
ECE276B: Planning & Learning in Robotics
Lecture 10: Bellman Equations

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Zhichao Li: zhl355@eng.ucsd.edu
Ehsan Zobeidi: ezobeidi@eng.ucsd.edu
Ibrahim Akbar: iakbar@eng.ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:zhl355@eng.ucsd.edu
mailto:ezobeidi@eng.ucsd.edu
mailto:iakbar@eng.ucsd.edu

Infinite-Horizon Stochastic Optimal Control
I Discounted Problem:

V ∗(x) = min
π

V π(x) := E

[∞∑
t=0

γt`(xt , π(xt))

∣∣∣∣ x0 = x

]
s.t. xt+1 ∼ pf (· | xt , π(xt)),

xt ∈ X ,
π(xt) ∈ U(xt)

I The optimal cost of the Discounted problem satisfies the Bellman
Equation via the equivalence to the SSP problem:

V ∗(x) = min
u∈U(x)

(
`(x , u) + γ

∑
x ′∈X

pf (x ′ | x , u)V ∗(x ′)
)
, ∀x ∈ X

I There exist several methods to solve the Bellman Equation for the
Discounted and SSP problems:
I Value Iteration (VI)
I Policy Iteration (PI)
I Linear Programming (LP)

2

Value Iteration (VI)

I Applies the Dynamic Programming recursion with an arbitrary
initialization V0(x) to compute V ∗(x) for x ∈ X

I VI requires an infinite iterations for Vk (x) to converge to V ∗(x). In
practice, define a threshold for |Vk+1(x)− Vk (x)| for all x ∈ X

I SSP:

Vk+1(x) = min
u∈Ũ(x)

[
˜̀(x , u)+

∑
x∈X̃\{0}

p̃(x ′ | x , u)Vk (x ′)
]
, ∀x ∈ X̃ \{0}

I Discounted Problem:

Vk+1(x) = min
u∈U(x)

[
`(x , u) + γ

∑
x∈X

p(x ′ | x , u)Vk (x ′)
]
, ∀x ∈ X

3

Gauss-Seidel Value Iteration

I A regular VI implementation stores the values from a previous iteration
and updates them for all states simultaneously:

V̄ (x)← min
u∈U(x)

(
`(x , u) + γ

∑
x ′∈X

pf (x ′ | x , u)V (x ′)

)
, ∀x ∈ X

V (x)← V̄ (x), ∀x ∈ X

I Gauss-Seidel Value Iteration updates the values in place:

V (x)← min
u∈U(x)

(
`(x , u) + γ

∑
x ′∈X

pf (x ′ | x , u)V (x ′)

)
, ∀x ∈ X

I Gauss-Seidel VI often leads to faster convergence and requires less
memory than VI

4

Policy Evaluation
I The VI algorithm computes the optimal value function V ∗(x) for every

state x ∈ X

I The VI algorithm is the infinite-horizon equivalent of the DP algorithm

I Instead of the optimal value function V ∗(x), is it possible to compute
the value function V π(x) for a given policy π?

Policy Evaluation Theorem (Discounted Problem)

The cost vector V π for policy π is the unique solution of:

V π(x) = `(x , π(x)) + γ
∑

x ′∈X
pf (x ′ | x , π(x))V π(x ′), ∀x ∈ X

Furthermore, given any initial conditions V0, the sequence Vk generated by
the recursion below converges to V π:

Vk+1(x) = `(x , π(x)) + γ
∑

x ′∈X
pf (x ′ | x , π(x))Vk (x ′), ∀x ∈ X

5

Policy Evaluation

Policy Evaluation Theorem (SSP)

Under the termination state assumption, the cost vector V π(1), . . . ,V π(n)
for any proper policy π is the unique solution of:

V π(x) = `(x , π(x)) +
∑

x ′∈X̃\{0}

p̃f (x ′ | x , π(x))V π(x ′). ∀x ∈ X̃ \ {0}

Furthermore, given any initial conditions V0, the sequence Vk generated by
the recursion below converges to V π:

Vk+1(x) = `(x , π(x)) +
∑

x ′∈X̃\{0}

p̃f (x ′ | x , π(x))Vk (x ′), ∀x ∈ X̃ \ {0}

I Proof: This is a special case of the Bellman Equation Theorem (SSP).
Consider a modified problem, where the only allowable control at state x
is π(x). Since the proper policy π is the only policy under consideration,
the proper policy assumption is satisfied and the arg min over u ∈ U(x)
has to be π(x). 6

Policy Evaluation as a Linear System (SSP)

I The Policy Evaluation Theorem requires solving a linear system of
equations:

v = ` + P̃v ⇒ (I − P̃)v = `

where vi := V π(i), `i := `(i , π(i)), P̃ij := p̃f (j | i , π(i)) for
i , j = 1, . . . , n.

I There exists a unique solution for v, iff (I − P̃) is invertible. This is
guaranteed as long as π is a proper policy.

I Proof: (I − P̃) is invertible iff P̃ does not have eigenvalues at 1. By the
Chapman-Kolmogorov equation, [P̃T]ij = P(xT = j | x0 = i) and since π
is proper, [P̃T]ij → 0 as T →∞ for all i , j ∈ X̃ \ {0}. Since P̃T

vanishes as T →∞ all eigenvalues of P̃ must have modulus less than 1
and therefore (I − P̃) exists.

7

Policy Evaluation as a Linear System (SSP)

I The Policy Evaluation Thm is an iterative solution to (I − P̃)v = `:

v1 = ` + P̃v0

v2 = ` + P̃v1 = ` + P̃` + P̃2v0
...

vT = (I + P̃ + P̃2 + P̃3 + . . .+ P̃T−1)` + P̃T v0
...

v∞ → (I − P̃)−1`

8

Policy Evaluation as a Linear System (Summary)

I The linear system view of the Policy Evaluation Theorem can be
extended to the Discounted problem through the SSP equivalence and
subsequently to the finite-horizon setting

I Let vi := V π(i), `i := `(i , π(i)), Pij := pf (j | i , π(i)) for i , j = 1, . . . , n

I SSP (First Exit): Let T ⊆ X be the set of terminal states with
terminal costs q and N ⊆ X be the set of nonterminal states. The
value of policy π is:

(I − PNN) vN = ` + PNT q

I Discounted Problem: (I − γP)v = `
I The matrix P has eigenvalues with modulus ≤ 1. All eigenvalues of γP

have modulus < 1, so (γP)T → 0 as T →∞ and (I − γP)−1 exists.

I Finite Horizon: vt = `t + Ptvt+1 starting from vT = q

9

Policy Iteration (PI)
I An alternative to VI for computing V ∗(x), which iterates over policies

instead of values
I SSP: repeat until V π′

(x) = V π(x) for all x ∈ X̃ \ {0}:
1. Policy Evaluation: given a policy π, compute V π:

V π(x) = ˜̀(x , π(x)) +
∑

x′∈X̃\{0}

p̃f (x ′ | x , π(x))V π(x ′), ∀x ∈ X̃ \ {0}

2. Policy Improvement: given V π, obtain a new stationary policy π′:

π′(x) = arg min
u∈Ũ(x)

[
˜̀(x , u) +

∑
x′∈X̃\{0}

p̃f (x ′ | x , u)V π(x ′)
]
, ∀x ∈ X̃ \ {0}

I Discounted Problem: repeat until V π′
(x) = V π(x) for all x ∈ X :

1. Policy Evaluation: given a policy π, compute V π:

V π(x) = `(x , π(x)) + γ
∑

x′∈X
pf (x ′ | x , π(x))V π(x ′), ∀x ∈ X

2. Policy Improvement: given V π, obtain a new stationary policy π′:

π′(x) = arg min
u∈U(x)

[
`(x , u) + γ

∑
x′∈X

pf (x ′ | x , u)V π(x ′)
]
, ∀x ∈ X

10

Policy Improvement Theorem

Let π and π′ be deterministic policies such that V π(x) ≥ Qπ(x , π′(x)) for all
x ∈ X . Then, π′ is at least as good as π, i.e., V π(x) ≥ V π′

(x) for all x ∈ X

I Proof:
V π(x) ≥ Qπ(x , π′(x)) = `(x , π′(x)) + γEx ′∼pf (·x ,π′(x))

[
V π(x ′)

]
≥ `(x , π′(x)) + γEx ′∼pf (·x ,π′(x))

[
Qπ(x ′, π′(x ′))

]
= `(x , π′(x)) + γEx ′∼pf (·x ,π′(x))

{
`(x ′, π′(x ′)) + γEx ′′∼pf (·x ′,π′(x ′))V

π(x ′′)
}

≥ · · · ≥ E

[∞∑
t=0

γt`(xt , π
′(xt))

∣∣∣∣x0 = x

]
= V π′

(x)

Theorem: Optimality of PI

Suppose that:

I γ < 1 (Discounted Problem)

I there exists a termination state and a proper policy (SSP)

Then, the Policy Iteration algorithm converges to an optimal policy after a
finite number of steps.

11

Proof of Optimality of PI (SSP)
I Let π be a proper policy with value V π obtained from the Policy

Evaluation step.
I Let π′ be the policy obtained from the Policy Improvement step.
I By definition of the Policy Improvement step: V π(x) ≥ Qπ(x , π′(x)) for

all x ∈ X̃ \ {0}
I By the Policy Improvement Thm, V π(x) ≥ V π′

(x) for all x ∈ X̃ \ {0}
I Since π is proper, V π(x) <∞ for all x ∈ X̃ , and hence π′ is proper
I Since π′ is proper, the Policy Evaluation step has a unique solution V π′

I Since the number of stationary policies is finite, eventually V π = V π′

after a finite number of steps.
I Once V π has converged, it follows from the Policy Improvement step:

V π′
(x) = V π(x) = min

u∈Ũ(x)

˜̀(x , u) +
∑

x ′∈X̃\{0}

p̃f (x ′ | x , u)V π(x ′)

 , x ∈ X̃ \ {0}

I Since this is the Bellman Equation for the SSP problem, we have
converged to an optimal policy π∗ = π with optimal cost V ∗ = V π.

12

Comparison between VI and PI

I PI and VI actually have a lot in common

I Rewrite VI as follows:

2. Policy Improvement: Given Vk (x) obtain a stationary policy:

π(x) = arg min
u∈U(x)

[
`(x , u) + γ

∑
x′∈X

pf (x ′ | x , u)Vk (x ′)
]
, ∀x ∈ X

1. Value Update: Given π(x) and Vk (x), compute

Vk+1(x) = `(x , π(x)) + γ
∑

x′∈X
pf (x ′ | x , π(x))Vk (x ′), ∀x ∈ X

I The Value Update step of VI is an iterative solution to the linear system
of equations in the Policy Evaluation Theorem

I PI solves Policy Evaluation equation, which is equivalent to running the
Value Update step of VI an infinite number of times!

13

Comparison between VI and PI

I Complexity of VI per Iteration: O(|X |2|U|): evaluating the
expectation (i.e., sum over x ′) requires |X | operations and there are |X |
minimizations over |U| possible control inputs.

I Complexity of PI per Iteration: O(|X |2 (|X |+ |U|)): the Policy
Evaluation step requires solving a system of |X | equations in |X |
unknowns (O(|X |3)), while the Policy Improvement step has the same
complexity as one iteration of VI.

I PI is more computationally expensive than VI

I Theoretically it takes an infinite number of iterations for VI to converge

I PI converges in |U||X | iterations (all possible policies) in the worst case

14

Generalized Policy Iteration

I Assuming that the Value Update and Policy Improvement steps are
executed an infinite number of times for all states, all combinations of
the following converge:
I Any number of Value Update steps in between Policy Improvement steps

I Any number of states updated at each Value Update step

I Any number of states updated at each Policy Improvement step

15

Example: Frozen Lake Problem

I Winter is here.

I You and your friends were tossing around a frisbee at the park when you
made a wild throw that left the frisbee out in the middle of the lake.

I The water is mostly frozen, but there are a few holes where the ice has
melted.

I If you step into one of those holes, you’ll fall into the freezing water.

I At this time, there’s an international frisbee shortage, so it’s absolutely
imperative that you navigate across the lake and retrieve the disc.

I However, the ice is slippery, so you won’t always move in the direction
you intend.

16

Example: Frozen Lake Problem
I S : starting point, safe

I F : frozen surface, safe

I H : hole, fall to your doom

I G : goal, where the frisbee is located

I X = {0, 1, . . . , 15}
I U(x) = {Left(0), Down(1), Right(2), Up(3)}
I You receive a reward of 1 if you reach the

goal, and zero otherwise

I A requested action u ∈ U(x) succeeds 80% of the time. A neighboring
action is executed in the other 50% of the time due to slip:

x ′ | x = 9, u = 1 =


13, with prob. 0.8

8, with prob. 0.1

10, with prob. 0.1

I The state remains unchanged if a control leads outside of the map

I An episode ends when you reach the goal or fall in a hole. 17

Value Iteration on Frozen Lake

(a) t = 0 (b) t = 1 (c) t = 2

(d) t = 3 (e) t = 4 (f) t = 5
18

Value Iteration on Frozen Lake
Iteration maxx |Vt+1(x)− Vt(x)| # changed actions V (0)

0 0.80000 0 0.000
1 0.60800 1 0.000
2 0.51984 2 0.000
3 0.39508 2 0.000
4 0.30026 2 0.000
5 0.25355 2 0.254
6 0.10478 1 0.345
7 0.09657 0 0.442
8 0.03656 0 0.478
9 0.02772 0 0.506

10 0.01111 0 0.517
11 0.00735 0 0.524
12 0.00310 0 0.527
13 0.00190 0 0.529
14 0.00083 0 0.530
15 0.00049 0 0.531
16 0.00022 0 0.531
17 0.00013 0 0.531
18 0.00006 0 0.531
19 0.00003 0 0.531

19

Policy Iteration on Frozen Lake

(a) t = 0 (b) t = 1 (c) t = 2

(d) t = 3 (e) t = 4 (f) t = 5
20

Policy Iteration on Frozen Lake
Iteration maxx |Vt+1(x)− Vt(x)| # changed actions V (0)

0 0.00000 0 0.000
1 0.89296 1 0.000
2 0.88580 9 0.398
3 0.48504 2 0.455
4 0.07573 1 0.531
5 0.00000 0 0.531
6 0.00000 0 0.531
7 0.00000 0 0.531
8 0.00000 0 0.531
9 0.00000 0 0.531

10 0.00000 0 0.531
11 0.00000 0 0.531
12 0.00000 0 0.531
13 0.00000 0 0.531
14 0.00000 0 0.531
15 0.00000 0 0.531
16 0.00000 0 0.531
17 0.00000 0 0.531
18 0.00000 0 0.531
19 0.00000 0 0.531

21

Value Iteration vs Policy Iteration

(a) VI (b) PI

22

Value Iteration vs Policy Iteration

(a) State 0 (b) State 1

(c) State 2 (d) State 3
23

Example: 100 Games of Rock-Paper-Scissors (POMDP)
I Planning horizon: T = 100, γ = 1
I State:

I score differential s ∈ S := {−100, . . . , 100} (observable)
I opponent’s preference y ∈ Y := {R,P,S} (unobservable)

I Control: u ∈ U := {R,P, S}
I Cost: ˜̀(s, y , u) ≡ 0, q̃(s, y) = −s
I Motion model:

I pf (s ′ | s, y = R, u = R) =


0.5 if s ′ = s

0.25 if s ′ = s + 1

0.25 if s ′ = s − 1

I pf (s ′ | s, y = R, u = P) =


0.5 if s ′ = s + 1

0.25 if s ′ = s

0.25 if s ′ = s − 1
I . . .

I Observation: z ∈ Z := {R,P, S}

I Observation model: ph(z | y) =

{
0.5 if y = z

0.25 otherwise
24

Example: 100 Games of Rock-Paper-Scissors (MDP)
I The probability mass function bt of yt is a sufficient statistic for yt

I State:
I score differential s ∈ S := {−100, . . . , 100} (observable)
I preference pmf b ∈ B = P(Y) := {p ∈ [0, 1]3 | 1Tp = 1} (observable)

I Control: u ∈ U := {R,P, S}

I Cost: `(s, b, u) =
∫

˜̀(s, y , u)b(y)dy = 0, q(s, b)=
∫
q̃(s, y)b(y)dy = −s

I Let w(z) :=

ph(z | y = R)
ph(z | y = P)
ph(z | y = S)

 be the vector of observation likelihoods

I Motion model for the preference pmf (Bayes Filter):

bt+1 | bt =


w(S)�bt

w(S)T bt
w.p. w(S)Tbt

w(R)�bt

w(R)T bt
w.p. w(R)Tbt

w(P)�bt

w(P)T bt
w.p. w(P)Tbt

� = elementwise

multiplication

25

Example: 100 Games of Rock-Paper-Scissors (MDP)

I Motion model for the score differential:

st+1 | st ,R =


st + 1 w.p. w(S)Tbt

st w.p. w(R)Tbt

st − 1 w.p. w(P)Tbt

st+1 | st ,P =


st − 1 w.p. w(S)Tbt

st + 1 w.p. w(R)Tbt

st w.p. w(P)Tbt

st+1 | st ,S =


st w.p. w(S)Tbt

st − 1 w.p. w(R)Tbt

st + 1 w.p. w(P)Tbt

I Discretize B into a finite set Bd of pmfs

I Apply the Dynamic Programming algorithm:
I V100(s, b) = −s, ∀s ∈ S, b ∈ Bd

I V99(s, b) = min
u∈{R,P,S}

∑
s′∈S,b′∈Bd

V100(s ′, b′)pf (s ′, b′ | s, b, u), ∀s ∈ S, b ∈ Bd

I . . .

26

Linear Programming Solution to the Bellman Equation

I Suppose we initialize VI with a vector V0 that satisfies a relaxed Bellman
Equation:

V0(x) ≤ min
u∈U(x)

(
`(x , u) + γ

∑
x ′∈X

pf (x ′ | x , u)V0(x ′)

)
, ∀x ∈ X

I Applying VI to V0 leads to:

V1(x) = min
u∈U(x)

(
`(x , u) + γ

∑
x ′∈X

pf (x ′ | x , u)V0(x ′)

)
≥ V0(x), ∀x ∈ X

V2(x) = min
u∈U(x)

(
`(x , u) + γ

∑
x ′∈X

pf (x ′ | x , u)V1(x ′)

)

≥ min
u∈U(x)

(
`(x , u) + γ

∑
x ′∈X

pf (x ′ | x , u)V0(x ′)

)
= V1(x), ∀x ∈ X

27

Linear Programming Solution to the Bellman Equation

I The above shows that Vk+1(x) ≥ Vk (x) for all k and x ∈ X

I Since VI guarantees that Vk (x)→ V ∗(x) as k →∞ we also have:

V ∗(x) ≥ V0(x), ∀x ∈ X ⇒
∑
x∈X

w(x)V ∗(x) ≥
∑
x∈X

w(x)V0(x)

for any w(x) > 0 for all x ∈ X .

I The above holds for any V0 that satisfies:

V0(x) ≤ min
u∈U(x)

(
`(x , u) + γ

∑
x ′∈X

pf (x ′ | x , u)V0(x ′)

)
, ∀x ∈ X

I Note that V ∗ also satisfies this condition with equality (Bellman
Equation) and hence is the maximal V0 (at each state) that satisfies the
condition.

28

Linear Programming Solution to the Bellman Equation

LP Solution to the Bellman Equation

The solution V ∗ to the linear program (with w(x) > 0):

max
V

∑
x∈X

w(x)V (x)

s.t. V (x) ≤

(
`(x , u) + γ

∑
x ′∈X

pf (x ′ | x , u)V (x ′)

)
, ∀u ∈ U(x), ∀x ∈ X

also solves the Bellman Equation to yield the optimal value function for a
discounted infinite-horizon finite-state stochastic optimal control problem.

I An equivalent result holds for the SSP.

29

LP Solution to the BE (Proof)
I Let J∗ be the solution to the linear program so that:

J∗(x) ≤

(
`(x , u) + γ

∑
x ′∈X

pf (x ′ | x , u)J∗(x ′)

)
, ∀u ∈ U(x),∀x ∈ X

I Since J∗ is feasible, it satisfies J∗(x) ≤ V ∗(x) for all x ∈ X

I By contradiction, suppose that J∗ 6= V ∗. Then, there exists a state
y ∈ X such that:

J∗(y) < V ∗(y) ⇒
∑
x∈X

w(x)J∗(x) <
∑
x∈X

w(x)V ∗(x)

for any positive w(x) but since V ∗ solves the Bellman Equation:

V ∗(x) ≤

(
`(x , u) + γ

∑
x ′∈X

pf (x ′ | x , u)V ∗(j)

)
, ∀u ∈ U(x), ∀x ∈ X

I Thus, V ∗ is feasible and has lower cost that J∗, which is a contradiction.

30

Bellman Equations (Summary)

31

Finite Horizon Formulation

I Trajectories terminate at T <∞

min
π

V π
τ (x) = E

[
T−1∑
t=τ

`t(xt , πt(xt)) + q(xT)

∣∣∣∣xτ = x

]

I The optimal value V ∗t (x) can be found with a single backward pass
through time, initialized from V ∗T (x) = q(x) and following the recursion:

Bellman Equations (Finite Horizon Problem)

Hamiltonian: Ht [x , u,V (·)] = `t(x , u) + Ex ′∼pf (·|x ,u)V (x ′)

Policy Evaluation: V π
t (x) = Ht [x , πt(x),V π

t+1(·)]

Bellman Equation: V ∗t (x) = min
u∈U(x)

Ht [x , u,V ∗t+1(·)]

Optimal Policy: π∗t (x) = arg min
u∈U(x)

Ht [x , u,V ∗t+1(·)]

32

First Exit (SSP) Formulation

I Trajectories terminate at Tfirst , when a goal state x ∈ T ⊆ X is reached:

min
π

V π(x) = E

[
Tfirst−1∑

t=0

`(xt , π(xt)) + q(xTfirst
)

∣∣∣∣x0 = x

]

I At terminal states, V ∗(x) = V π(x) = q(x) for all x ∈ T
I At other states, the following are satisfied:

Bellman Equations (First Exit Problem)

Hamiltonian: H[x , u,V (·)] = `(x , u) + Ex ′∼pf (·|x ,u)V (x ′)

Policy Evaluation: V π(x) = H[x , π(x),V π(·)]

Bellman Equation: V ∗(x) = min
u∈U(x)

H[x , u,V ∗(·)]

Optimal Policy: π∗(x) = arg min
u∈U(x)

H[x , u,V ∗(·)]

33

Discounted Formulation

I Trajectories continue forever but costs are discounted via γ ∈ [0, 1):

min
π

V π(x) = E

[∞∑
t=0

γt`(xt , π(xt))

∣∣∣∣x0 = x

]

Bellman Equations (Discounted Problem)

Hamiltonian: H[x , u,V (·)] = `(x , u) + γEx ′∼pf (·|x ,u)V (x ′)

Policy Evaluation: V π(x) = H[x , π(x),V π(·)]

Bellman Equation: V ∗(x) = min
u∈U(x)

H[x , u,V ∗(·)]

Optimal Policy: π∗(x) = arg min
u∈U(x)

H[x , u,V ∗(·)]

I Every discounted problem can be converted to a first exist problem by
scaling the transition probabilities by γ, introducing a terminal state with
zero cost, and setting all transition probabilities to that state to 1− γ

34

Value Function

I Value Function: the expected long-term cost of following policy π
starting from state x :

V π(x) :=E

[∞∑
t=0

γt`(xt , π(xt))

∣∣∣∣ x0 = x

]

=`(x , π(x)) + γE

[∞∑
t=1

γt−1`(xt , π(xt))

∣∣∣∣ x0 = x

]
=`(x , π(x)) + γEx ′∼pf (·|x ,π(x))

[
V π(x ′)

]
I Value Iteration: computes the optimal value function

V ∗(x) := min
π

V π(x) = min
u∈U(x)

{
`(x , u) + γEx ′∼pf (·|x ,u)

[
V ∗(x ′)

]}

35

Action-Value (Q) Function
I Q Function: the expected long-term cost of taking action u in state x

and following policy π afterwards:

Qπ(x , u) :=`(x , u) + E

[∞∑
t=1

γt`(xt , π(xt))

∣∣∣∣ x0 = x

]
=`(x , u) + γEx ′∼pf (·|x ,u)

[
V π(x ′)

]
=`(x , u) + γEx ′∼pf (·|x ,u)

[
Qπ(x ′, π(x ′))

]
I Q-Value Iteration: computes the optimal Q function

Q∗(x , u) := min
π

Qπ(x , u) =`(x , u) + γEx ′∼pf (·|x ,u)

[
min
π

V π(x ′)
]

=`(x , u) + γEx ′∼pf (·|x ,u)
[
V ∗(x ′)

]
=`(x , u) + γEx ′∼pf (·|x ,u)

[
min

u′∈U(x ′)
Q∗(x ′, u′)

]
I Q∗(x , u) allows us to choose optimal actions without having to know

anything about the dynamics pf (x ′ | x , u):

π∗(x) = arg min
u∈U(x)

{
`(x , u) + γEx ′∼pf (·|x ,u)

[
V ∗(x ′)

]}
= arg min

u∈U(x)
Q∗(x , u)

36

Backup Operators

I Policy Evaluation Backup Operator:

Tπ[V](x) := H[x , π(x),V] = `(x , π(x)) + γEx ′∼pf (·|x ,π(x))
[
V (x ′)

]
I Value Iteration Backup Operator:

T∗[V](x) := min
u∈U(x)

H[x , u,V] = min
u∈U(x)

{
`(x , u) + γEx ′∼pf (·|x ,u)

[
V (x ′)

]}
I Policy Q-Evaluation Backup Operator:

Tπ[Q](x , u) := `(x , u) + γEx ′∼pf (·|x ,π(x))
[
Q(x ′, π(x ′))

]
I Q-Value Iteration Backup Operator:

T∗[Q](x , u) := `(x , u) + γEx ′∼pf (·|x ,u)

[
min

u′∈U(x ′)
Q(x ′, u′)

]

37

Backup Operators (Stochastic Policy)

(a) T∗[V](x) (b) Tπ[V](x)

(c) T∗[Q](x , u) (d) Tπ[Q](x , u)

38

Contraction in Discounted Problems

Properties of T∗[V]

1. Monotonicity: V (x) ≤ V ′(x) ⇒ T∗[V](x) ≤ T∗[V ′](x)

2. γ-Additivity: T∗[V + d](x) = T∗[V](x) + γd

3. Contraction: ‖T∗[V](x)− T∗[V ′](x)‖∞ ≤ γ‖V (x)− V ′(x)‖∞

I Proof of Contraction: Let d = maxx |V (x)− V ′(x)|. Then:

V (x)− d ≤ V ′(x) ≤ V (x) + d , ∀x ∈ X

Apply T∗ to both sides and use monotonicity and additivity:

T∗[V](x)− γd ≤ T∗[V ′](x) ≤ T∗[V](x) + γd , ∀x ∈ X

39

VI and PI Revisited
I Value Iteration:

I V ∗ is the solution to V = T∗[V] (Bellman Equation)
I Since T∗ is a contraction, the fixed-point equation has a unique solution

(Contraction Mapping Theorem), which can be determined iteratively:

Vk+1 = T∗[Vk] (Value Iteration)

I Initialization:
I Discounted: arbitrary
I First exit: Vk(x) = q(x) for all k and all terminal x ∈ T

I Policy Iteration:
I Policy Evaluation: Given π compute V π via

v = (I − γP)−1` OR Vk+1 = Tπ[Vk] (Policy Evaluation Thm)

I Policy Improvement: choose the action that minimizes the Hamiltonian:

π′(x) = arg min
u∈U(x)

H[x , u,V π(·)]

I Initialization: arbitrary as long as V π is finite

40

Value Iteration

I V ∗ is a fixed point of T∗: V0, T∗[V0], T 2
∗ [V0], T 3

∗ [V0], . . . → V ∗

Algorithm 1 Value Iteration

1: Initialize V0

2: for k = 0, 1, 2, . . . do
3: Vk+1 = T∗ [Vk]

I Q∗ is a fixed point of T∗: Q0, T∗[Q0], T 2
∗ [Q0], T 3

∗ [Q0], . . . → Q∗

Algorithm 2 Q-Value Iteration

1: Initialize Q0

2: for k = 0, 1, 2, . . . do
3: Qk+1 = T∗ [Qk]

41

Policy Iteration
I Policy Evaluation: V0, Tπ[V0], T 2

π [V0], T 3
π [V0], . . . → V π

Algorithm 3 Policy Iteration

1: Initialize V0

2: for k = 0, 1, 2, . . . do
3: πk+1(x) = arg min

u∈U(x)
H[x , u,Vk (·)] . Policy Improvement

4: Vk+1 = T ∞πk+1
[Vk] . Policy Evaluation

I Policy Q-Evaluation: Q0, Tπ[Q0], T 2
π [Q0], T 3

π [Q0], . . . → Qπ

Algorithm 4 Q-Policy Iteration

1: Initialize Q0

2: for k = 0, 1, 2 . . . do
3: πk+1(x) = arg min

u∈U(x)
Qk (x , u) . Policy Improvement

4: Qk+1 = T ∞πk+1
[Qk] . Policy Evaluation

42

Generalized Policy Iteration

Algorithm 5 Generalized Policy Iteration

1: Initialize V0

2: for k = 0, 1, 2, . . . do
3: πk+1(x) = arg min

u∈U(x)
H[x , u,Vk (·)] . Policy Improvement

4: Vk+1 = T n
πk+1

[Vk] , for n ≥ 1 . Policy Evaluation

Algorithm 6 Generalized Q-Policy Iteration

1: Initialize Q0

2: for k = 0, 1, 2, . . . do
3: πk+1(x) = arg min

u∈U(x)
Qk (x , u) . Policy Improvement

4: Qk+1 = T n
πk+1

[Qk] , for n ≥ 1 . Policy Evaluation

43

