-Connect Iteration

- If the branch reaches all the way to the target, a feasible path is found!

Example: Single RRT-Connect Iteration

- If the branch reaches all the way to the target, a feasible path is found!

Example: RRT-Connect

Example: RRT-Connect

Example: RRT-Connect

Why are RRTs so popular?

- The algorithm is very simple once the following subroutines are implemented:
- Random sample generator
- Nearest neighbor
- Collision checker
- Steer
- Pros:
- Sparse exploration requires little memory and computation
- RRTs find feasible paths quickly in practice
- Can add heuristics on top, e.g., bias the sampling towards the goal
- Cons:
- Solutions can be highly sub-optimal and require path smoothing as a post-processing step
- The smoothed path is still restricted to the same homotopy class

Path Smoothing

- Start with the initial point (1)
- Make connections to subsequent points in the path (2), (3), (4), ...
- When a connection collides with obstacles, add the previous waypoint to the smoothed path
- Continue smoothing from this point on

Search-based vs Sampling-based Planning

- RRT:
- Sparse exploration requires little memory and computation
- Solutions can be highly sub-optimal and require post-processing (path smoothing) which may be difficult
- Weighted A^{*} :
- Systematic exploration may require a lot of memory and computation
- Returns a path with (sub-)optimality guarantees

RRT Guarantees

- RRT and RRT-Connect are probabilistically complete: the probability that a feasible path will be found if one exists, approaches 1 exponentially as the number of samples approaches infinity
- Assuming $C_{\text {free }}$ is connected, bounded, and open, for any $x \in \mathcal{C}_{\text {free }}$, $\lim _{N \rightarrow \infty} \mathbb{P}\left(\left\|x-x_{\text {near }}\right\|<\epsilon\right)=1$, where $x_{\text {near }}$ is the closest node to x in \mathcal{T}
- RRT is not optimal: the probability that RRT converges to an optimal solution, as the number of samples approaches infinity, is zero under reasonable technical assumptions (S. Karaman, E. Frazzoli, RSS'10)
- Problem: once we build an RRT we never modify it

RRT*

- S. Karaman, E. Frazzoli, "Incremental Sampling-based Algorithms for Optimal Motion Planning," RSS'10
- RRT*: RRT + rewiring of the tree to ensure asymptotic optimality

Algorithm 1: Body of RRT and RRG Algorithms
$\begin{aligned} & V \leftarrow\left\{x_{\text {init }}\right\} ; E \leftarrow \emptyset ; i \leftarrow 0 ; \\ & \text { while } i<N \text { do } \\ & \\ & \left\lvert\, \begin{array}{l} G \leftarrow(V, E) ; \\ x_{\text {rand }} \leftarrow \operatorname{Sample}(i) ; i \leftarrow i+1 ; \\ (V, E) \leftarrow \operatorname{Extend}\left(G, x_{\text {rand }}\right) ; \end{array}\right. \end{aligned}$
Algorithm 2: Extend ${ }_{R R T}$
```\(V^{\prime} \leftarrow V ; E^{\prime} \leftarrow E\); \(x_{\text {nearest }} \leftarrow \operatorname{Nearest}(G, x)\); \(x_{\text {new }} \leftarrow \operatorname{Steer}\left(x_{\text {nearest }}, x\right)\); if ObstacleFree \(\left(x_{\text {nearest }}, x_{\text {new }}\right)\) then \(V^{\prime} \leftarrow V^{\prime} \cup\left\{x_{\text {new }}\right\}\); \(E^{\prime} \leftarrow E^{\prime} \cup\left\{\left(x_{\text {nearest }}, x_{\text {new }}\right)\right\} ;\) return \(G^{\prime}=\left(V^{\prime}, E^{\prime}\right)\)```

```
Algorithm 4: Extend RRT**
V'}\leftarrowV;\mp@subsup{E}{}{\prime}\leftarrowE
\mp@subsup{x}{\mathrm{ nearest }}{}\leftarrow\operatorname{Nearest (G,x);}
x new }\leftarrow\operatorname{Steer (}\mp@subsup{x}{\mathrm{ nearest }}{},x)\mathrm{ ;
if ObstacleFree(}\mp@subsup{x}{\mathrm{ nearest }}{},\mp@subsup{x}{\mathrm{ new }}{})\mathrm{ then
 V'}\leftarrow\mp@subsup{V}{}{\prime}\cup{\mp@subsup{x}{\mathrm{ new }}{}}
 x min }\leftarrow\mp@subsup{x}{\mathrm{ nearest }}{}\mathrm{ ;
 X near }\leftarrowN\operatorname{Near}(G,\mp@subsup{x}{\mathrm{ new }}{},|V|)
 for all \mp@subsup{x}{\mathrm{ near }}{}\in\mp@subsup{X}{\mathrm{ near }}{}\mathrm{ do}
```



```
 c
 if }\mp@subsup{c}{}{\prime}<\operatorname{Cost}(\mp@subsup{x}{\mathrm{ new }}{})\mathrm{ then
 xmin}\leftarrow\mp@subsup{x}{\mathrm{ near }}{}
 E
 for all \mp@subsup{x}{near}{}\in\mp@subsup{X}{\mathrm{ near }}{\{{\mp@subsup{x}{\mathrm{ min }}{}} do}
 if ObstacleFree((}\mp@subsup{x}{\mathrm{ new }}{},\mp@subsup{x}{\mathrm{ near }}{})\mathrm{ and
 Cost(}\mp@subsup{x}{\mathrm{ near }}{})
 Cost (}\mp@subsup{x}{\mathrm{ new }}{})+c(\mathrm{ Line (}\mp@subsup{x}{\mathrm{ new }}{},\mp@subsup{x}{\mathrm{ near }}{}))\mathrm{ then
 x parent }\leftarrow\operatorname{Parent(}(\mp@subsup{x}{\mathrm{ near }}{})
 E
 E
return G}\mp@subsup{G}{}{\prime}=(\mp@subsup{V}{}{\prime},\mp@subsup{E}{}{\prime}
```


## RRT*: Extend Step

- Generate a new potential node $x_{\text {new }}$ identically to RRT
- Instead of finding the closest node in the tree, find all nodes within a neighborhood $\mathcal{N}$
- Let $x_{\text {nearest }}=\arg \min g_{x_{\text {near }}}+c_{x_{\text {near }}, x_{\text {new }}}$, i.e., the node in $\mathcal{N}$ that lies on

$$
x_{\text {near }} \in \mathcal{N}
$$

the currently known shortest path from $x_{s}$ to $x_{n e w}$

- Add node: $\mathcal{V} \leftarrow \mathcal{V} \cup\left\{x_{\text {new }}\right\}$
- Add edge: $\mathcal{E} \leftarrow \mathcal{E} \cup\left\{\left(x_{\text {nearest }}, x_{\text {new }}\right)\right\}$
- Set the label of $x_{\text {new }}$ to $g_{x_{\text {new }}}=g_{x_{\text {nearest }}}+c_{X_{\text {nearest }}, x_{\text {new }}}$



## RRT*: Rewire Step

- Check all nodes $x_{\text {near }} \in \mathcal{N}$ to see if re-routing through $x_{\text {new }}$ reduces the path length (label correcting!):
- If $g_{x_{\text {new }}}+c_{x_{\text {new }}, x_{\text {near }}}<g_{x_{\text {near }}}$, then remove the edge between $x_{\text {near }}$ and its parent and add a new edge between $x_{\text {near }}$ and $x_{\text {new }}$



## RRT vs RRT*


(a) RRT

(b) RRT*

- Same nodes in the tree, only the edge connections are different. Notice how the RRT* edges are almost straight lines (optimal paths).
- S. Karaman and E. Frazzoli, "Incremental Sampling-based Algorithms for Optimal Motion Planning," International Journal of Robotics Research, 2010.


## RRT vs RRT*


(a)

(b)

## (a) RRT

- Same nodes in the tree, only the edge connections are different. Notice how the RRT* edges are almost straight lines (optimal paths).
- S. Karaman and E. Frazzoli, "Incremental Sampling-based Algorithms for Optimal Motion Planning," International Journal of Robotics Research, 2010.

