ECE276B: Planning & Learning in Robotics Lecture 10: Bellman Equations

Instructor:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:

Zhichao Li: zhl355@eng.ucsd.edu Ehsan Zobeidi: ezobeidi@eng.ucsd.edu Ibrahim Akbar: iakbar@eng.ucsd.edu

Infinite-Horizon Stochastic Optimal Control

Discounted Problem:

$$V^*(x) = \min_{\pi} V^{\pi}(x) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \ell(x_t, \pi(x_t)) \mid x_0 = x\right]$$
s.t. $x_{t+1} \sim p_f(\cdot \mid x_t, \pi(x_t)),$
 $x_t \in \mathcal{X},$
 $\pi(x_t) \in \mathcal{U}(x_t)$

► The optimal cost of the Discounted problem satisfies the Bellman Equation via the equivalence to the SSP problem:

$$V^*(x) = \min_{u \in \mathcal{U}(x)} \Big(\ell(x, u) + \gamma \sum_{x' \in \mathcal{X}} p_f(x' \mid x, u) V^*(x') \Big), \quad \forall x \in \mathcal{X}$$

- There exist several methods to solve the Bellman Equation for the Discounted and SSP problems:
 - Value Iteration (VI)
 - Policy Iteration (PI)
 - Linear Programming (LP)

Value Iteration (VI)

- ▶ Applies the Dynamic Programming recursion with an arbitrary initialization $V_0(x)$ to compute $V^*(x)$ for $x \in \mathcal{X}$
- ▶ VI requires an infinite iterations for $V_k(x)$ to converge to $V^*(x)$. In practice, define a threshold for $|V_{k+1}(x) V_k(x)|$ for all $x \in \mathcal{X}$
- ► SSP:

$$V_{k+1}(x) = \min_{u \in \tilde{\mathcal{U}}(x)} \left[\tilde{\ell}(x, u) + \sum_{x \in \tilde{\mathcal{X}} \setminus \{0\}} \tilde{p}(x' \mid x, u) V_k(x') \right], \quad \forall x \in \tilde{\mathcal{X}} \setminus \{0\}$$

Discounted Problem:

$$V_{k+1}(x) = \min_{u \in \mathcal{U}(x)} \left[\ell(x, u) + \gamma \sum_{x \in \mathcal{X}} p(x' \mid x, u) V_k(x') \right], \quad \forall x \in \mathcal{X}$$

Gauss-Seidel Value Iteration

A regular VI implementation stores the values from a previous iteration and updates them for all states simultaneously:

$$\bar{V}(x) \leftarrow \min_{u \in \mathcal{U}(x)} \left(\ell(x, u) + \gamma \sum_{x' \in \mathcal{X}} p_f(x' \mid x, u) V(x') \right), \quad \forall x \in \mathcal{X}$$

$$V(x) \leftarrow \bar{V}(x), \quad \forall x \in \mathcal{X}$$

► Gauss-Seidel Value Iteration updates the values in place:

$$V(x) \leftarrow \min_{u \in \mathcal{U}(x)} \left(\ell(x, u) + \gamma \sum_{x' \in \mathcal{X}} p_f(x' \mid x, u) V(x') \right), \quad \forall x \in \mathcal{X}$$

 Gauss-Seidel VI often leads to faster convergence and requires less memory than VI

Policy Evaluation

- ▶ The VI algorithm computes the optimal value function $V^*(x)$ for every state $x \in \mathcal{X}$
- ▶ The VI algorithm is the infinite-horizon equivalent of the DP algorithm
- Instead of the optimal value function $V^*(x)$, is it possible to compute the value function $V^{\pi}(x)$ for a given policy π ?

Policy Evaluation Theorem (Discounted Problem)

The cost vector V^{π} for policy π is the unique solution of:

$$V^{\pi}(x) = \ell(x, \pi(x)) + \gamma \sum_{t \in \mathcal{X}} p_f(x' \mid x, \pi(x)) V^{\pi}(x'), \qquad \forall x \in \mathcal{X}$$

Furthermore, given any initial conditions V_0 , the sequence V_k generated by the recursion below converges to V^{π} :

e recursion below converges to
$$V^\pi$$
: $V_{k+1}(x)=\ell(x,\pi(x))+\gamma\sum p_f(x'\mid x,\pi(x))V_k(x'), \qquad orall x\in \mathcal{X}$

Policy Evaluation

Policy Evaluation Theorem (SSP)

Under the termination state assumption, the cost vector $V^{\pi}(1), \ldots, V^{\pi}(n)$ for any proper policy π is the unique solution of:

$$V^\pi(x) = \ell(x,\pi(x)) + \sum_{x' \in \tilde{\mathcal{X}} \setminus \{0\}} ilde{p}_f(x' \mid x,\pi(x)) V^\pi(x'). \qquad orall x \in \tilde{\mathcal{X}} \setminus \{0\}$$

Furthermore, given any initial conditions V_0 , the sequence V_k generated by the recursion below converges to V^{π} :

$$V_{k+1}(x) = \ell(x,\pi(x)) + \sum_{x' \in \tilde{\mathcal{X}} \setminus \{0\}} \tilde{p}_f(x' \mid x,\pi(x)) V_k(x'), \qquad orall x \in \tilde{\mathcal{X}} \setminus \{0\}$$

 $x' \in \tilde{\mathcal{X}} \setminus \{0\}$ Proof: This is a special case of the Bellman Equation Theorem (SSP). Consider a modified problem, where the only allowable control at state x is $\pi(x)$. Since the proper policy π is the only policy under consideration, the proper policy assumption is satisfied and the arg min over $u \in \mathcal{U}(x)$ has to be $\pi(x)$.

Policy Evaluation as a Linear System (SSP)

The Policy Evaluation Theorem requires solving a linear system of equations:

$$\mathbf{v} = \ell + \tilde{P}\mathbf{v} \Rightarrow (I - \tilde{P})\mathbf{v} = \ell$$
 where $\mathbf{v}_i := V^{\pi}(i)$, $\ell_i := \ell(i, \pi(i))$, $\tilde{P}_{ij} := \tilde{p}_f(j \mid i, \pi(i))$ for $i, i = 1, \dots, n$.

- ▶ There exists a unique solution for \mathbf{v} , iff $(I \tilde{P})$ is invertible. This is guaranteed as long as π is a proper policy.
- ▶ **Proof**: $(I \tilde{P})$ is invertible iff \tilde{P} does not have eigenvalues at 1. By the Chapman-Kolmogorov equation, $[\tilde{P}^T]_{ij} = \mathbb{P}(x_T = j \mid x_0 = i)$ and since π is proper, $[\tilde{P}^T]_{ij} \to 0$ as $T \to \infty$ for all $i, j \in \tilde{\mathcal{X}} \setminus \{0\}$. Since \tilde{P}^T vanishes as $T \to \infty$ all eigenvalues of \tilde{P} must have modulus less than 1 and therefore $(I \tilde{P})$ exists.

Policy Evaluation as a Linear System (SSP)

▶ The Policy Evaluation Thm is an iterative solution to $(I - \tilde{P})\mathbf{v} = \ell$:

$$\mathbf{v}_{1} = \ell + \tilde{P}\mathbf{v}_{0}$$

$$\mathbf{v}_{2} = \ell + \tilde{P}\mathbf{v}_{1} = \ell + \tilde{P}\ell + \tilde{P}^{2}\mathbf{v}_{0}$$

$$\vdots$$

$$\mathbf{v}_{T} = (I + \tilde{P} + \tilde{P}^{2} + \tilde{P}^{3} + \dots + \tilde{P}^{T-1})\ell + \tilde{P}^{T}\mathbf{v}_{0}$$

$$\vdots$$

$$\mathbf{v}_{\infty} \rightarrow (I - \tilde{P})^{-1}\ell$$

Policy Evaluation as a Linear System (Summary)

- ► The linear system view of the Policy Evaluation Theorem can be extended to the Discounted problem through the SSP equivalence and subsequently to the finite-horizon setting
- ▶ Let $\mathbf{v}_i := V^{\pi}(i)$, $\ell_i := \ell(i, \pi(i))$, $P_{ij} := p_f(j \mid i, \pi(i))$ for i, j = 1, ..., n
- ▶ **SSP** (First Exit): Let $\mathcal{T} \subseteq \mathcal{X}$ be the set of terminal states with terminal costs \mathfrak{q} and $\mathcal{N} \subseteq \mathcal{X}$ be the set of nonterminal states. The value of policy π is:

$$(I - P_{\mathcal{N}\mathcal{N}})\mathbf{v}_{\mathcal{N}} = \ell + P_{\mathcal{N}\mathcal{T}}\mathbf{q}$$

- **▶** Discounted Problem: $(I \gamma P)\mathbf{v} = \ell$
 - The matrix P has eigenvalues with modulus ≤ 1 . All eigenvalues of γP have modulus < 1, so $(\gamma P)^T \to 0$ as $T \to \infty$ and $(I \gamma P)^{-1}$ exists.
- **Finite Horizon**: $\mathbf{v}_t = \ell_t + P_t \mathbf{v}_{t+1}$ starting from $\mathbf{v}_T = \mathbf{q}$

Policy Iteration (PI)

- An alternative to VI for computing $V^*(x)$, which iterates over policies instead of values
- ▶ **SSP**: repeat until $V^{\pi'}(x) = V^{\pi}(x)$ for all $x \in \tilde{\mathcal{X}} \setminus \{0\}$:

 1. **Policy Evaluation**: given a policy π , compute V^{π} :

$$V^{\pi}(x) = \tilde{\ell}(x,\pi(x)) + \sum_{x' \in \tilde{\mathcal{X}} \setminus \{0\}} \tilde{p}_f(x' \mid x,\pi(x)) V^{\pi}(x'), \qquad \forall x \in \tilde{\mathcal{X}} \setminus \{0\}$$

2. **Policy Improvement**: given V^{π} , obtain a new stationary policy π' :

$$\pi'(x) = \underset{u \in \tilde{\mathcal{U}}(x)}{\mathsf{arg\,min}} \Big[\tilde{\ell}(x, u) + \sum_{x' \in \tilde{\mathcal{X}} \setminus \{0\}} \tilde{p}_f(x' \mid x, u) V^{\pi}(x') \Big], \qquad \forall x \in \tilde{\mathcal{X}} \setminus \{0\}$$

- **Discounted Problem**: repeat until $V^{\pi'}(x) = V^{\pi}(x)$ for all $x \in \mathcal{X}$:
 - 1. **Policy Evaluation**: given a policy π , compute V^{π} :

$$V^{\pi}(x) = \ell(x, \pi(x)) + \gamma \sum p_f(x' \mid x, \pi(x)) V^{\pi}(x'), \quad \forall x \in \mathcal{X}$$

2. **Policy Improvement**: given V^{π} , obtain a new stationary policy π' :

$$\pi'(x) = \arg\min_{u \in \mathcal{U}(x)} \left[\ell(x, u) + \gamma \sum_{x' \in \mathcal{X}} p_f(x' \mid x, u) V^{\pi}(x') \right], \quad \forall x \in \mathcal{X}$$

Policy Improvement Theorem

Proof: $V^{\pi}(x) \geq Q^{\pi}(x, \pi'(x)) = \ell(x, \pi'(x)) + \gamma \mathbb{E}_{x' \sim p_{\ell}(\cdot x, \pi'(x))} \left[V^{\pi}(x') \right]$

Let π and π' be deterministic policies such that $V^{\pi}(x) \geq Q^{\pi}(x, \pi'(x))$ for all $x \in \mathcal{X}$. Then, π' is at least as good as π , i.e., $V^{\pi}(x) \geq V^{\pi'}(x)$ for all $x \in \mathcal{X}$

$$V^{\pi}(x) \geq Q^{\pi}(x, \pi'(x)) = \ell(x, \pi'(x)) + \gamma \mathbb{E}_{x' \sim p_f(\cdot x, \pi'(x))} \left[V^{\pi}(x') \right]$$

$$\geq \ell(x, \pi'(x)) + \gamma \mathbb{E}_{x' \sim p_f(\cdot x, \pi'(x))} \left[Q^{\pi}(x', \pi'(x')) \right]$$

$$= \ell(x, \pi'(x)) + \gamma \mathbb{E}_{x' \sim p_f(\cdot x, \pi'(x))} \left\{ \ell(x', \pi'(x')) + \gamma \mathbb{E}_{x'' \sim p_f(\cdot x', \pi'(x'))} V^{\pi}(x'') \right\}$$

$$\geq \dots \geq \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^{t} \ell(x_{t}, \pi'(x_{t})) \middle| x_{0} = x \right] = V^{\pi'}(x)$$

 $ightharpoonup \gamma < 1$ (Discounted Problem)

Then, the Policy Iteration algorithm converges to an optimal policy after a finite number of steps.

there exists a termination state and a proper policy (SSP)

Proof of Optimality of PI (SSP)

after a finite number of steps.

- Let π be a proper policy with value V^{π} obtained from the Policy Evaluation step.
- Let π' be the policy obtained from the Policy Improvement step.
- ▶ By definition of the Policy Improvement step: $V^{\pi}(x) \geq Q^{\pi}(x, \pi'(x))$ for all $x \in \tilde{\mathcal{X}} \setminus \{0\}$
- ▶ By the Policy Improvement Thm, $V^{\pi}(x) \geq V^{\pi'}(x)$ for all $x \in \tilde{\mathcal{X}} \setminus \{0\}$
- Since π is proper, V^π(x) < ∞ for all x ∈ X̃, and hence π' is proper
 Since π' is proper, the Policy Evaluation step has a unique solution V^{π'}
- Since the number of stationary policies is finite, eventually $V^{\pi}=V^{\pi'}$
- lacktriangle Once V^{π} has converged, it follows from the Policy Improvement step:

$$V^{\pi'}(x) = V^{\pi}(x) = \min_{u \in \tilde{\mathcal{U}}(x)} \left(\tilde{\ell}(x, u) + \sum_{x' \in \tilde{\mathcal{X}} \setminus \{0\}} \tilde{p}_f(x' \mid x, u) V^{\pi}(x') \right), \quad x \in \tilde{\mathcal{X}} \setminus \{0\}$$

Since this is the Bellman Equation for the SSP problem, we have converged to an optimal policy $\pi^* = \pi$ with optimal cost $V^* = V^{\pi}$.

Comparison between VI and PI

- PI and VI actually have a lot in common
- Rewrite VI as follows:
 - 2. **Policy Improvement**: Given $V_k(x)$ obtain a stationary policy:

$$\pi(x) = \underset{u \in \mathcal{U}(x)}{\arg\min} \Big[\ell(x, u) + \gamma \sum_{x' \in \mathcal{X}} p_f(x' \mid x, u) V_k(x') \Big], \qquad \forall x \in \mathcal{X}$$

1. Value Update: Given $\pi(x)$ and $V_k(x)$, compute

$$V_{k+1}(x) = \ell(x, \pi(x)) + \gamma \sum_{x' \in \mathcal{X}} p_f(x' \mid x, \pi(x)) V_k(x'), \qquad \forall x \in \mathcal{X}$$

- ► The Value Update step of VI is an iterative solution to the linear system of equations in the Policy Evaluation Theorem
- ▶ PI solves Policy Evaluation equation, which is equivalent to running the Value Update step of VI an infinite number of times!

Comparison between VI and PI

- ▶ Complexity of VI per Iteration: $O(|\mathcal{X}|^2|\mathcal{U}|)$: evaluating the expectation (i.e., sum over x') requires $|\mathcal{X}|$ operations and there are $|\mathcal{X}|$ minimizations over $|\mathcal{U}|$ possible control inputs.
- ▶ Complexity of PI per Iteration: $O(|\mathcal{X}|^2(|\mathcal{X}|+|\mathcal{U}|))$: the Policy Evaluation step requires solving a system of $|\mathcal{X}|$ equations in $|\mathcal{X}|$ unknowns $(O(|\mathcal{X}|^3))$, while the Policy Improvement step has the same complexity as one iteration of VI.
- ▶ PI is more computationally expensive than VI
- ▶ Theoretically it takes an infinite number of iterations for VI to converge
- lackbox PI converges in $|\mathcal{U}|^{|\mathcal{X}|}$ iterations (all possible policies) in the worst case

Generalized Policy Iteration

- Assuming that the Value Update and Policy Improvement steps are executed an infinite number of times for all states, all combinations of the following converge:
 - ▶ Any number of Value Update steps in between Policy Improvement steps
 - Any number of states updated at each Value Update step
 - Any number of states updated at each Policy Improvement step

Example: Frozen Lake Problem

- Winter is here.
- You and your friends were tossing around a frisbee at the park when you made a wild throw that left the frisbee out in the middle of the lake.
- ► The water is mostly frozen, but there are a few holes where the ice has melted.
- ▶ If you step into one of those holes, you'll fall into the freezing water.
- At this time, there's an international frisbee shortage, so it's absolutely imperative that you navigate across the lake and retrieve the disc.
- ► However, the ice is slippery, so you won't always move in the direction you intend.

Example: Frozen Lake Problem

- S : starting point, safe
- F: frozen surface, safe
- ► H : hole, fall to your doom
- ▶ G : goal, where the frisbee is located
- $\mathcal{X} = \{0, 1, \dots, 15\}$
- $\mathcal{U}(x) = \{ \text{Left}(0), \text{Down}(1), \text{Right}(2), \text{Up}(3) \}$
- ➤ You receive a reward of 1 if you reach the goal, and zero otherwise
- A requested action $u \in \mathcal{U}(x)$ succeeds 80% of the time. A neighboring action is executed in the other 50% of the time due to slip:

$$x' \mid x = 9, u = 1 =$$

$$\begin{cases}
13, & \text{with prob. } 0.8 \\
8, & \text{with prob. } 0.1 \\
10, & \text{with prob. } 0.1
\end{cases}$$

- ► The state remains unchanged if a control leads outside of the map
- ► An episode ends when you reach the goal or fall in a hole.

Value Iteration on Frozen Lake

Value Iteration on Frozen Lake Iteration $| max_x | V_{t+1}(x) - V_t(x) |$ 0 0.80000 1 0.60800 2 0.51984

0.39508

0.30026

0.25355

0.10478

0.09657

0.03656

0.02772

0.01111

0.00735

0.00310

0.00190 0.00083

0.00049

0.00022

3

4 5

6

8

9

10

11

12

13

14 15

16

changed actions

 $\frac{V(0)}{0.000}$

0.000

0.000

0.000

0.000

0.254

0.345

0.442

0.478

0.506

0.517

0.524

0.527

0.529

0.530

0.531

0.531

19

Policy Iteration on Frozen Lake

Policy Iteration on Frozen Lake Iteration

3

4

5

6

8

9

10

11

12

13

14 15

16

$\max_x V_{t+1}(x) - V_t(x) $	# changed actions
0.00000	0
0.89296	1

0.88580

0.48504

0.07573

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.000 0.398

V(0)

0.455 0.531 0.531 0.531 0.531 0.531

0.531 0.531 0.531 0.531

0.531

21

Value Iteration vs Policy Iteration

Value Iteration vs Policy Iteration

Example: 100 Games of Rock-Paper-Scissors (POMDP)

- Planning horizon: T = 100, $\gamma = 1$
- State:
 - ightharpoonup score differential $s \in \mathcal{S} := \{-100, \dots, 100\}$ (observable)
 - opponent's preference $y \in \mathcal{Y} := \{R, P, S\}$ (unobservable)
- ightharpoonup Control: $u \in \mathcal{U} := \{R, P, S\}$
- ightharpoonup Cost: $\tilde{\ell}(s,y,u)\equiv 0$, $\tilde{\mathfrak{q}}(s,y)=-s$
- ► Motion model:

$$p_f(s' \mid s, y = R, u = R) = \begin{cases} 0.5 & \text{if } s' = s \\ 0.25 & \text{if } s' = s + 1 \\ 0.25 & \text{if } s' = s - 1 \end{cases}$$

$$p_f(s' \mid s, y = R, u = P) = \begin{cases} 0.5 & \text{if } s' = s + 1 \\ 0.25 & \text{if } s' = s + 1 \\ 0.25 & \text{if } s' = s \\ 0.25 & \text{if } s' = s - 1 \end{cases}$$

- ▶ Observation: $z \in \mathcal{Z} := \{R, P, S\}$
- ▶ Observation model: $p_h(z \mid y) = \begin{cases} 0.5 & \text{if } y = z \\ 0.25 & \text{otherwise} \end{cases}$

Example: 100 Games of Rock-Paper-Scissors (MDP)

- \blacktriangleright The probability mass function b_t of y_t is a sufficient statistic for y_t
- State:
 - score differential $s \in \mathcal{S} := \{-100, \dots, 100\}$ (observable)
 - ▶ preference pmf $b \in \mathcal{B} = \mathcal{P}(\mathcal{Y}) := \{p \in [0,1]^3 \mid \mathbf{1}^T p = 1\}$ (observable)
- ightharpoonup Control: $u \in \mathcal{U} := \{R, P, S\}$
- ► Cost: $\ell(s, b, u) = \int \tilde{\ell}(s, y, u)b(y)dy = 0$, $\mathfrak{q}(s, b) = \int \tilde{\mathfrak{q}}(s, y)b(y)dy = -s$
- Let $\mathbf{w}(z) := \begin{bmatrix} p_h(z \mid y = R) \\ p_h(z \mid y = P) \\ p_h(z \mid y = S) \end{bmatrix}$ be the vector of observation likelihoods
- ▶ Motion model for the preference pmf (Bayes Filter):

$$b_{t+1} \mid b_t = \begin{cases} \frac{\mathbf{w}(S) \odot b_t}{\mathbf{w}(S)^T b_t} & \text{w.p.} & \mathbf{w}(S)^T b_t \\ \frac{\mathbf{w}(R) \odot b_t}{\mathbf{w}(R)^T b_t} & \text{w.p.} & \mathbf{w}(R)^T b_t \\ \frac{\mathbf{w}(P) \odot b_t}{\mathbf{w}(P)^T b_t} & \text{w.p.} & \mathbf{w}(P)^T b_t \end{cases}$$
 $\odot = \text{elementwise}$ multiplication

Example: 100 Games of Rock-Paper-Scissors (MDP)

▶ Motion model for the score differential:

$$\begin{aligned} s_{t+1} \mid s_t, R &= \begin{cases} s_t + 1 & \text{w.p. } \mathbf{w}(S)^T b_t \\ s_t & \text{w.p. } \mathbf{w}(R)^T b_t \\ s_t - 1 & \text{w.p. } \mathbf{w}(P)^T b_t \end{cases} & s_{t+1} \mid s_t, P &= \begin{cases} s_t - 1 & \text{w.p. } \mathbf{w}(S)^T b_t \\ s_t + 1 & \text{w.p. } \mathbf{w}(R)^T b_t \\ s_t & \text{w.p. } \mathbf{w}(P)^T b_t \end{cases} \\ s_{t+1} \mid s_t, S &= \begin{cases} s_t & \text{w.p. } \mathbf{w}(S)^T b_t \\ s_t - 1 & \text{w.p. } \mathbf{w}(R)^T b_t \\ s_t + 1 & \text{w.p. } \mathbf{w}(P)^T b_t \end{cases} \end{aligned}$$

- ▶ Discretize \mathcal{B} into a finite set \mathcal{B}_d of pmfs
- Apply the Dynamic Programming algorithm:
 - $ightharpoonup V_{100}(s,b)=-s$, $\forall s\in\mathcal{S},b\in\mathcal{B}_d$
 - $V_{99}(s,b) = \min_{u \in \{R,P,S\}} \sum_{s' \in S, b' \in \mathcal{B}_d} V_{100}(s',b') p_f(s',b' \mid s,b,u), \ \forall s \in S, b \in \mathcal{B}_d$
 - **.**..

Linear Programming Solution to the Bellman Equation

 \triangleright Suppose we initialize VI with a vector V_0 that satisfies a relaxed Bellman Equation:

$$V_0(x) \leq \min_{u \in \mathcal{U}(x)} \left(\ell(x, u) + \gamma \sum_{x' \in \mathcal{X}} p_f(x \mid x, u) V_0(x) \right), \quad \forall x \in \mathcal{X}$$

$$\blacktriangleright \text{ Applying VI to } V_0 \text{ leads to:}$$

$$\begin{array}{c}
u \in \mathcal{U}(x) \\
& \times' \in \mathcal{X}
\end{array}$$
Applying VI to V_0 leads to:

 $\geq \min_{u \in \mathcal{U}(x)} \left(\ell(x, u) + \gamma \sum_{i \in \mathcal{U}} p_f(x' \mid x, u) V_0(x') \right) = V_1(x), \quad \forall x \in \mathcal{X}$

 $V_2(x) = \min_{u \in \mathcal{U}(x)} \left(\ell(x, u) + \gamma \sum_{x' \in \mathcal{X}} p_f(x' \mid x, u) V_1(x') \right)$

Linear Programming Solution to the Bellman Equation

- ▶ The above shows that $V_{k+1}(x) \ge V_k(x)$ for all k and $x \in \mathcal{X}$
- ▶ Since VI guarantees that $V_k(x) \to V^*(x)$ as $k \to \infty$ we also have:

$$V^*(x) \geq V_0(x), \quad \forall x \in \mathcal{X} \quad \Rightarrow \quad \sum_{x \in \mathcal{X}} w(x)V^*(x) \geq \sum_{x \in \mathcal{X}} w(x)V_0(x)$$

for any w(x) > 0 for all $x \in \mathcal{X}$.

▶ The above holds for **any** V_0 that satisfies:

$$V_0(x) \leq \min_{u \in \mathcal{U}(x)} \left(\ell(x, u) + \gamma \sum_{x' \in \mathcal{X}} p_f(x' \mid x, u) V_0(x') \right), \quad \forall x \in \mathcal{X}$$

Note that V^* also satisfies this condition with equality (Bellman Equation) and hence is the maximal V_0 (at each state) that satisfies the condition.

Linear Programming Solution to the Bellman Equation

LP Solution to the Bellman Equation

The solution V^* to the linear program (with w(x) > 0):

$$\max_{V} \sum_{x \in \mathcal{X}} w(x)V(x)$$

s.t.
$$V(x) \leq \left(\ell(x,u) + \gamma \sum_{x' \in \mathcal{X}} p_f(x' \mid x,u) V(x')\right), \quad \forall u \in \mathcal{U}(x), \forall x \in \mathcal{X}$$

also solves the Bellman Equation to yield the optimal value function for a discounted infinite-horizon finite-state stochastic optimal control problem.

► An equivalent result holds for the SSP.

LP Solution to the BE (Proof)

▶ Let J^* be the solution to the linear program so that:

$$J^*(x) \leq \left(\ell(x,u) + \gamma \sum_{x' \in \mathcal{X}} p_f(x' \mid x, u) J^*(x')\right), \quad \forall u \in \mathcal{U}(x), \forall x \in \mathcal{X}$$

- ▶ Since J^* is feasible, it satisfies $J^*(x) \leq V^*(x)$ for all $x \in \mathcal{X}$
- ▶ By contradiction, suppose that $J^* \neq V^*$. Then, there exists a state $y \in \mathcal{X}$ such that:

$$J^*(y) < V^*(y) \quad \Rightarrow \quad \sum_{x \in \mathcal{X}} w(x) J^*(x) < \sum_{x \in \mathcal{X}} w(x) V^*(x)$$

for any positive w(x) but since V^* solves the Bellman Equation:

$$V^*(x) \le \left(\ell(x,u) + \gamma \sum_{x' \in \mathcal{X}} p_f(x' \mid x,u) V^*(j)\right), \qquad \forall u \in \mathcal{U}(x), \forall x \in \mathcal{X}$$

▶ Thus, V^* is feasible and has lower cost that J^* , which is a contradiction.

Bellman Equations (Summary)

Finite Horizon Formulation

lacktriangle Trajectories terminate at $T<\infty$

$$\min_{\pi} V_{\tau}^{\pi}(x) = \mathbb{E}\left[\sum_{t=\tau}^{T-1} \ell_t(x_t, \pi_t(x_t)) + \mathfrak{q}(x_T) \middle| x_{\tau} = x\right]$$

The optimal value $V_t^*(x)$ can be found with a single backward pass through time, initialized from $V_T^*(x) = \mathfrak{q}(x)$ and following the recursion:

Bellman Equations (Finite Horizon Problem)

Hamiltonian:
$$H_t[x, u, V(\cdot)] = \ell_t(x, u) + \mathbb{E}_{x' \sim p_t(\cdot | x, u)} V(x')$$

Policy Evaluation: $V_t^{\pi}(x) = H_t[x, \pi_t(x), V_{t+1}^{\pi}(\cdot)]$

Bellman Equation: $V_t^*(x) = \min_{u \in \mathcal{U}(x)} H_t[x, u, V_{t+1}^*(\cdot)]$

Optimal Policy: $\pi_t^*(x) = \underset{u \in \mathcal{U}(x)}{\operatorname{arg \, min}} H_t[x, u, V_{t+1}^*(\cdot)]$

First Exit (SSP) Formulation

▶ Trajectories terminate at T_{first} , when a goal state $x \in T \subseteq \mathcal{X}$ is reached:

$$\min_{\pi} V^{\pi}(x) = \mathbb{E}\left[\sum_{t=0}^{T_{first}-1} \ell(x_t, \pi(x_t)) + \mathfrak{q}(x_{T_{first}}) \middle| x_0 = x\right]$$

- lacksquare At terminal states, $V^*(x) = V^\pi(x) = \mathfrak{q}(x)$ for all $x \in \mathcal{T}$
- At other states, the following are satisfied:

Bellman Equations (First Exit Problem)

Hamiltonian:
$$H[x, u, V(\cdot)] = \ell(x, u) + \mathbb{E}_{x' \sim p_f(\cdot | x, u)} V(x')$$

Policy Evaluation:
$$V^{\pi}(x) = H[x, \pi(x), V^{\pi}(\cdot)]$$

Bellman Equation:
$$V^*(x) = \min_{u \in \mathcal{U}(x)} H[x, u, V^*(\cdot)]$$

Optimal Policy:
$$\pi^*(x) = \underset{u \in \mathcal{U}(x)}{\operatorname{arg min}} H[x, u, V^*(\cdot)]$$

Discounted Formulation

▶ Trajectories continue forever but costs are discounted via $\gamma \in [0,1)$:

$$\min_{\pi} V^{\pi}(x) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^{t} \ell(x_{t}, \pi(x_{t})) \middle| x_{0} = x \right]$$

Bellman Equations (Discounted Problem)

Hamiltonian: $H[x, u, V(\cdot)] = \ell(x, u) + \gamma \mathbb{E}_{x' \sim p_f(\cdot|x, u)} V(x')$

Policy Evaluation: $V^{\pi}(x) = H[x, \pi(x), V^{\pi}(\cdot)]$

Bellman Equation: $V^*(x) = \min_{u \in \mathcal{U}(x)} H[x, u, V^*(\cdot)]$

Optimal Policy: $\pi^*(x) = \underset{u \in \mathcal{U}(x)}{\arg \min} H[x, u, V^*(\cdot)]$

Every discounted problem can be converted to a first exist problem by scaling the transition probabilities by γ , introducing a terminal state with zero cost, and setting all transition probabilities to that state to $1-\gamma$

Value Function

▶ Value Function: the expected long-term cost of following policy π starting from state x:

$$V^{\pi}(x) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \ell(x_{t}, \pi(x_{t})) \mid x_{0} = x\right]$$

$$= \ell(x, \pi(x)) + \gamma \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} \ell(x_{t}, \pi(x_{t})) \mid x_{0} = x\right]$$

$$= \ell(x, \pi(x)) + \gamma \mathbb{E}_{x' \sim p_{f}(\cdot \mid x, \pi(x))} \left[V^{\pi}(x')\right]$$

Value Iteration: computes the optimal value function

$$V^*(x) := \min_{\pi} V^{\pi}(x) = \min_{u \in \mathcal{U}(x)} \left\{ \ell(x, u) + \gamma \mathbb{E}_{x' \sim p_f(\cdot \mid x, u)} \left[V^*(x') \right] \right\}$$

Action-Value (Q) Function

Q Function: the expected long-term cost of taking action u in state x and following policy π afterwards:

$$Q^{\pi}(x, u) := \ell(x, u) + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t} \ell(x_{t}, \pi(x_{t})) \middle| x_{0} = x\right]$$

$$= \ell(x, u) + \gamma \mathbb{E}_{x' \sim p_{f}(\cdot | x, u)} \left[V^{\pi}(x')\right]$$

$$= \ell(x, u) + \gamma \mathbb{E}_{x' \sim p_{f}(\cdot | x, u)} \left[Q^{\pi}(x', \pi(x'))\right]$$

Q-Value Iteration: computes the optimal Q function

$$\begin{split} Q^*(x,u) := \min_{\pi} Q^{\pi}(x,u) = & \ell(x,u) + \gamma \mathbb{E}_{x' \sim p_f(\cdot|x,u)} \left[\min_{\pi} V^{\pi}(x') \right] \\ = & \ell(x,u) + \gamma \mathbb{E}_{x' \sim p_f(\cdot|x,u)} \left[V^*(x') \right] \\ = & \ell(x,u) + \gamma \mathbb{E}_{x' \sim p_f(\cdot|x,u)} \left[\min_{u' \in \mathcal{U}(x')} Q^*(x',u') \right] \end{split}$$

 \triangleright $Q^*(x, u)$ allows us to choose optimal actions without having to know anything about the dynamics $p_f(x' \mid x, u)$: $\pi^*(x) = \underset{u \in \mathcal{U}(x)}{\arg\min} \left\{ \ell(x, u) + \gamma \mathbb{E}_{x' \sim p_f(\cdot | x, u)} \left[V^*(x') \right] \right\} = \underset{u \in \mathcal{U}(x)}{\arg\min} Q^*(x, u)$ 36

Backup Operators

Policy Evaluation Backup Operator:

$$\mathcal{T}_{\pi}[V](x) := H[x, \pi(x), V] = \ell(x, \pi(x)) + \gamma \mathbb{E}_{x' \sim p_f(\cdot \mid x, \pi(x))} \left[V(x') \right]$$

► Value Iteration Backup Operator:

$$\mathcal{T}_*[V](x) := \min_{u \in \mathcal{U}(x)} H[x, u, V] = \min_{u \in \mathcal{U}(x)} \left\{ \ell(x, u) + \gamma \mathbb{E}_{x' \sim p_f(\cdot | x, u)} \left[V(x') \right] \right\}$$

► Policy Q-Evaluation Backup Operator:

$$\mathcal{T}_{\pi}[Q](x,u) := \ell(x,u) + \gamma \mathbb{E}_{x' \sim p_f(\cdot|x,\pi(x))} \left[Q(x',\pi(x')) \right]$$

Q-Value Iteration Backup Operator:

$$\mathcal{T}_*[Q](x,u) := \ell(x,u) + \gamma \mathbb{E}_{x' \sim p_f(\cdot|x,u)} \left[\min_{u' \in \mathcal{U}(x')} Q(x',u') \right]$$

Backup Operators (Stochastic Policy)

Contraction in Discounted Problems

Properties of $\mathcal{T}_*[V]$

- 1. Monotonicity: $V(x) \leq V'(x) \Rightarrow \mathcal{T}_*[V](x) \leq \mathcal{T}_*[V'](x)$
- 2. γ -Additivity: $\mathcal{T}_*[V+d](x) = \mathcal{T}_*[V](x) + \gamma d$
- 3. Contraction: $\|\mathcal{T}_*[V](x) \mathcal{T}_*[V'](x)\|_{\infty} \le \gamma \|V(x) V'(x)\|_{\infty}$
- ▶ **Proof of Contraction**: Let $d = \max_{x} |V(x) V'(x)|$. Then:

$$V(x) - d \le V'(x) \le V(x) + d, \quad \forall x \in \mathcal{X}$$

Apply \mathcal{T}_* to both sides and use monotonicity and additivity:

$$\mathcal{T}_*[V](x) - \gamma d \le \mathcal{T}_*[V'](x) \le \mathcal{T}_*[V](x) + \gamma d, \quad \forall x \in \mathcal{X}$$

VI and PI Revisited

- Value Iteration:
 - $ightharpoonup V^*$ is the solution to $V=\mathcal{T}_*[V]$ (Bellman Equation)
 - Since \mathcal{T}_* is a contraction, the fixed-point equation has a unique solution (Contraction Mapping Theorem), which can be determined iteratively:

$$V_{k+1} = \mathcal{T}_*[V_k]$$
 (Value Iteration)

- Initialization:
 - Discounted: arbitrary
 - First exit: $V_k(x) = \mathfrak{q}(x)$ for all k and all terminal $x \in \mathcal{T}$
- ► Policy Iteration:
 - **Policy Evaluation**: Given π compute V^{π} via

$$\mathbf{v} = (I - \gamma P)^{-1} \ell$$
 OR $V_{k+1} = \mathcal{T}_{\pi}[V_k]$ (Policy Evaluation Thm)

Policy Improvement: choose the action that minimizes the Hamiltonian:

$$\pi'(x) = \arg\min_{u \in \mathcal{U}(x)} H[x, u, V^{\pi}(\cdot)]$$

▶ **Initialization**: arbitrary as long as V^{π} is finite

Value Iteration

 V^* is a fixed point of \mathcal{T}_* : V_0 , $\mathcal{T}_*[V_0]$, $\mathcal{T}_*^2[V_0]$, $\mathcal{T}_*^3[V_0]$,... $\to V^*$

Algorithm 1 Value Iteration

- 1: Initialize V_0 2: **for** k = 0, 1, 2, ... **do**
- 3: $V_{k+1} = \mathcal{T}_*[V_k]$
- $ightharpoonup Q^*$ is a fixed point of \mathcal{T}_* : Q_0 , $\mathcal{T}_*[Q_0]$, $\mathcal{T}_*^2[Q_0]$, $\mathcal{T}_*^3[Q_0]$, ... $\rightarrow Q^*$

Algorithm 2 Q-Value Iteration

- 1: Initialize Q_0
 - 2: **for** $k = 0, 1, 2, \dots$ **do**
 - 3: $Q_{k+1} = \mathcal{T}_* [Q_k]$

Policy Iteration

Policy Evaluation: V_0 , $\mathcal{T}_{\pi}[V_0]$, $\mathcal{T}_{\pi}^2[V_0]$, $\mathcal{T}_{\pi}^3[V_0]$,...

Algorithm 3 Policy Iteration

- 1: Initialize V_∩
- 2: **for** $k = 0, 1, 2, \dots$ **do**
- $\pi_{k+1}(x) = \arg\min H[x, u, V_k(\cdot)]$ 3: $u \in \mathcal{U}(x)$ 4: $V_{k+1} = \mathcal{T}_{\pi_{k+1}}^{\infty} [V_k]$
- - ▶ Policy Improvement
 - - ▶ Policy Evaluation

Policy Q-Evaluation: Q_0 , $\mathcal{T}_{\pi}[Q_0]$, $\mathcal{T}_{\pi}^2[Q_0]$, $\mathcal{T}_{\pi}^3[Q_0]$,...

- **Algorithm 4** Q-Policy Iteration

- 2: **for** $k = 0, 1, 2 \dots$ **do**

 - $\pi_{k+1}(x) = \arg\min Q_k(x, u)$ $u \in \mathcal{U}(x)$
- 1: Initialize Q_0

 $Q_{k+1} = \mathcal{T}^{\infty}_{\pi_{k+1}}[Q_k]$

3:

4:

- - - ▶ Policy Improvement ▶ Policy Evaluation

Generalized Policy Iteration

Algorithm 5 Generalized Policy Iteration

1: Initialize V_∩ 2: **for** $k = 0, 1, 2, \dots$ **do**

3:

3:

4:

- $\pi_{k+1}(x) = \arg\min H[x, u, V_k(\cdot)]$
 - $u \in \mathcal{U}(x)$

4: $V_{k+1} = \mathcal{T}_{\pi_{k+1}}^n [V_k], \text{ for } n \ge 1$

▶ Policy Evaluation

Algorithm 6 Generalized Q-Policy Iteration

- 1: Initialize Q_0 2: **for** $k = 0, 1, 2, \dots$ **do**

 - $\pi_{k+1}(x) = \arg\min Q_k(x, u)$
 - $u \in \mathcal{U}(x)$
 - $Q_{k+1} = \mathcal{T}^n_{\pi_{k+1}} \left[Q_k \right], \quad \text{for } n \geq 1$
- - ▶ Policy Improvement

▶ Policy Improvement