ECE276B: Planning & Learning in Robotics Lecture 9: Infinite Horizon Problems and Stochastic Shortest Path

Lecturer:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:

Tianyu Wang: tiw161@eng.ucsd.edu Yongxi Lu: yol070@eng.ucsd.edu

Finite Horizon Optimal Control (Recap)

▶ Recall the (finite-state) **finite-horizon** optimal control problem:

$$\min_{\pi_{0:T-1}} J_0^{\pi}(x_0) := \mathbb{E}_{x_{1:T}} \left[g_T(x_T) + \sum_{t=0}^{T-1} g_t(x_t, \pi_t(x_t)) \mid x_0 \right] \\
\text{s.t. } x_{t+1} \sim p_f(\cdot \mid x_t, \pi_t(x_t)), \qquad t = 0, \dots, T-1 \\
x_t \in \mathcal{X}, \quad \pi_t(x_t) \in \mathcal{U}(x_t), \quad \forall x_t \in \mathcal{X}$$

- ▶ The optimal cost $J_0^*(x_0) := \min_{\pi_{0:T-1}} J_0^{\pi}(x_0)$ and an optimal policy $\pi_{0:T-1}^*$ can be computed via the Dynamic Programming (DP) algorithm
- ► An open-loop policy is optimal for the deterministic finite-state (DFS) problem:

 T-1

s.t.
$$x_{t+1} = f(x_t, u_t)$$
, $t = 0, \dots, T-1$ $x_t \in \mathcal{X}, u_t \in \mathcal{U}(x_t)$, $\forall x_t \in \mathcal{X}$

► The DFS problem is equivalent to the Shortest Path (SP) problem, which led to a **forward DP** algorithm and **label correcting** (LC) algorithms

Infinite Horizon Optimal Control

- ▶ In this lecture, we consider what happens with the standard optimal control problem as the planning horizon *T* goes to infinity
- ► To get a meaningful problem, we consider time-invariant stage-costs and no terminal cost:

$$egin{aligned} \min_{\pi_{0:T-1}} & J_0^\pi(x_0) := \mathbb{E}_{x_{1:T}} \left[\sum_{t=0}^{T-1} g(x_t, \pi_t(x_t)) \middle| x_0
ight] \ & ext{s.t.} & x_{t+1} \sim p_f(\cdot \mid x_t, \pi_t(x_t)), \quad t = 0, \dots, T-1 \ & x_t \in \mathcal{X}, \quad \pi_t(x_t) \in \mathcal{U}(x_t), \quad orall x_t \in \mathcal{X} \end{aligned}$$

▶ As $T \to \infty$, the complexity collapses since the time-invariant dynamics and state costs lead to a **time-invariant** cost-to-go and associated optimal policy.

Infinite Horizon Dynamic Programming

▶ For fixed *T*, the DP algorithm is:

$$V_{T}(x) = 0, \quad \forall x \in \mathcal{X}$$

$$V_{t}(x) = \min_{u \in \mathcal{U}(x)} g(x, u) + \mathbb{E}_{x' \sim p_{f}(\cdot|x, u)} \left[V_{t+1}(x') \right], \quad \forall x \in \mathcal{X}, t = T - 1, \dots, 0$$

▶ **Bellman Equation**: as $T \to \infty$, the sequence ..., $V_{t+1}(x), V_t(x), ...$ converges to a fixed point V(x) and the DP algorithm reduces to:

$$V(x) = \min_{u \in \mathcal{U}(x)} g(x, u) + \mathbb{E}_{x' \sim p_f(\cdot | x, u)} \left[V(x') \right], \quad \forall x \in \mathcal{X}$$

- Assuming this convergence, V(x) is equal to the optimal cost-to-go $J^*(x)$, which suggests that both the value function and the optimal policy are time-invariant, or **stationary**.
- ▶ The Bellman Equation may seem simple but it needs to be solved for all $x \in \mathcal{X}$ simultaneously, which can be done analytically only for very few problems (e.g., the Linear Quadratic Regulator (LQR) problem).

The Stochastic Shortest Path (SSP) Problem

- ▶ The convergence on the previous slide does not hold for all problems
- ► The SSP problem is one instance in which the convergence holds and solving the Bellman Equation yields the optimal cost-to-go and an associated optimal stationary policy
- ▶ Consider a finite state problem with $\mathcal{X} := \{0, 1, ..., n\}$ and a finite control set $\mathcal{U}(i)$ for all $i \in \mathcal{X}$
- ▶ **Dynamics**: specified by matrices (correcting our previous notation): $P_{ij}^u = \mathbb{P}(x_{t+1} = j \mid x_t = i, u_t = u) = p_f(j \mid x_t = i, u_t = u)$
- ▶ **Terminal State Assumption**: Suppose that state 0 is a cost-free termination state (the goal), i.e., $P_{0,0}^u = 1$ and g(0, u) = 0, $\forall u \in \mathcal{U}(0)$

Existence of Solution to the SSP Problem

- ▶ **Proper Stationary Policy**: a policy π for which there exists an integer m such that $\mathbb{P}(x_m = 0 \mid x_0 = i) > 0$ for all $i \in \mathcal{X}$ subject to transitions governed by P_{ii}^u with $u = \pi(i)$
- ▶ **Proper Policy Assumption**: there exists at least one proper policy π . Furthermore, for every improper policy π' , the corresponding cost function $J^{\pi'}(i)$ is infinite for at least one state $i \in \mathcal{X}$.
- ▶ The above assumption is required to ensure that:
 - there exists a unique solution to the Bellman Equation for SSP
 - \blacktriangleright a policy exists for which the probability of reaching the termination state goes to 1 as $T\to\infty$
 - policies that do not reach the termination state incur infinite cost (i.e., there are no non-positive cycles as in the SP problem)

Theorem: Bellman Equation for the SSP Problem Under the termination state and proper policy assumptions, the following are

true for the SSP problem:

1. Given any initial conditions $\bar{V}_0(1), \ldots, \bar{V}_0(n)$ (corresp. to $T=\infty$), the

sequence
$$ar{V}_k(i)$$
 generated by the iteration: $ar{V}_{k+1}(i) = \min_{u \in \mathcal{U}(i)} \Bigl[g(i,u) + \sum_{i=1}^n P^u_{ij} ar{V}_k(j) \Bigr], \quad orall i \in \mathcal{X} \setminus \{0\}$

converges to the optimal cost $J^*(i)$ for all $i \in \mathcal{X} \setminus \{0\}$ 2. The optimal costs satisfy the **Bellman Equation**:

$$J^*(i) = \min_{u \in \mathcal{U}(i)} \left[g(i, u) + \sum_{j=1}^n P_{ij}^u J^*(j) \right], \quad \forall i \in \mathcal{X} \setminus \{0\}$$

3. The solution to the Bellman Equation is unique
4. The minimizing *u* of the Bellman Equation for each *i* ∈ X \ {0} gives an optimal policy, which is stationary

Theorem Intuition

▶ We give intuition under a stronger assumption: $\exists m \in \mathbb{N}$ such that for **any** admissible policy $\mathbb{P}(x_m = 0 \mid x_0 = i) > 0$, subject to transitions governed by P^u_{ij} with $u = \pi(i)$, i.e., there is a positive probability that the termination state will be reached regardless of the initial state.

1. Let $\bar{V}_0(0) = 0$ and consider the following finite-horizon problem:

$$J_0^{\pi}(i) = \mathbb{E}\left[\sum_{t=0}^{T-1} g(x_t, \pi_t(x_t)) + \bar{V}_0(x_T) \mid x_0 = i\right]$$

where $\bar{V}_0(x_T)$ is the terminal cost. As $T \to \infty$, the probability that state 0 is reached approaches 1 for all policies and, since $\bar{V}_0(0) = 0$, the terminal cost does not influence the solution. The DP algorithm with re-labeled time index k := T - t applied to this problem is:

$$ar{V}_{k+1}(i) = \min_{u \in \mathcal{U}(i)} \Big(g(i,u) + \sum_{i=1}^n P^u_{ij} ar{V}_k(j) \Big), \ \ orall i \in \mathcal{X} \setminus \{0\}, k = 0, \ldots, T \quad ext{(*)}$$

where state 0 can be excluded because g(0, u) = 0 by assumption and $P_{0, i}^{u} = 0$ for all $j \in \mathcal{X} \setminus \{0\}$.

Theorem Intuition

- 1. Thus, $\bar{V}_T(i) = J_0^*(i)$ is the optimal cost for the finite horizon problem and as $T \to \infty$ it converges to the optimal cost of the infinite horizon problem due to the assumption that the terminal state is reached in finite time.
- 2. Follows from taking limits of both sides of (*) above.
- 3. Let $J_0(1), \ldots, J_0(n)$ and $\bar{J_0}(1), \ldots, \bar{J_0}(n)$ be two different solutions to the Bellman Equation. If both are used as initial conditions for (*) above, they both converge after 1 iteration. This leads to two different optimal costs which is a contradiction.

The Discounted Problem

- A class of infinite horizon problems in which there is no terminal state assumption but future stage costs are discounted (i.e., multiplied by γ^t for $\gamma \in [0,1)$). This turns out to be equivalent to the SSP problem.
- ▶ Finite state space $\mathcal{X} := \{1, ..., n\}$ (no need for a terminal state) and finite control set $\mathcal{U}(i)$ for all $i \in \mathcal{X}$
- **Dynamics**: specified by matrices $P_{ij}^u := \mathbb{P}(x_{t+1} = j \mid x_t = i, u_t = u)$
- ▶ Discounted Infinite Horizon Problem: solve the following optimization as $T \to \infty$

$$\min_{\pi_{0:T-1}} J_0^{\pi}(i) := \mathbb{E}_{x_{1:T}} \left[\sum_{t=0}^{T-1} \gamma^t g(x_t, \pi_t(x_t)) \mid x_0 = i \right]$$
s.t. $x_{t+1} \sim p_f(\cdot \mid x_t, \pi_t(x_t)), \quad t = 0, \dots, T-1$

$$x_t \in \mathcal{X}, \quad \pi_t(x_t) \in \mathcal{U}(x_t), \quad \forall x_t \in \mathcal{X}$$

We define an auxiliary SSP problem and show that it is equivalent to the discounted problem

- ▶ **States**: $x_t \in \tilde{\mathcal{X}} := \mathcal{X} \cup \{0\}$, where 0 is a virtual terminal state
- ▶ **Control**: $u_t \in \tilde{\mathcal{U}}(x_t)$ where $\tilde{\mathcal{U}}(x_t) = \mathcal{U}(x_t)$ for $x_t \in \mathcal{X}$ and $\tilde{\mathcal{U}}(0) = \{stay\}$

$$\tilde{P}^{u}_{ij} = \gamma P^{u}_{ij}, \qquad \qquad \text{for } u \in \tilde{\mathcal{U}}(i) \text{ and } i, j \in \mathcal{X}$$

$$\tilde{P}^{u}_{i,0} = 1 - \gamma, \qquad \qquad \text{for } u \in \tilde{\mathcal{U}}(i) \text{ and } i \in \mathcal{X}$$

$$\tilde{P}^{u}_{0,j} = 0, \qquad \qquad \text{for } u = stay \text{ and } j \in \mathcal{X}$$

$$\tilde{P}^{u}_{0,0} = 1, \qquad \qquad \text{for } u = stay$$

▶ Terminal state and proper policy assumptions: since $\gamma < 1$, there is a non-zero probability to go to state 0 regardless of the control input and initial state and hence the SSP assumptions are satisfied.

► Cost:
$$\tilde{g}(x_t, u_t) = g(x_t, u_t),$$
 for $u \in \tilde{\mathcal{U}}(x_t), x_t \in \mathcal{X}$ $\tilde{g}(0, stay) = 0$

- There is a one-to-one mapping between a policy $\tilde{\pi}$ of the auxiliary SSP to a policy π of the discounted problem since $\tilde{\pi}$ just trivially assigns $\tilde{\pi}_t(0) = stay$ while the rest remains the same
- ▶ Next, we show that for all $i \in \mathcal{X}$:

$$\widetilde{J}^{\pi}(i) = \mathbb{E}\left[\sum_{t=0}^{T-1} \widetilde{g}(\widetilde{x}_t, \widetilde{\pi}_t(\widetilde{x}_t)) \mid x_0 = i\right] = J^{\pi}(i) = \mathbb{E}\left[\sum_{t=0}^{T-1} \gamma^t g(x_t, \pi_t(x_t)) \mid x_0 = i\right]$$

where the expectations are over $\tilde{x}_{1:T}$ and $x_{1:T}$ and subject to transitions induced by $\tilde{\pi}$ and π , respectively.

▶ **Conclusion**: since $\tilde{J}^{\pi}(i) = J^{\pi}(i)$ for all $i \in \mathcal{X}$ and the mapping of $\tilde{\pi}$ to π minimizes $J^{\pi}(i)$, by solving the Bellman Equation for the auxiliary SSP, we can obtain an optimal policy and the optimal cost-to-go for the infinite-horizon discounted problem.

$$\mathbb{E}_{\tilde{x}_{1:T}}[\tilde{g}(\tilde{x}_{t},\tilde{\pi}_{t}(\tilde{x}_{t})) \mid x_{0} = i] = \sum_{\bar{x}_{1:T} \in \tilde{\mathcal{X}}^{T}} \tilde{g}(\bar{x}_{t},\tilde{\pi}_{t}(\bar{x}_{t})) \mathbb{P}(\tilde{x}_{1:T} = \bar{x}_{1:T} \mid x_{0} = i)$$

$$= \sum_{\bar{x}_{t} \in \tilde{\mathcal{X}}} \tilde{g}(\bar{x}_{t},\tilde{\pi}_{t}(\bar{x}_{t})) \mathbb{P}(\tilde{x}_{t} = \bar{x}_{t} \mid x_{0} = i)$$

$$= \sum_{\bar{x}_{t} \in \mathcal{X}} \tilde{g}(\bar{x}_{t},\tilde{\pi}_{t}(\bar{x}_{t})) \mathbb{P}(\tilde{x}_{t} = \bar{x}_{t},\tilde{x}_{t} \neq 0 \mid x_{0} = i)$$

$$= \sum_{\bar{x}_{t} \in \mathcal{X}} \tilde{g}(\bar{x}_{t},\tilde{\pi}_{t}(\bar{x}_{t})) \mathbb{P}(\tilde{x}_{t} = \bar{x}_{t} \mid x_{0} = i,\tilde{x}_{t} \neq 0) \mathbb{P}(\tilde{x}_{t} \neq 0 \mid x_{0} = i)$$

$$\stackrel{(?)}{=} \sum_{\bar{x}_{t} \in \mathcal{X}} \tilde{g}(\bar{x}_{t},\tilde{\pi}_{t}(\bar{x}_{t})) \mathbb{P}(x_{t} = \bar{x}_{t} \mid x_{0} = i) \gamma^{t}$$

$$= \sum_{\bar{x}_{t} \in \mathcal{X}} g(\bar{x}_{t},\pi_{t}(\bar{x}_{t})) \mathbb{P}(x_{t} = \bar{x}_{t} \mid x_{0} = i) \gamma^{t}$$

$$= \mathbb{E}_{x_{1:T}} \left[\gamma^{t} g(x_{t},\pi_{t}(x_{t})) \mid x_{0} = i \right]$$

- (?) Show that for transitions \tilde{P}^u_{ii} under $\tilde{\pi}$, $\mathbb{P}(\tilde{x}_t \neq 0 \mid x_0 = i) = \gamma^t$
 - For any $i \in \mathcal{X}$ and $u \in \tilde{\mathcal{U}}(i)$:

$$\mathbb{P}(\tilde{x}_{t+1} \neq 0 \mid \tilde{x}_t = i) = 1 - P_{i,0}^u = \gamma$$

▶ Similarly, for any $i \in \mathcal{X}$

$$\mathbb{P}(\tilde{x}_{t+2} \neq 0 \mid \tilde{x}_t = i) = \sum_{j \in \mathcal{X}} \mathbb{P}(\tilde{x}_{t+2} \neq 0 \mid \tilde{x}_{t+1} = j, \tilde{x}_t = i) \mathbb{P}(\tilde{x}_{t+1} = j \mid \tilde{x}_t = i)$$

$$= \sum_{j \in \mathcal{X}} \mathbb{P}(\tilde{x}_{t+2} \neq 0 \mid \tilde{x}_{t+1} = j) \mathbb{P}(\tilde{x}_{t+1} = j \mid \tilde{x}_t = i)$$

$$= \gamma \sum_{j \in \mathcal{X}} \tilde{P}_{i,j}^{\tilde{\pi}(i)} = \gamma^2$$

▶ Similarly, we can show that for any m > 0: $\mathbb{P}(\tilde{x}_{t+m} \neq 0 \mid x_t = i) = \gamma^m$

- (?) Show that $\mathbb{P}(\tilde{x}_t = \bar{x}_t \mid x_0 = i, \tilde{x}_t \neq 0) = \mathbb{P}(x_t = \bar{x}_t \mid x_0 = i)$
 - ▶ For any $i, j \in \mathcal{X}$ and $u = \tilde{\pi}_t(i) = \pi_t(i)$, we have

$$\mathbb{P}(\tilde{x}_{t+1} = j \mid \tilde{x}_{t+1} \neq 0, \tilde{x}_t = i, \tilde{u}_t = u) = \frac{\mathbb{P}(\tilde{x}_{t+1} = j, \tilde{x}_{t+1} \neq 0 \mid \tilde{x}_t = i, \tilde{u}_t = u)}{\mathbb{P}(\tilde{x}_{t+1} \neq 0 \mid \tilde{x}_t = i, \tilde{u}_t = u)} \\
= \frac{\tilde{P}_{ij}^u}{\gamma} = P_{ij}^u = \mathbb{P}(x_{t+1} = j \mid x_t = i, u_t = u)$$

▶ Similarly, it can be shown that for $\bar{x}_t \in \mathcal{X}$:

$$\mathbb{P}(\tilde{x}_t = \bar{x}_t \mid x_0 = i, \tilde{x}_t \neq 0) = \mathbb{P}(x_t = \bar{x}_t \mid x_0 = i)$$

Bellman Equation for the Discounted Problem

Discounted Infinite Horizon Problem:

$$J^*(x) = \min_{\pi} J^{\pi}(x) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t g(x_t, \pi(x_t)) \mid x_0 = x \right]$$
s.t. $x_{t+1} \sim p_f(\cdot \mid x_t, \pi(x_t)),$
 $x_t \in \mathcal{X}, \quad \pi(x_t) \in \mathcal{U}(x_t), \quad \forall x_t \in \mathcal{X}$

► The optimal cost of the Discounted problem satisfies the **Bellman Equation** (via the equivalence to the SSP problem):

$$J^*(i) = \min_{u \in \mathcal{U}(i)} \left(g(i, u) + \gamma \sum_{j=1}^n P_{ij}^u J^*(j) \right), \quad \forall i \in \mathcal{X}$$

- ► There exist several methods to solve the Bellman Equation for the Discounted and SSP problems:
 - Value Iteration
 - Policy Iteration
 - Linear Programming