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Infinite-Horizon Stochastic Optimal Control
I Discounted Problem:

V ∗(x) = min
π

V π(x) := E

[ ∞∑
t=0

γt`(xt , π(xt))

∣∣∣∣ x0 = x

]
s.t. xt+1 ∼ pf (· | xt , π(xt)),

xt ∈ X ,
π(xt) ∈ U(xt)

I The optimal cost of the Discounted problem satisfies the Bellman
Equation via the equivalence to the SSP problem:

V ∗(x) = min
u∈U(x)

(
`(x , u) + γ

∑
x ′∈X

pf (x ′ | x , u)V ∗(x ′)
)
, ∀x ∈ X

I There exist several methods to solve the Bellman Equation for the
Discounted and SSP problems:
I Value Iteration (VI)
I Policy Iteration (PI)
I Linear Programming (LP)
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Value Iteration (VI)

I Applies the Dynamic Programming recursion with an arbitrary
initialization V0(x) to compute V ∗(x) for x ∈ X

I VI requires an infinite iterations for Vk (x) to converge to V ∗(x). In
practice, define a threshold for |Vk+1(x)− Vk (x)| for all x ∈ X

I SSP:

Vk+1(x) = min
u∈Ũ(x)

[
˜̀(x , u)+

∑
x∈X̃\{0}

p̃(x ′ | x , u)Vk (x ′)
]
, ∀x ∈ X̃ \{0}

I Discounted Problem:

Vk+1(x) = min
u∈U(x)

[
`(x , u) + γ

∑
x∈X

p(x ′ | x , u)Vk (x ′)
]
, ∀x ∈ X
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Gauss-Seidel Value Iteration

I A regular VI implementation stores the values from a previous iteration
and updates them for all states simultaneously:

V̄ (x)← min
u∈U(x)

(
`(x , u) + γ

∑
x ′∈X

pf (x ′ | x , u)V (x ′)

)
, ∀x ∈ X

V (x)← V̄ (x), ∀x ∈ X

I Gauss-Seidel Value Iteration updates the values in place:

V (x)← min
u∈U(x)

(
`(x , u) + γ

∑
x ′∈X

pf (x ′ | x , u)V (x ′)

)
, ∀x ∈ X

I Gauss-Seidel VI often leads to faster convergence and requires less
memory than VI
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Policy Evaluation
I The VI algorithm computes the optimal value function V ∗(x) for every

state x ∈ X

I The VI algorithm is the infinite-horizon equivalent of the DP algorithm

I Instead of the optimal value function V ∗(x), is it possible to compute
the value function V π(x) for a given policy π?

Policy Evaluation Theorem (Discounted Problem)

The cost vector V π for policy π is the unique solution of:

V π(x) = `(x , π(x)) + γ
∑

x ′∈X
pf (x ′ | x , π(x))V π(x ′), ∀x ∈ X

Furthermore, given any initial conditions V0, the sequence Vk generated by
the recursion below converges to V π:

Vk+1(x) = `(x , π(x)) + γ
∑

x ′∈X
pf (x ′ | x , π(x))Vk (x ′), ∀x ∈ X
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Policy Evaluation

Policy Evaluation Theorem (SSP)

Under the termination state assumption, the cost vector V π(1), . . . ,V π(n)
for any proper policy π is the unique solution of:

V π(x) = `(x , π(x)) +
∑

x ′∈X̃\{0}

p̃f (x ′ | x , π(x))V π(x ′). ∀x ∈ X̃ \ {0}

Furthermore, given any initial conditions V0, the sequence Vk generated by
the recursion below converges to V π:

Vk+1(x) = `(x , π(x)) +
∑

x ′∈X̃\{0}

p̃f (x ′ | x , π(x))Vk (x ′), ∀x ∈ X̃ \ {0}

I Proof: This is a special case of the Bellman Equation Theorem (SSP).
Consider a modified problem, where the only allowable control at state x
is π(x). Since the proper policy π is the only policy under consideration,
the proper policy assumption is satisfied and the arg min over u ∈ U(x)
has to be π(x). 6



Policy Evaluation as a Linear System (SSP)

I The Policy Evaluation Theorem requires solving a linear system of
equations:

v = ` + P̃v ⇒ (I − P̃)v = `

where vi := V π(i), `i := `(i , π(i)), P̃ij := p̃f (j | i , π(i)) for
i , j = 1, . . . , n.

I There exists a unique solution for v, iff (I − P̃) is invertible. This is
guaranteed as long as π is a proper policy.

I Proof: (I − P̃) is invertible iff P̃ does not have eigenvalues at 1. By the
Chapman-Kolmogorov equation, [P̃T ]ij = P(xT = j | x0 = i) and since π
is proper, [P̃T ]ij → 0 as T →∞ for all i , j ∈ X̃ \ {0}. Since P̃T

vanishes as T →∞ all eigenvalues of P̃ must have modulus less than 1
and therefore (I − P̃) exists.
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Policy Evaluation as a Linear System (SSP)

I The Policy Evaluation Thm is an iterative solution to (I − P̃)v = `:

v1 = ` + P̃v0

v2 = ` + P̃v1 = ` + P̃` + P̃2v0
...

vT = (I + P̃ + P̃2 + P̃3 + . . .+ P̃T−1)` + P̃T v0
...

v∞ → (I − P̃)−1`
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Policy Evaluation as a Linear System (Summary)

I The linear system view of the Policy Evaluation Theorem can be
extended to the Discounted problem through the SSP equivalence and
subsequently to the finite-horizon setting

I Let vi := V π(i), `i := `(i , π(i)), Pij := pf (j | i , π(i)) for i , j = 1, . . . , n

I SSP (First Exit): Let T ⊆ X be the set of terminal states with
terminal costs q and N ⊆ X be the set of nonterminal states. The
value of policy π is:

(I − PNN ) vN = ` + PNT q

I Discounted Problem: (I − γP)v = `
I The matrix P has eigenvalues with modulus ≤ 1. All eigenvalues of γP

have modulus < 1, so (γP)T → 0 as T →∞ and (I − γP)−1 exists.

I Finite Horizon: vt = `t + Ptvt+1 starting from vT = q
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Policy Iteration (PI)
I An alternative to VI for computing V ∗(x), which iterates over policies

instead of values
I SSP: repeat until V π′

(x) = V π(x) for all x ∈ X̃ \ {0}:
1. Policy Evaluation: given a policy π, compute V π:

V π(x) = ˜̀(x , π(x)) +
∑

x′∈X̃\{0}

p̃f (x ′ | x , π(x))V π(x ′), ∀x ∈ X̃ \ {0}

2. Policy Improvement: given V π, obtain a new stationary policy π′:

π′(x) = arg min
u∈Ũ(x)

[
˜̀(x , u) +

∑
x′∈X̃\{0}

p̃f (x ′ | x , u)V π(x ′)
]
, ∀x ∈ X̃ \ {0}

I Discounted Problem: repeat until V π′
(x) = V π(x) for all x ∈ X :

1. Policy Evaluation: given a policy π, compute V π:

V π(x) = `(x , π(x)) + γ
∑

x′∈X
pf (x ′ | x , π(x))V π(x ′), ∀x ∈ X

2. Policy Improvement: given V π, obtain a new stationary policy π′:

π′(x) = arg min
u∈U(x)

[
`(x , u) + γ

∑
x′∈X

pf (x ′ | x , u)V π(x ′)
]
, ∀x ∈ X
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Policy Improvement Theorem

Let π and π′ be deterministic policies such that V π(x) ≥ Qπ(x , π′(x)) for all
x ∈ X . Then, π′ is at least as good as π, i.e., V π(x) ≥ V π′

(x) for all x ∈ X

I Proof:
V π(x) ≥ Qπ(x , π′(x)) = `(x , π′(x)) + γEx ′∼pf (·x ,π′(x))

[
V π(x ′)

]
≥ `(x , π′(x)) + γEx ′∼pf (·x ,π′(x))

[
Qπ(x ′, π′(x ′))

]
= `(x , π′(x)) + γEx ′∼pf (·x ,π′(x))

{
`(x ′, π′(x ′)) + γEx ′′∼pf (·x ′,π′(x ′))V

π(x ′′)
}

≥ · · · ≥ E

[ ∞∑
t=0

γt`(xt , π
′(xt))

∣∣∣∣x0 = x

]
= V π′

(x)

Theorem: Optimality of PI

Suppose that:

I γ < 1 (Discounted Problem)

I there exists a termination state and a proper policy (SSP)

Then, the Policy Iteration algorithm converges to an optimal policy after a
finite number of steps.
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Proof of Optimality of PI (SSP)
I Let π be a proper policy with value V π obtained from the Policy

Evaluation step.
I Let π′ be the policy obtained from the Policy Improvement step.
I By definition of the Policy Improvement step: V π(x) ≥ Qπ(x , π′(x)) for

all x ∈ X̃ \ {0}
I By the Policy Improvement Thm, V π(x) ≥ V π′

(x) for all x ∈ X̃ \ {0}
I Since π is proper, V π(x) <∞ for all x ∈ X̃ , and hence π′ is proper
I Since π′ is proper, the Policy Evaluation step has a unique solution V π′

I Since the number of stationary policies is finite, eventually V π = V π′

after a finite number of steps.
I Once V π has converged, it follows from the Policy Improvement step:

V π′
(x) = V π(x) = min

u∈Ũ(x)

˜̀(x , u) +
∑

x ′∈X̃\{0}

p̃f (x ′ | x , u)V π(x ′)

 , x ∈ X̃ \ {0}

I Since this is the Bellman Equation for the SSP problem, we have
converged to an optimal policy π∗ = π with optimal cost V ∗ = V π.
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Comparison between VI and PI

I PI and VI actually have a lot in common

I Rewrite VI as follows:

2. Policy Improvement: Given Vk (x) obtain a stationary policy:

π(x) = arg min
u∈U(x)

[
`(x , u) + γ

∑
x′∈X

pf (x ′ | x , u)Vk (x ′)
]
, ∀x ∈ X

1. Value Update: Given π(x) and Vk (x), compute

Vk+1(x) = `(x , π(x)) + γ
∑

x′∈X
pf (x ′ | x , π(x))Vk (x ′), ∀x ∈ X

I The Value Update step of VI is an iterative solution to the linear system
of equations in the Policy Evaluation Theorem

I PI solves Policy Evaluation equation, which is equivalent to running the
Value Update step of VI an infinite number of times!
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Comparison between VI and PI

I Complexity of VI per Iteration: O(|X |2|U|): evaluating the
expectation (i.e., sum over x ′) requires |X | operations and there are |X |
minimizations over |U| possible control inputs.

I Complexity of PI per Iteration: O(|X |2 (|X |+ |U|)): the Policy
Evaluation step requires solving a system of |X | equations in |X |
unknowns (O(|X |3)), while the Policy Improvement step has the same
complexity as one iteration of VI.

I PI is more computationally expensive than VI

I Theoretically it takes an infinite number of iterations for VI to converge

I PI converges in |U||X | iterations (all possible policies) in the worst case
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Generalized Policy Iteration

I Assuming that the Value Update and Policy Improvement steps are
executed an infinite number of times for all states, all combinations of
the following converge:
I Any number of Value Update steps in between Policy Improvement steps

I Any number of states updated at each Value Update step

I Any number of states updated at each Policy Improvement step
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Example: Frozen Lake Problem

I Winter is here.

I You and your friends were tossing around a frisbee at the park when you
made a wild throw that left the frisbee out in the middle of the lake.

I The water is mostly frozen, but there are a few holes where the ice has
melted.

I If you step into one of those holes, you’ll fall into the freezing water.

I At this time, there’s an international frisbee shortage, so it’s absolutely
imperative that you navigate across the lake and retrieve the disc.

I However, the ice is slippery, so you won’t always move in the direction
you intend.
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Example: Frozen Lake Problem
I S : starting point, safe

I F : frozen surface, safe

I H : hole, fall to your doom

I G : goal, where the frisbee is located

I X = {0, 1, . . . , 15}
I U(x) = {Left(0), Down(1), Right(2), Up(3)}
I You receive a reward of 1 if you reach the

goal, and zero otherwise

I A requested action u ∈ U(x) succeeds 80% of the time. A neighboring
action is executed in the other 50% of the time due to slip:

x ′ | x = 9, u = 1 =


13, with prob. 0.8

8, with prob. 0.1

10, with prob. 0.1

I The state remains unchanged if a control leads outside of the map

I An episode ends when you reach the goal or fall in a hole. 17



Value Iteration on Frozen Lake

(a) t = 0 (b) t = 1 (c) t = 2

(d) t = 3 (e) t = 4 (f) t = 5
18



Value Iteration on Frozen Lake
Iteration maxx |Vt+1(x)− Vt(x)| # changed actions V (0)

0 0.80000 0 0.000
1 0.60800 1 0.000
2 0.51984 2 0.000
3 0.39508 2 0.000
4 0.30026 2 0.000
5 0.25355 2 0.254
6 0.10478 1 0.345
7 0.09657 0 0.442
8 0.03656 0 0.478
9 0.02772 0 0.506

10 0.01111 0 0.517
11 0.00735 0 0.524
12 0.00310 0 0.527
13 0.00190 0 0.529
14 0.00083 0 0.530
15 0.00049 0 0.531
16 0.00022 0 0.531
17 0.00013 0 0.531
18 0.00006 0 0.531
19 0.00003 0 0.531
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Policy Iteration on Frozen Lake

(a) t = 0 (b) t = 1 (c) t = 2

(d) t = 3 (e) t = 4 (f) t = 5
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Policy Iteration on Frozen Lake
Iteration maxx |Vt+1(x)− Vt(x)| # changed actions V (0)

0 0.00000 0 0.000
1 0.89296 1 0.000
2 0.88580 9 0.398
3 0.48504 2 0.455
4 0.07573 1 0.531
5 0.00000 0 0.531
6 0.00000 0 0.531
7 0.00000 0 0.531
8 0.00000 0 0.531
9 0.00000 0 0.531

10 0.00000 0 0.531
11 0.00000 0 0.531
12 0.00000 0 0.531
13 0.00000 0 0.531
14 0.00000 0 0.531
15 0.00000 0 0.531
16 0.00000 0 0.531
17 0.00000 0 0.531
18 0.00000 0 0.531
19 0.00000 0 0.531
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Value Iteration vs Policy Iteration

(a) VI (b) PI
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Value Iteration vs Policy Iteration

(a) State 0 (b) State 1

(c) State 2 (d) State 3
23



Example: 100 Games of Rock-Paper-Scissors (POMDP)
I Planning horizon: T = 100, γ = 1
I State:

I score differential s ∈ S := {−100, . . . , 100} (observable)
I opponent’s preference y ∈ Y := {R,P,S} (unobservable)

I Control: u ∈ U := {R,P, S}
I Cost: ˜̀(s, y , u) ≡ 0, q̃(s, y) = −s
I Motion model:

I pf (s ′ | s, y = R, u = R) =


0.5 if s ′ = s

0.25 if s ′ = s + 1

0.25 if s ′ = s − 1

I pf (s ′ | s, y = R, u = P) =


0.5 if s ′ = s + 1

0.25 if s ′ = s

0.25 if s ′ = s − 1
I . . .

I Observation: z ∈ Z := {R,P, S}

I Observation model: ph(z | y) =

{
0.5 if y = z

0.25 otherwise
24



Example: 100 Games of Rock-Paper-Scissors (MDP)
I The probability mass function bt of yt is a sufficient statistic for yt

I State:
I score differential s ∈ S := {−100, . . . , 100} (observable)
I preference pmf b ∈ B = P(Y) := {p ∈ [0, 1]3 | 1Tp = 1} (observable)

I Control: u ∈ U := {R,P, S}

I Cost: `(s, b, u) =
∫

˜̀(s, y , u)b(y)dy = 0, q(s, b)=
∫
q̃(s, y)b(y)dy = −s

I Let w(z) :=

ph(z | y = R)
ph(z | y = P)
ph(z | y = S)

 be the vector of observation likelihoods

I Motion model for the preference pmf (Bayes Filter):

bt+1 | bt =


w(S)�bt

w(S)T bt
w.p. w(S)Tbt

w(R)�bt

w(R)T bt
w.p. w(R)Tbt

w(P)�bt

w(P)T bt
w.p. w(P)Tbt

� = elementwise

multiplication
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Example: 100 Games of Rock-Paper-Scissors (MDP)

I Motion model for the score differential:

st+1 | st ,R =


st + 1 w.p. w(S)Tbt

st w.p. w(R)Tbt

st − 1 w.p. w(P)Tbt

st+1 | st ,P =


st − 1 w.p. w(S)Tbt

st + 1 w.p. w(R)Tbt

st w.p. w(P)Tbt

st+1 | st ,S =


st w.p. w(S)Tbt

st − 1 w.p. w(R)Tbt

st + 1 w.p. w(P)Tbt

I Discretize B into a finite set Bd of pmfs

I Apply the Dynamic Programming algorithm:
I V100(s, b) = −s, ∀s ∈ S, b ∈ Bd

I V99(s, b) = min
u∈{R,P,S}

∑
s′∈S,b′∈Bd

V100(s ′, b′)pf (s ′, b′ | s, b, u), ∀s ∈ S, b ∈ Bd

I . . .
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Linear Programming Solution to the Bellman Equation

I Suppose we initialize VI with a vector V0 that satisfies a relaxed Bellman
Equation:

V0(x) ≤ min
u∈U(x)

(
`(x , u) + γ

∑
x ′∈X

pf (x ′ | x , u)V0(x ′)

)
, ∀x ∈ X

I Applying VI to V0 leads to:

V1(x) = min
u∈U(x)

(
`(x , u) + γ

∑
x ′∈X

pf (x ′ | x , u)V0(x ′)

)
≥ V0(x), ∀x ∈ X

V2(x) = min
u∈U(x)

(
`(x , u) + γ

∑
x ′∈X

pf (x ′ | x , u)V1(x ′)

)

≥ min
u∈U(x)

(
`(x , u) + γ

∑
x ′∈X

pf (x ′ | x , u)V0(x ′)

)
= V1(x), ∀x ∈ X
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Linear Programming Solution to the Bellman Equation

I The above shows that Vk+1(x) ≥ Vk (x) for all k and x ∈ X

I Since VI guarantees that Vk (x)→ V ∗(x) as k →∞ we also have:

V ∗(x) ≥ V0(x), ∀x ∈ X ⇒
∑
x∈X

w(x)V ∗(x) ≥
∑
x∈X

w(x)V0(x)

for any w(x) > 0 for all x ∈ X .

I The above holds for any V0 that satisfies:

V0(x) ≤ min
u∈U(x)

(
`(x , u) + γ

∑
x ′∈X

pf (x ′ | x , u)V0(x ′)

)
, ∀x ∈ X

I Note that V ∗ also satisfies this condition with equality (Bellman
Equation) and hence is the maximal V0 (at each state) that satisfies the
condition.
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Linear Programming Solution to the Bellman Equation

LP Solution to the Bellman Equation

The solution V ∗ to the linear program (with w(x) > 0):

max
V

∑
x∈X

w(x)V (x)

s.t. V (x) ≤

(
`(x , u) + γ

∑
x ′∈X

pf (x ′ | x , u)V (x ′)

)
, ∀u ∈ U(x), ∀x ∈ X

also solves the Bellman Equation to yield the optimal value function for a
discounted infinite-horizon finite-state stochastic optimal control problem.

I An equivalent result holds for the SSP.
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LP Solution to the BE (Proof)
I Let J∗ be the solution to the linear program so that:

J∗(x) ≤

(
`(x , u) + γ

∑
x ′∈X

pf (x ′ | x , u)J∗(x ′)

)
, ∀u ∈ U(x),∀x ∈ X

I Since J∗ is feasible, it satisfies J∗(x) ≤ V ∗(x) for all x ∈ X

I By contradiction, suppose that J∗ 6= V ∗. Then, there exists a state
y ∈ X such that:

J∗(y) < V ∗(y) ⇒
∑
x∈X

w(x)J∗(x) <
∑
x∈X

w(x)V ∗(x)

for any positive w(x) but since V ∗ solves the Bellman Equation:

V ∗(x) ≤

(
`(x , u) + γ

∑
x ′∈X

pf (x ′ | x , u)V ∗(j)

)
, ∀u ∈ U(x), ∀x ∈ X

I Thus, V ∗ is feasible and has lower cost that J∗, which is a contradiction.
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Bellman Equations (Summary)

31



Finite Horizon Formulation

I Trajectories terminate at T <∞

min
π

V π
τ (x) = E

[
T−1∑
t=τ

`t(xt , πt(xt)) + q(xT )

∣∣∣∣xτ = x

]

I The optimal value V ∗t (x) can be found with a single backward pass
through time, initialized from V ∗T (x) = q(x) and following the recursion:

Bellman Equations (Finite Horizon Problem)

Hamiltonian: Ht [x , u,V (·)] = `t(x , u) + Ex ′∼pf (·|x ,u)V (x ′)

Policy Evaluation: V π
t (x) = Ht [x , πt(x),V π

t+1(·)]

Bellman Equation: V ∗t (x) = min
u∈U(x)

Ht [x , u,V ∗t+1(·)]

Optimal Policy: π∗t (x) = arg min
u∈U(x)

Ht [x , u,V ∗t+1(·)]
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First Exit (SSP) Formulation

I Trajectories terminate at Tfirst , when a goal state x ∈ T ⊆ X is reached:

min
π

V π(x) = E

[
Tfirst−1∑

t=0

`(xt , π(xt)) + q(xTfirst
)

∣∣∣∣x0 = x

]

I At terminal states, V ∗(x) = V π(x) = q(x) for all x ∈ T
I At other states, the following are satisfied:

Bellman Equations (First Exit Problem)

Hamiltonian: H[x , u,V (·)] = `(x , u) + Ex ′∼pf (·|x ,u)V (x ′)

Policy Evaluation: V π(x) = H[x , π(x),V π(·)]

Bellman Equation: V ∗(x) = min
u∈U(x)

H[x , u,V ∗(·)]

Optimal Policy: π∗(x) = arg min
u∈U(x)

H[x , u,V ∗(·)]
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Discounted Formulation

I Trajectories continue forever but costs are discounted via γ ∈ [0, 1):

min
π

V π(x) = E

[ ∞∑
t=0

γt`(xt , π(xt))

∣∣∣∣x0 = x

]

Bellman Equations (Discounted Problem)

Hamiltonian: H[x , u,V (·)] = `(x , u) + γEx ′∼pf (·|x ,u)V (x ′)

Policy Evaluation: V π(x) = H[x , π(x),V π(·)]

Bellman Equation: V ∗(x) = min
u∈U(x)

H[x , u,V ∗(·)]

Optimal Policy: π∗(x) = arg min
u∈U(x)

H[x , u,V ∗(·)]

I Every discounted problem can be converted to a first exist problem by
scaling the transition probabilities by γ, introducing a terminal state with
zero cost, and setting all transition probabilities to that state to 1− γ
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Value Function

I Value Function: the expected long-term cost of following policy π
starting from state x :

V π(x) :=E

[ ∞∑
t=0

γt`(xt , π(xt))

∣∣∣∣ x0 = x

]

=`(x , π(x)) + γE

[ ∞∑
t=1

γt−1`(xt , π(xt))

∣∣∣∣ x0 = x

]
=`(x , π(x)) + γEx ′∼pf (·|x ,π(x))

[
V π(x ′)

]
I Value Iteration: computes the optimal value function

V ∗(x) := min
π

V π(x) = min
u∈U(x)

{
`(x , u) + γEx ′∼pf (·|x ,u)

[
V ∗(x ′)

]}
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Action-Value (Q) Function
I Q Function: the expected long-term cost of taking action u in state x

and following policy π afterwards:

Qπ(x , u) :=`(x , u) + E

[ ∞∑
t=1

γt`(xt , π(xt))

∣∣∣∣ x0 = x

]
=`(x , u) + γEx ′∼pf (·|x ,u)

[
V π(x ′)

]
=`(x , u) + γEx ′∼pf (·|x ,u)

[
Qπ(x ′, π(x ′))

]
I Q-Value Iteration: computes the optimal Q function

Q∗(x , u) := min
π

Qπ(x , u) =`(x , u) + γEx ′∼pf (·|x ,u)

[
min
π

V π(x ′)
]

=`(x , u) + γEx ′∼pf (·|x ,u)
[
V ∗(x ′)

]
=`(x , u) + γEx ′∼pf (·|x ,u)

[
min

u′∈U(x ′)
Q∗(x ′, u′)

]
I Q∗(x , u) allows us to choose optimal actions without having to know

anything about the dynamics pf (x ′ | x , u):

π∗(x) = arg min
u∈U(x)

{
`(x , u) + γEx ′∼pf (·|x ,u)

[
V ∗(x ′)

]}
= arg min

u∈U(x)
Q∗(x , u)
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Backup Operators

I Policy Evaluation Backup Operator:

Tπ[V ](x) := H[x , π(x),V ] = `(x , π(x)) + γEx ′∼pf (·|x ,π(x))
[
V (x ′)

]
I Value Iteration Backup Operator:

T∗[V ](x) := min
u∈U(x)

H[x , u,V ] = min
u∈U(x)

{
`(x , u) + γEx ′∼pf (·|x ,u)

[
V (x ′)

]}
I Policy Q-Evaluation Backup Operator:

Tπ[Q](x , u) := `(x , u) + γEx ′∼pf (·|x ,π(x))
[
Q(x ′, π(x ′))

]
I Q-Value Iteration Backup Operator:

T∗[Q](x , u) := `(x , u) + γEx ′∼pf (·|x ,u)

[
min

u′∈U(x ′)
Q(x ′, u′)

]
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Backup Operators (Stochastic Policy)

(a) T∗[V ](x) (b) Tπ[V ](x)

(c) T∗[Q](x , u) (d) Tπ[Q](x , u)
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Contraction in Discounted Problems

Properties of T∗[V ]

1. Monotonicity: V (x) ≤ V ′(x) ⇒ T∗[V ](x) ≤ T∗[V ′](x)

2. γ-Additivity: T∗[V + d ](x) = T∗[V ](x) + γd

3. Contraction: ‖T∗[V ](x)− T∗[V ′](x)‖∞ ≤ γ‖V (x)− V ′(x)‖∞

I Proof of Contraction: Let d = maxx |V (x)− V ′(x)|. Then:

V (x)− d ≤ V ′(x) ≤ V (x) + d , ∀x ∈ X

Apply T∗ to both sides and use monotonicity and additivity:

T∗[V ](x)− γd ≤ T∗[V ′](x) ≤ T∗[V ](x) + γd , ∀x ∈ X
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VI and PI Revisited
I Value Iteration:

I V ∗ is the solution to V = T∗[V ] (Bellman Equation)
I Since T∗ is a contraction, the fixed-point equation has a unique solution

(Contraction Mapping Theorem), which can be determined iteratively:

Vk+1 = T∗[Vk ] (Value Iteration)

I Initialization:
I Discounted: arbitrary
I First exit: Vk(x) = q(x) for all k and all terminal x ∈ T

I Policy Iteration:
I Policy Evaluation: Given π compute V π via

v = (I − γP)−1` OR Vk+1 = Tπ[Vk ] (Policy Evaluation Thm)

I Policy Improvement: choose the action that minimizes the Hamiltonian:

π′(x) = arg min
u∈U(x)

H[x , u,V π(·)]

I Initialization: arbitrary as long as V π is finite
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Value Iteration

I V ∗ is a fixed point of T∗: V0, T∗[V0], T 2
∗ [V0], T 3

∗ [V0], . . . → V ∗

Algorithm 1 Value Iteration

1: Initialize V0

2: for k = 0, 1, 2, . . . do
3: Vk+1 = T∗ [Vk ]

I Q∗ is a fixed point of T∗: Q0, T∗[Q0], T 2
∗ [Q0], T 3

∗ [Q0], . . . → Q∗

Algorithm 2 Q-Value Iteration

1: Initialize Q0

2: for k = 0, 1, 2, . . . do
3: Qk+1 = T∗ [Qk ]
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Policy Iteration
I Policy Evaluation: V0, Tπ[V0], T 2

π [V0], T 3
π [V0], . . . → V π

Algorithm 3 Policy Iteration

1: Initialize V0

2: for k = 0, 1, 2, . . . do
3: πk+1(x) = arg min

u∈U(x)
H[x , u,Vk (·)] . Policy Improvement

4: Vk+1 = T ∞πk+1
[Vk ] . Policy Evaluation

I Policy Q-Evaluation: Q0, Tπ[Q0], T 2
π [Q0], T 3

π [Q0], . . . → Qπ

Algorithm 4 Q-Policy Iteration

1: Initialize Q0

2: for k = 0, 1, 2 . . . do
3: πk+1(x) = arg min

u∈U(x)
Qk (x , u) . Policy Improvement

4: Qk+1 = T ∞πk+1
[Qk ] . Policy Evaluation
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Generalized Policy Iteration

Algorithm 5 Generalized Policy Iteration

1: Initialize V0

2: for k = 0, 1, 2, . . . do
3: πk+1(x) = arg min

u∈U(x)
H[x , u,Vk (·)] . Policy Improvement

4: Vk+1 = T n
πk+1

[Vk ] , for n ≥ 1 . Policy Evaluation

Algorithm 6 Generalized Q-Policy Iteration

1: Initialize Q0

2: for k = 0, 1, 2, . . . do
3: πk+1(x) = arg min

u∈U(x)
Qk (x , u) . Policy Improvement

4: Qk+1 = T n
πk+1

[Qk ] , for n ≥ 1 . Policy Evaluation
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