ECE276B: Planning \& Learning in Robotics Lecture 10: Bellman Equations

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Zhichao Li: zhl355@eng.ucsd.edu
Ehsan Zobeidi: ezobeidi@eng.ucsd.edu
Ibrahim Akbar: iakbar@eng.ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Infinite-Horizon Stochastic Optimal Control

- Discounted Problem:

$$
\begin{aligned}
V^{*}(x)=\min _{\pi} & V^{\pi}(x):=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \ell\left(x_{t}, \pi\left(x_{t}\right)\right) \mid x_{0}=x\right] \\
\text { s.t. } & x_{t+1} \sim p_{f}\left(\cdot \mid x_{t}, \pi\left(x_{t}\right)\right) \\
& x_{t} \in \mathcal{X} \\
& \pi\left(x_{t}\right) \in \mathcal{U}\left(x_{t}\right)
\end{aligned}
$$

- The optimal cost of the Discounted problem satisfies the Bellman Equation via the equivalence to the SSP problem:

$$
V^{*}(x)=\min _{u \in \mathcal{U}(x)}\left(\ell(x, u)+\gamma \sum_{x^{\prime} \in \mathcal{X}} p_{f}\left(x^{\prime} \mid x, u\right) V^{*}\left(x^{\prime}\right)\right), \quad \forall x \in \mathcal{X}
$$

- There exist several methods to solve the Bellman Equation for the Discounted and SSP problems:
- Value Iteration (VI)
- Policy Iteration (PI)
- Linear Programming (LP)

Value Iteration (VI)

- Applies the Dynamic Programming recursion with an arbitrary initialization $V_{0}(x)$ to compute $V^{*}(x)$ for $x \in \mathcal{X}$
- VI requires an infinite iterations for $V_{k}(x)$ to converge to $V^{*}(x)$. In practice, define a threshold for $\left|V_{k+1}(x)-V_{k}(x)\right|$ for all $x \in \mathcal{X}$
- SSR:

$$
V_{k+1}(x)=\min _{u \in \tilde{\mathcal{U}}(x)}\left[\tilde{\ell}(x, u)+\sum_{x \in \tilde{\mathcal{X}} \backslash\{0\}} \tilde{p}\left(x^{\prime} \mid x, u\right) V_{k}\left(x^{\prime}\right)\right], \quad \forall x \in \tilde{\mathcal{X}} \backslash\{0\}
$$

- Discounted Problem:

$$
V_{k+1}(x)=\min _{u \in \mathcal{U}(x)}\left[\ell(x, u)+\gamma \sum_{x \in \mathcal{X}} p\left(x^{\prime} \mid x, u\right) V_{k}\left(x^{\prime}\right)\right], \quad \forall x \in \mathcal{X}
$$

Gauss-Seidel Value Iteration

- A regular VI implementation stores the values from a previous iteration and updates them for all states simultaneously:

$$
\begin{aligned}
& \bar{V}(x) \leftarrow \min _{u \in \mathcal{U}(x)}\left(\ell(x, u)+\gamma \sum_{x^{\prime} \in \mathcal{X}} p_{f}\left(x^{\prime} \mid x, u\right) V\left(x^{\prime}\right)\right), \quad \forall x \in \mathcal{X} \\
& V(x) \leftarrow \bar{V}(x), \quad \forall x \in \mathcal{X}
\end{aligned}
$$

- Gauss-Seidel Value Iteration updates the values in place:

$$
V(x) \leftarrow \min _{u \in \mathcal{U}(x)}\left(\ell(x, u)+\gamma \sum_{x^{\prime} \in \mathcal{X}} p_{f}\left(x^{\prime} \mid x, u\right) V\left(x^{\prime}\right)\right), \quad \forall x \in \mathcal{X}
$$

- Gauss-Seidel VI often leads to faster convergence and requires less memory than VI

Policy Evaluation

- The VI algorithm computes the optimal value function $V^{*}(x)$ for every state $x \in \mathcal{X}$
- The VI algorithm is the infinite-horizon equivalent of the DP algorithm
- Instead of the optimal value function $V^{*}(x)$, is it possible to compute the value function $V^{\pi}(x)$ for a given policy π ?

Policy Evaluation Theorem (Discounted Problem)

The cost vector V^{π} for policy π is the unique solution of:

$$
V^{\pi}(x)=\ell(x, \pi(x))+\gamma \sum_{x^{\prime} \in \mathcal{X}} p_{f}\left(x^{\prime} \mid x, \pi(x)\right) V^{\pi}\left(x^{\prime}\right), \quad \forall x \in \mathcal{X}
$$

Furthermore, given any initial conditions V_{0}, the sequence V_{k} generated by the recursion below converges to V^{π} :

$$
V_{k+1}(x)=\ell(x, \pi(x))+\gamma \sum_{x^{\prime} \in \mathcal{X}} p_{f}\left(x^{\prime} \mid x, \pi(x)\right) V_{k}\left(x^{\prime}\right), \quad \forall x \in \mathcal{X}
$$

Policy Evaluation

Policy Evaluation Theorem (SSP)

Under the termination state assumption, the cost vector $V^{\pi}(1), \ldots, V^{\pi}(n)$ for any proper policy π is the unique solution of:

$$
V^{\pi}(x)=\ell(x, \pi(x))+\sum_{x^{\prime} \in \tilde{\mathcal{X}} \backslash\{0\}} \tilde{p}_{f}\left(x^{\prime} \mid x, \pi(x)\right) V^{\pi}\left(x^{\prime}\right) . \quad \forall x \in \tilde{\mathcal{X}} \backslash\{0\}
$$

Furthermore, given any initial conditions V_{0}, the sequence V_{k} generated by the recursion below converges to V^{π} :

$$
V_{k+1}(x)=\ell(x, \pi(x))+\sum_{x^{\prime} \in \tilde{\mathcal{X}} \backslash\{0\}} \tilde{p}_{f}\left(x^{\prime} \mid x, \pi(x)\right) V_{k}\left(x^{\prime}\right), \quad \forall x \in \tilde{\mathcal{X}} \backslash\{0\}
$$

- Proof: This is a special case of the Bellman Equation Theorem (SSP). Consider a modified problem, where the only allowable control at state x is $\pi(x)$. Since the proper policy π is the only policy under consideration, the proper policy assumption is satisfied and the arg min over $u \in \mathcal{U}(x)$ has to be $\pi(x)$.

Policy Evaluation as a Linear System (SSP)

- The Policy Evaluation Theorem requires solving a linear system of equations:

$$
\mathbf{v}=\ell+\tilde{P} \mathbf{v} \quad \Rightarrow \quad(I-\tilde{P}) \mathbf{v}=\ell
$$

where $\mathbf{v}_{i}:=V^{\pi}(i), \ell_{i}:=\ell(i, \pi(i)), \tilde{P}_{i j}:=\tilde{p}_{f}(j \mid i, \pi(i))$ for $i, j=1, \ldots, n$.

- There exists a unique solution for \mathbf{v}, ff $(I-\tilde{P})$ is invertible. This is guaranteed as long as π is a proper policy.
- Proof: $(I-\tilde{P})$ is invertible of \tilde{P} does not have eigenvalues at 1 . By the Chapman-Kolmogorov equation, $\left[\tilde{P}^{T}\right]_{i j}=\mathbb{P}\left(x_{T}=j \mid x_{0}=i\right)$ and since π is proper, $\left[\tilde{P}^{T}\right]_{i j} \rightarrow 0$ as $T \rightarrow \infty$ for all $i, j \in \tilde{\mathcal{X}} \backslash\{0\}$. Since \tilde{P}^{T} vanishes as $T \rightarrow \infty$ all eigenvalues of \tilde{P} must have modulus less than 1 and therefore $(I-\tilde{P})$ exists.

Policy Evaluation as a Linear System (SSP)

- The Policy Evaluation Chm is an iterative solution to $(I-\tilde{P}) \mathbf{v}=\ell$:

$$
\begin{aligned}
\mathbf{v}_{1} & =\ell+\tilde{P} \mathbf{v}_{0} \\
\mathbf{v}_{2} & =\ell+\tilde{P} \mathbf{v}_{1}=\ell+\tilde{P} \ell+\tilde{P}^{2} \mathbf{v}_{0} \\
\quad & \\
\mathbf{v}_{T} & =\left(I+\tilde{P}+\tilde{P}^{2}+\tilde{P}^{3}+\ldots+\tilde{P}^{T-1}\right) \ell+\tilde{P}^{T} \mathbf{v}_{0} \\
& \vdots \\
\mathbf{v}_{\infty} & \rightarrow(I-\tilde{P})^{-1} \ell
\end{aligned}
$$

Policy Evaluation as a Linear System (Summary)

- The linear system view of the Policy Evaluation Theorem can be extended to the Discounted problem through the SSP equivalence and subsequently to the finite-horizon setting

Let $\mathbf{v}_{i}:=V^{\pi}(i), \ell_{i}:=\ell(i, \pi(i)), P_{i j}:=p_{f}(j \mid i, \pi(i))$ for $i, j=1, \ldots, n$

- SSP (First Exit): Let $\mathcal{T} \subseteq \mathcal{X}$ be the set of terminal states with terminal costs \mathfrak{q} and $\mathcal{N} \subseteq \mathcal{X}$ be the set of nonterminal states. The value of policy π is:

$$
\left(I-P_{\mathcal{N N}}\right) \mathbf{v}_{\mathcal{N}}=\ell+P_{\mathcal{N T} \mathfrak{q}}
$$

- Discounted Problem: $(I-\gamma P) \mathbf{v}=\boldsymbol{\ell}$
- The matrix P has eigenvalues with modulus ≤ 1. All eigenvalues of γP have modulus <1, so $(\gamma P)^{T} \rightarrow 0$ as $T \rightarrow \infty$ and $(I-\gamma P)^{-1}$ exists.
- Finite Horizon: $\mathbf{v}_{t}=\ell_{t}+P_{t} \mathbf{v}_{t+1}$ starting from $\mathbf{v}_{T}=\mathfrak{q}$

Policy Iteration (PI)

- An alternative to VI for computing $V^{*}(x)$, which iterates over policies instead of values
- SSP: repeat until $V^{\pi^{\prime}}(x)=V^{\pi}(x)$ for all $x \in \tilde{\mathcal{X}} \backslash\{0\}$:

1. Policy Evaluation: given a policy π, compute V^{π} :

$$
V^{\pi}(x)=\tilde{\ell}(x, \pi(x))+\sum_{x^{\prime} \in \tilde{\mathcal{X}} \backslash\{0\}} \tilde{p}_{f}\left(x^{\prime} \mid x, \pi(x)\right) V^{\pi}\left(x^{\prime}\right), \quad \forall x \in \tilde{\mathcal{X}} \backslash\{0\}
$$

2. Policy Improvement: given V^{π}, obtain a new stationary policy π^{\prime} :

$$
\pi^{\prime}(x)=\underset{u \in \tilde{\mathcal{U}}(x)}{\arg \min }\left[\tilde{\ell}(x, u)+\sum_{x^{\prime} \in \tilde{\mathcal{X}} \backslash\{0\}} \tilde{p}_{f}\left(x^{\prime} \mid x, u\right) V^{\pi}\left(x^{\prime}\right)\right], \quad \forall x \in \tilde{\mathcal{X}} \backslash\{0\}
$$

- Discounted Problem: repeat until $V^{\pi^{\prime}}(x)=V^{\pi}(x)$ for all $x \in \mathcal{X}$:

1. Policy Evaluation: given a policy π, compute V^{π} :

$$
V^{\pi}(x)=\ell(x, \pi(x))+\gamma \sum_{x^{\prime} \in \mathcal{X}} p_{f}\left(x^{\prime} \mid x, \pi(x)\right) V^{\pi}\left(x^{\prime}\right), \quad \forall x \in \mathcal{X}
$$

2. Policy Improvement: given V^{π}, obtain a new stationary policy π^{\prime} :

$$
\pi^{\prime}(x)=\underset{u \in \mathcal{U}(x)}{\arg \min }\left[\ell(x, u)+\gamma \sum_{x^{\prime} \in \mathcal{X}} p_{f}\left(x^{\prime} \mid x, u\right) V^{\pi}\left(x^{\prime}\right)\right], \quad \forall x \in \mathcal{X}
$$

Policy Improvement Theorem

Let π and π^{\prime} be deterministic policies such that $V^{\pi}(x) \geq Q^{\pi}\left(x, \pi^{\prime}(x)\right)$ for all $x \in \mathcal{X}$. Then, π^{\prime} is at least as good as π, i.e., $V^{\pi}(x) \geq V^{\pi^{\prime}}(x)$ for all $x \in \mathcal{X}$

- Proof:

$$
\begin{aligned}
V^{\pi}(x) & \geq Q^{\pi}\left(x, \pi^{\prime}(x)\right)=\ell\left(x, \pi^{\prime}(x)\right)+\gamma \mathbb{E}_{x^{\prime} \sim p_{f}\left(\cdot x, \pi^{\prime}(x)\right)}\left[V^{\pi}\left(x^{\prime}\right)\right] \\
& \geq \ell\left(x, \pi^{\prime}(x)\right)+\gamma \mathbb{E}_{x^{\prime} \sim p_{f}\left(\cdot x, \pi^{\prime}(x)\right)}\left[Q^{\pi}\left(x^{\prime}, \pi^{\prime}\left(x^{\prime}\right)\right)\right] \\
& =\ell\left(x, \pi^{\prime}(x)\right)+\gamma \mathbb{E}_{x^{\prime} \sim p_{f}\left(\cdot x, \pi^{\prime}(x)\right)}\left\{\ell\left(x^{\prime}, \pi^{\prime}\left(x^{\prime}\right)\right)+\gamma \mathbb{E}_{x^{\prime \prime} \sim p_{f}\left(\cdot x^{\prime}, \pi^{\prime}\left(x^{\prime}\right)\right)} V^{\pi}\left(x^{\prime \prime}\right)\right\} \\
& \geq \cdots \geq \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \ell\left(x_{t}, \pi^{\prime}\left(x_{t}\right)\right) \mid x_{0}=x\right]=V^{\pi^{\prime}}(x)
\end{aligned}
$$

Theorem: Optimality of PI

Suppose that:

- $\gamma<1$ (Discounted Problem)
- there exists a termination state and a proper policy (SSP)

Then, the Policy Iteration algorithm converges to an optimal policy after a finite number of steps.

Proof of Optimality of PI (SSP)

- Let π be a proper policy with value V^{π} obtained from the Policy Evaluation step.
- Let π^{\prime} be the policy obtained from the Policy Improvement step.
- By definition of the Policy Improvement step: $V^{\pi}(x) \geq Q^{\pi}\left(x, \pi^{\prime}(x)\right)$ for all $x \in \tilde{\mathcal{X}} \backslash\{0\}$
- By the Policy Improvement Thm, $V^{\pi}(x) \geq V^{\pi^{\prime}}(x)$ for all $x \in \tilde{\mathcal{X}} \backslash\{0\}$
- Since π is proper, $V^{\pi}(x)<\infty$ for all $x \in \tilde{\mathcal{X}}$, and hence π^{\prime} is proper
- Since π^{\prime} is proper, the Policy Evaluation step has a unique solution $V^{\pi^{\prime}}$
- Since the number of stationary policies is finite, eventually $V^{\pi}=V^{\pi^{\prime}}$ after a finite number of steps.
- Once V^{π} has converged, it follows from the Policy Improvement step:

$$
V^{\pi^{\prime}}(x)=V^{\pi}(x)=\min _{u \in \tilde{\mathcal{U}}(x)}\left(\tilde{\ell}(x, u)+\sum_{x^{\prime} \in \tilde{\mathcal{X}} \backslash\{0\}} \tilde{p}_{f}\left(x^{\prime} \mid x, u\right) V^{\pi}\left(x^{\prime}\right)\right), \quad x \in \tilde{\mathcal{X}} \backslash\{0\}
$$

- Since this is the Bellman Equation for the SSP problem, we have converged to an optimal policy $\pi^{*}=\pi$ with optimal cost $V^{*}=V^{\pi}$.

Comparison between VI and PI

- PI and VI actually have a lot in common
- Rewrite VI as follows:

2. Policy Improvement: Given $V_{k}(x)$ obtain a stationary policy:

$$
\pi(x)=\underset{u \in \mathcal{U}(x)}{\arg \min }\left[\ell(x, u)+\gamma \sum_{x^{\prime} \in \mathcal{X}} p_{f}\left(x^{\prime} \mid x, u\right) V_{k}\left(x^{\prime}\right)\right], \quad \forall x \in \mathcal{X}
$$

1. Value Update: Given $\pi(x)$ and $V_{k}(x)$, compute

$$
V_{k+1}(x)=\ell(x, \pi(x))+\gamma \sum_{x^{\prime} \in \mathcal{X}} p_{f}\left(x^{\prime} \mid x, \pi(x)\right) V_{k}\left(x^{\prime}\right), \quad \forall x \in \mathcal{X}
$$

- The Value Update step of VI is an iterative solution to the linear system of equations in the Policy Evaluation Theorem
- PI solves Policy Evaluation equation, which is equivalent to running the Value Update step of VI an infinite number of times!

Comparison between VI and PI

- Complexity of VI per Iteration: $O\left(|\mathcal{X}|^{2}|\mathcal{U}|\right)$: evaluating the expectation (i.e., sum over x^{\prime}) requires $|\mathcal{X}|$ operations and there are $|\mathcal{X}|$ minimizations over $|\mathcal{U}|$ possible control inputs.
- Complexity of PI per Iteration: $O\left(|\mathcal{X}|^{2}(|\mathcal{X}|+|\mathcal{U}|)\right)$: the Policy Evaluation step requires solving a system of $|\mathcal{X}|$ equations in $|\mathcal{X}|$ unknowns $\left(O\left(|\mathcal{X}|^{3}\right)\right)$, while the Policy Improvement step has the same complexity as one iteration of VI .
- PI is more computationally expensive than VI
- Theoretically it takes an infinite number of iterations for VI to converge
- PI converges in $|\mathcal{U}|^{|\mathcal{X}|}$ iterations (all possible policies) in the worst case

Generalized Policy Iteration

- Assuming that the Value Update and Policy Improvement steps are executed an infinite number of times for all states, all combinations of the following converge:
- Any number of Value Update steps in between Policy Improvement steps
- Any number of states updated at each Value Update step
- Any number of states updated at each Policy Improvement step

Example: Frozen Lake Problem

- Winter is here.
- You and your friends were tossing around a frisbee at the park when you made a wild throw that left the frisbee out in the middle of the lake.
- The water is mostly frozen, but there are a few holes where the ice has melted.
- If you step into one of those holes, you'll fall into the freezing water.
- At this time, there's an international frisbee shortage, so it's absolutely imperative that you navigate across the lake and retrieve the disc.
- However, the ice is slippery, so you won't always move in the direction you intend.

Example: Frozen Lake Problem

- S : starting point, safe
- F : frozen surface, safe
- H : hole, fall to your doom
- G: goal, where the frisbee is located
- $\mathcal{X}=\{0,1, \ldots, 15\}$
- $\mathcal{U}(x)=\{\operatorname{Left}(0), \operatorname{Down}(1), \operatorname{Right}(2), \operatorname{Up}(3)\}$
- You receive a reward of 1 if you reach the goal, and zero otherwise
- A requested action $u \in \mathcal{U}(x)$ succeeds 80% of the time. A neighboring action is executed in the other 50% of the time due to slip:

$$
x^{\prime} \mid x=9, u=1= \begin{cases}13, & \text { with prob. } 0.8 \\ 8, & \text { with prob. } 0.1 \\ 10, & \text { with prob. } 0.1\end{cases}
$$

- The state remains unchanged if a control leads outside of the map
- An episode ends when you reach the goal or fall in a hole.

Value Iteration on Frozen Lake

(a) $t=0$

(d) $t=3$

(b) $t=1$

(e) $t=4$

(c) $t=2$

(f) $t=5$

Value Iteration on Frozen Lake

Iteration	$\max _{x}\left\|V_{t+1}(x)-V_{t}(x)\right\|$	\# changed actions	$V(0)$
0	0.80000	0	0.000
1	0.60800	1	0.000
2	0.51984	2	0.000
3	0.39508	2	0.000
4	0.30026	2	0.000
5	0.25355	2	0.254
6	0.10478	1	0.345
7	0.09657	0	0.442
8	0.03656	0	0.478
9	0.02772	0	0.506
10	0.01111	0	0.517
11	0.00735	0	0.524
12	0.00310	0	0.527
13	0.00190	0	0.529
14	0.00083	0	0.530
15	0.00049	0	0.531
16	0.00022	0	0.531

Policy Iteration on Frozen Lake

(a) $t=0$

(d) $t=3$

(b) $t=1$

(e) $t=4$

(c) $t=2$

(f) $t=5$

Policy Iteration on Frozen Lake

Iteration	$\max _{x}\left\|V_{t+1}(x)-V_{t}(x)\right\|$	$\#$ changed actions	$V(0)$
0	0.00000	0	0.000
1	0.89296	1	0.000
2	0.88580	9	0.398
3	0.48504	2	0.455
4	0.07573	1	0.531
5	0.00000	0	0.531
6	0.00000	0	0.531
7	0.00000	0	0.531
8	0.00000	0	0.531
9	0.00000	0	0.531
10	0.00000	0	0.531
11	0.00000	0	0.531
12	0.00000	0	0.531
13	0.00000	0	0.531
14	0.00000	0	0.531
15	0.00000	0.50	
16	0.00000	0.531	
17	$0.0 n 00 n$	0.531	

Value Iteration vs Policy Iteration

Value Iteration vs Policy Iteration

Example: 100 Games of Rock-Paper-Scissors (POMDP)

- Planning horizon: $T=100, \gamma=1$
- State:
- score differential $s \in \mathcal{S}:=\{-100, \ldots, 100\}$ (observable)
- opponent's preference $y \in \mathcal{Y}:=\{R, P, S\}$ (unobservable)
- Control: $u \in \mathcal{U}:=\{R, P, S\}$
- Cost: $\tilde{\ell}(s, y, u) \equiv 0, \tilde{\mathfrak{q}}(s, y)=-s$
- Motion model:

$$
\begin{aligned}
& p_{f}\left(s^{\prime} \mid s, y=R, u=R\right)= \begin{cases}0.5 & \text { if } s^{\prime}=s \\
0.25 & \text { if } s^{\prime}=s+1 \\
0.25 & \text { if } s^{\prime}=s-1\end{cases} \\
& p_{f}\left(s^{\prime} \mid s, y=R, u=P\right)= \begin{cases}0.5 & \text { if } s^{\prime}=s+1 \\
0.25 & \text { if } s^{\prime}=s \\
0.25 & \text { if } s^{\prime}=s-1\end{cases}
\end{aligned}
$$

- Observation: $z \in \mathcal{Z}:=\{R, P, S\}$
- Observation model: $p_{h}(z \mid y)= \begin{cases}0.5 & \text { if } y=z \\ 0.25 & \text { otherwise }\end{cases}$

Example: 100 Games of Rock-Paper-Scissors (MDP)

- The probability mass function b_{t} of y_{t} is a sufficient statistic for y_{t}
- State:
- score differential $s \in \mathcal{S}:=\{-100, \ldots, 100\}$ (observable)
- preference pmf $b \in \mathcal{B}=\mathcal{P}(\mathcal{Y}):=\left\{p \in[0,1]^{3} \mid \mathbf{1}^{T} p=1\right\}$ (observable)
- Control: $u \in \mathcal{U}:=\{R, P, S\}$
- Cost: $\ell(s, b, u)=\int \tilde{\ell}(s, y, u) b(y) d y=0, \mathfrak{q}(s, b)=\int \tilde{\mathfrak{q}}(s, y) b(y) d y=-s$

Let $\mathbf{w}(z):=\left[\begin{array}{l}p_{h}(z \mid y=R) \\ p_{h}(z \mid y=P) \\ p_{h}(z \mid y=S)\end{array}\right]$ be the vector of observation likelihoods

- Motion model for the preference pmf (Bayes Filter):

$$
b_{t+1} \left\lvert\, b_{t}=\left\{\begin{array}{lll}
\frac{\mathbf{w}(S) \odot b_{t}}{\mathbf{w}(S) b^{\top} b_{t}} & \text { w.p. } & \mathbf{w}(S)^{T} b_{t} \\
\frac{\mathbf{w}(R) \odot b_{t}}{\mathbf{w}(R)^{\top} T_{t}} & \text { w.p. } & \mathbf{w}(R)^{T} b_{t} \\
\frac{\mathbf{w}(P) \odot b_{t}}{\mathbf{w}(P)^{\top} b_{t}} & \text { w.p. } & \mathbf{w}(P)^{T} b_{t}
\end{array}\right.\right.
$$

$\odot=$ elementwise multiplication

Example: 100 Games of Rock-Paper-Scissors (MDP)

- Motion model for the score differential:

$$
\begin{aligned}
& s_{t+1} \mid s_{t}, R= \begin{cases}s_{t}+1 & \text { w.p. } \mathbf{w}(S)^{T} b_{t} \\
s_{t} & \text { w.p. } \mathbf{w}(R)^{T} b_{t} \quad s_{t+1} \mid s_{t}, P= \begin{cases}s_{t}-1 & \text { w.p. } \mathbf{w}(S)^{T} b_{t} \\
s_{t}+1 & \text { w.p. } \mathbf{w}(R)^{T} b_{t} \\
s_{t} & \text { w.p. } \mathbf{w}(P)^{T} b_{t}\end{cases} \\
s_{t+1} \mid s_{t}, S= \begin{cases}s_{t} & \text { w.p. } \mathbf{w}(P)^{T} b_{t}\end{cases} \\
s_{t}-1 & \text { w.p. } \mathbf{w}(S)^{T} b_{t} \\
s_{t}+1 & \text { w.p. } \mathbf{w}(P)^{T} b_{t} b_{t}\end{cases}
\end{aligned}
$$

- Discretize \mathcal{B} into a finite set \mathcal{B}_{d} of pmfs
- Apply the Dynamic Programming algorithm:
- $V_{100}(s, b)=-s, \forall s \in \mathcal{S}, b \in \mathcal{B}_{d}$
- $V_{99}(s, b)=\min _{u \in\{R, P, S\}} \sum_{s^{\prime} \in \mathcal{S}, b^{\prime} \in \mathcal{B}_{d}} V_{100}\left(s^{\prime}, b^{\prime}\right) p_{f}\left(s^{\prime}, b^{\prime} \mid s, b, u\right), \forall s \in \mathcal{S}, b \in \mathcal{B}_{d}$

Linear Programming Solution to the Bellman Equation

- Suppose we initialize VI with a vector V_{0} that satisfies a relaxed Bellman Equation:

$$
V_{0}(x) \leq \min _{u \in \mathcal{U}(x)}\left(\ell(x, u)+\gamma \sum_{x^{\prime} \in \mathcal{X}} p_{f}\left(x^{\prime} \mid x, u\right) V_{0}\left(x^{\prime}\right)\right), \quad \forall x \in \mathcal{X}
$$

- Applying VI to V_{0} leads to:

$$
\begin{aligned}
V_{1}(x) & =\min _{u \in \mathcal{U}(x)}\left(\ell(x, u)+\gamma \sum_{x^{\prime} \in \mathcal{X}} p_{f}\left(x^{\prime} \mid x, u\right) V_{0}\left(x^{\prime}\right)\right) \geq V_{0}(x), \quad \forall x \in \mathcal{X} \\
V_{2}(x) & =\min _{u \in \mathcal{U}(x)}\left(\ell(x, u)+\gamma \sum_{x^{\prime} \in \mathcal{X}} p_{f}\left(x^{\prime} \mid x, u\right) V_{1}\left(x^{\prime}\right)\right) \\
& \geq \min _{u \in \mathcal{U}(x)}\left(\ell(x, u)+\gamma \sum_{x^{\prime} \in \mathcal{X}} p_{f}\left(x^{\prime} \mid x, u\right) V_{0}\left(x^{\prime}\right)\right)=V_{1}(x), \quad \forall x \in \mathcal{X}
\end{aligned}
$$

Linear Programming Solution to the Bellman Equation

- The above shows that $V_{k+1}(x) \geq V_{k}(x)$ for all k and $x \in \mathcal{X}$
- Since VI guarantees that $V_{k}(x) \rightarrow V^{*}(x)$ as $k \rightarrow \infty$ we also have:

$$
V^{*}(x) \geq V_{0}(x), \quad \forall x \in \mathcal{X} \quad \Rightarrow \quad \sum_{x \in \mathcal{X}} w(x) V^{*}(x) \geq \sum_{x \in \mathcal{X}} w(x) V_{0}(x)
$$

for any $w(x)>0$ for all $x \in \mathcal{X}$.

- The above holds for any V_{0} that satisfies:

$$
V_{0}(x) \leq \min _{u \in \mathcal{U}(x)}\left(\ell(x, u)+\gamma \sum_{x^{\prime} \in \mathcal{X}} p_{f}\left(x^{\prime} \mid x, u\right) V_{0}\left(x^{\prime}\right)\right), \quad \forall x \in \mathcal{X}
$$

- Note that V^{*} also satisfies this condition with equality (Bellman Equation) and hence is the maximal V_{0} (at each state) that satisfies the condition.

Linear Programming Solution to the Bellman Equation

LP Solution to the Bellman Equation

The solution V^{*} to the linear program (with $w(x)>0$):

$$
\begin{array}{ll}
\max _{V} & \sum_{x \in \mathcal{X}} w(x) V(x) \\
\text { s.t. } & V(x) \leq\left(\ell(x, u)+\gamma \sum_{x^{\prime} \in \mathcal{X}} p_{f}\left(x^{\prime} \mid x, u\right) V\left(x^{\prime}\right)\right), \quad \forall u \in \mathcal{U}(x), \forall x \in \mathcal{X}
\end{array}
$$

also solves the Bellman Equation to yield the optimal value function for a discounted infinite-horizon finite-state stochastic optimal control problem.

- An equivalent result holds for the SSP.

LP Solution to the BE (Proof)

- Let J^{*} be the solution to the linear program so that:

$$
J^{*}(x) \leq\left(\ell(x, u)+\gamma \sum_{x^{\prime} \in \mathcal{X}} p_{f}\left(x^{\prime} \mid x, u\right) J^{*}\left(x^{\prime}\right)\right), \quad \forall u \in \mathcal{U}(x), \forall x \in \mathcal{X}
$$

- Since J^{*} is feasible, it satisfies $J^{*}(x) \leq V^{*}(x)$ for all $x \in \mathcal{X}$
- By contradiction, suppose that $J^{*} \neq V^{*}$. Then, there exists a state $y \in \mathcal{X}$ such that:

$$
J^{*}(y)<V^{*}(y) \Rightarrow \sum_{x \in \mathcal{X}} w(x) J^{*}(x)<\sum_{x \in \mathcal{X}} w(x) V^{*}(x)
$$

for any positive $w(x)$ but since V^{*} solves the Bellman Equation:

$$
V^{*}(x) \leq\left(\ell(x, u)+\gamma \sum_{x^{\prime} \in \mathcal{X}} p_{f}\left(x^{\prime} \mid x, u\right) V^{*}(j)\right), \quad \forall u \in \mathcal{U}(x), \forall x \in \mathcal{X}
$$

- Thus, V^{*} is feasible and has lower cost that J^{*}, which is a contradiction.

Bellman Equations (Summary)

Finite Horizon Formulation

- Trajectories terminate at $T<\infty$

$$
\min _{\pi} V_{\tau}^{\pi}(x)=\mathbb{E}\left[\sum_{t=\tau}^{T-1} \ell_{t}\left(x_{t}, \pi_{t}\left(x_{t}\right)\right)+\mathfrak{q}\left(x_{T}\right) \mid x_{\tau}=x\right]
$$

- The optimal value $V_{t}^{*}(x)$ can be found with a single backward pass through time, initialized from $V_{T}^{*}(x)=\mathfrak{q}(x)$ and following the recursion:

Bellman Equations (Finite Horizon Problem)

Hamiltonian:

$$
\begin{aligned}
& H_{t}[x, u, V(\cdot)]=\ell_{t}(x, u)+\mathbb{E}_{x^{\prime} \sim p_{f}(\cdot \mid x, u)} V\left(x^{\prime}\right) \\
& V_{t}^{\pi}(x)=H_{t}\left[x, \pi_{t}(x), V_{t+1}^{\pi}(\cdot)\right] \\
& V_{t}^{*}(x)=\min _{u \in \mathcal{U}(x)} H_{t}\left[x, u, V_{t+1}^{*}(\cdot)\right]
\end{aligned}
$$

Policy Evaluation:
Bellman Equation:
Optimal Policy:

$$
\pi_{t}^{*}(x)=\underset{u \in \mathcal{U}(x)}{\arg \min } H_{t}\left[x, u, V_{t+1}^{*}(\cdot)\right]
$$

First Exit (SSP) Formulation

- Trajectories terminate at $T_{\text {first }}$, when a goal state $x \in \mathcal{T} \subseteq \mathcal{X}$ is reached:

$$
\min _{\pi} V^{\pi}(x)=\mathbb{E}\left[\sum_{t=0}^{T_{\text {first }}-1} \ell\left(x_{t}, \pi\left(x_{t}\right)\right)+\mathfrak{q}\left(x_{T_{\text {first }}}\right) \mid x_{0}=x\right]
$$

- At terminal states, $V^{*}(x)=V^{\pi}(x)=\mathfrak{q}(x)$ for all $x \in \mathcal{T}$
- At other states, the following are satisfied:

Bellman Equations (First Exit Problem)

Hamiltonian: $\quad H[x, u, V(\cdot)]=\ell(x, u)+\mathbb{E}_{x^{\prime} \sim p_{f}(\cdot \mid x, u)} V\left(x^{\prime}\right)$
Policy Evaluation:
$V^{\pi}(x)=H\left[x, \pi(x), V^{\pi}(\cdot)\right]$
Bellman Equation: $\quad V^{*}(x)=\min _{u \in \mathcal{U}(x)} H\left[x, u, V^{*}(\cdot)\right]$
Optimal Policy:

$$
\pi^{*}(x)=\arg \min H\left[x, u, V^{*}(\cdot)\right]
$$

$$
u \in \mathcal{U}(x)
$$

Discounted Formulation

- Trajectories continue forever but costs are discounted via $\gamma \in[0,1)$:

$$
\min _{\pi} V^{\pi}(x)=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \ell\left(x_{t}, \pi\left(x_{t}\right)\right) \mid x_{0}=x\right]
$$

Bellman Equations (Discounted Problem)

Hamiltonian:
Policy Evaluation:
Bellman Equation: $\quad V^{*}(x)=\min _{u \in \mathcal{U}(x)} H\left[x, u, V^{*}(\cdot)\right]$
Optimal Policy:

$$
H[x, u, V(\cdot)]=\ell(x, u)+\gamma \mathbb{E}_{x^{\prime} \sim p_{f}(\cdot \mid x, u)} V\left(x^{\prime}\right)
$$

$$
V^{\pi}(x)=H\left[x, \pi(x), V^{\pi}(\cdot)\right]
$$

$\pi^{*}(x)=\arg \min H\left[x, u, V^{*}(\cdot)\right]$

$$
u \in \mathcal{U}(x)
$$

- Every discounted problem can be converted to a first exist problem by scaling the transition probabilities by γ, introducing a terminal state with zero cost, and setting all transition probabilities to that state to $1-\gamma$

Value Function

- Value Function: the expected long-term cost of following policy π starting from state x :

$$
\begin{aligned}
V^{\pi}(x) & :=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \ell\left(x_{t}, \pi\left(x_{t}\right)\right) \mid x_{0}=x\right] \\
& =\ell(x, \pi(x))+\gamma \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} \ell\left(x_{t}, \pi\left(x_{t}\right)\right) \mid x_{0}=x\right] \\
& =\ell(x, \pi(x))+\gamma \mathbb{E}_{x^{\prime} \sim p_{f}(\cdot \mid x, \pi(x))}\left[V^{\pi}\left(x^{\prime}\right)\right]
\end{aligned}
$$

- Value Iteration: computes the optimal value function

$$
V^{*}(x):=\min _{\pi} V^{\pi}(x)=\min _{u \in \mathcal{U}(x)}\left\{\ell(x, u)+\gamma \mathbb{E}_{x^{\prime} \sim p_{f}(\cdot \mid x, u)}\left[V^{*}\left(x^{\prime}\right)\right]\right\}
$$

Action-Value (Q) Function

- Q Function: the expected long-term cost of taking action u in state x and following policy π afterwards:

$$
\begin{aligned}
Q^{\pi}(x, u) & :=\ell(x, u)+\mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t} \ell\left(x_{t}, \pi\left(x_{t}\right)\right) \mid x_{0}=x\right] \\
& =\ell(x, u)+\gamma \mathbb{E}_{x^{\prime} \sim p_{f}(\cdot \mid x, u)}\left[V^{\pi}\left(x^{\prime}\right)\right] \\
& =\ell(x, u)+\gamma \mathbb{E}_{x^{\prime} \sim p_{f}(\cdot \mid x, u)}\left[Q^{\pi}\left(x^{\prime}, \pi\left(x^{\prime}\right)\right)\right]
\end{aligned}
$$

- Q-Value Iteration: computes the optimal Q function

$$
\begin{aligned}
Q^{*}(x, u):=\min _{\pi} Q^{\pi}(x, u) & =\ell(x, u)+\gamma \mathbb{E}_{x^{\prime} \sim p_{f}(\cdot \mid x, u)}\left[\min _{\pi} V^{\pi}\left(x^{\prime}\right)\right] \\
& =\ell(x, u)+\gamma \mathbb{E}_{x^{\prime} \sim p_{f}(\cdot \mid x, u)}\left[V^{*}\left(x^{\prime}\right)\right] \\
& =\ell(x, u)+\gamma \mathbb{E}_{x^{\prime} \sim p_{f}(\cdot \mid x, u)}\left[\min _{u^{\prime} \in \mathcal{U}\left(x^{\prime}\right)} Q^{*}\left(x^{\prime}, u^{\prime}\right)\right]
\end{aligned}
$$

- $Q^{*}(x, u)$ allows us to choose optimal actions without having to know anything about the dynamics $p_{f}\left(x^{\prime} \mid x, u\right)$:

$$
\pi^{*}(x)=\underset{u \in \mathcal{U}(x)}{\arg \min }\left\{\ell(x, u)+\gamma \mathbb{E}_{x^{\prime} \sim p_{f}(\cdot \mid x, u)}\left[V^{*}\left(x^{\prime}\right)\right]\right\}=\underset{u \in \mathcal{U}(x)}{\arg \min } Q^{*}(x, u)_{36}
$$

Backup Operators

- Policy Evaluation Backup Operator:

$$
\mathcal{T}_{\pi}[V](x):=H[x, \pi(x), V]=\ell(x, \pi(x))+\gamma \mathbb{E}_{x^{\prime} \sim p_{f}(\cdot \mid x, \pi(x))}\left[V\left(x^{\prime}\right)\right]
$$

- Value Iteration Backup Operator:

$$
\mathcal{T}_{*}[V](x):=\min _{u \in \mathcal{U}(x)} H[x, u, V]=\min _{u \in \mathcal{U}(x)}\left\{\ell(x, u)+\gamma \mathbb{E}_{x^{\prime} \sim p_{f}(\cdot \mid x, u)}\left[V\left(x^{\prime}\right)\right]\right\}
$$

- Policy Q-Evaluation Backup Operator:

$$
\mathcal{T}_{\pi}[Q](x, u):=\ell(x, u)+\gamma \mathbb{E}_{x^{\prime} \sim p_{f}(\cdot \mid x, \pi(x))}\left[Q\left(x^{\prime}, \pi\left(x^{\prime}\right)\right)\right]
$$

- Q-Value Iteration Backup Operator:

$$
\mathcal{T}_{*}[Q](x, u):=\ell(x, u)+\gamma \mathbb{E}_{x^{\prime} \sim p_{f}(\cdot \mid x, u)}\left[\min _{u^{\prime} \in \mathcal{U}\left(x^{\prime}\right)} Q\left(x^{\prime}, u^{\prime}\right)\right]
$$

Backup Operators (Stochastic Policy)

(a) $\mathcal{T}_{*}[V](x)$

(c) $\mathcal{T}_{*}[Q](x, u)$

(b) $\mathcal{T}_{\pi}[V](x)$

(d) $\mathcal{T}_{\pi}[Q](x, u)$

Contraction in Discounted Problems

Properties of $\mathcal{T}_{*}[V]$

1. Monotonicity: $\quad V(x) \leq V^{\prime}(x) \Rightarrow \mathcal{T}_{*}[V](x) \leq \mathcal{T}_{*}\left[V^{\prime}\right](x)$
2. γ-Additivity:

$$
\mathcal{T}_{*}[V+d](x)=\mathcal{T}_{*}[V](x)+\gamma d
$$

3. Contraction:

$$
\left\|\mathcal{T}_{*}[V](x)-\mathcal{T}_{*}\left[V^{\prime}\right](x)\right\|_{\infty} \leq \gamma\left\|V(x)-V^{\prime}(x)\right\|_{\infty}
$$

- Proof of Contraction: Let $d=\max _{x}\left|V(x)-V^{\prime}(x)\right|$. Then:

$$
V(x)-d \leq V^{\prime}(x) \leq V(x)+d, \quad \forall x \in \mathcal{X}
$$

Apply \mathcal{T}_{*} to both sides and use monotonicity and additivity:

$$
\mathcal{T}_{*}[V](x)-\gamma d \leq \mathcal{T}_{*}\left[V^{\prime}\right](x) \leq \mathcal{T}_{*}[V](x)+\gamma d, \quad \forall x \in \mathcal{X}
$$

VI and PI Revisited

- Value Iteration:
- V^{*} is the solution to $V=\mathcal{T}_{*}[V] \quad$ (Bellman Equation)
- Since \mathcal{T}_{*} is a contraction, the fixed-point equation has a unique solution (Contraction Mapping Theorem), which can be determined iteratively:

$$
V_{k+1}=\mathcal{T}_{*}\left[V_{k}\right] \quad \text { (Value Iteration) }
$$

- Initialization:
- Discounted: arbitrary
- First exit: $V_{k}(x)=\mathfrak{q}(x)$ for all k and all terminal $x \in \mathcal{T}$
- Policy Iteration:
- Policy Evaluation: Given π compute V^{π} via

$$
\mathbf{v}=(I-\gamma P)^{-1} \ell \quad \text { OR } \quad V_{k+1}=\mathcal{T}_{\pi}\left[V_{k}\right] \quad \text { (Policy Evaluation Thm) }
$$

- Policy Improvement: choose the action that minimizes the Hamiltonian:

$$
\pi^{\prime}(x)=\underset{u \in \mathcal{U}(x)}{\arg \min } H\left[x, u, V^{\pi}(\cdot)\right]
$$

- Initialization: arbitrary as long as V^{π} is finite

Value Iteration

- V^{*} is a fixed point of $\mathcal{T}_{*}: V_{0}, \mathcal{T}_{*}\left[V_{0}\right], \mathcal{T}_{*}^{2}\left[V_{0}\right], \mathcal{T}_{*}^{3}\left[V_{0}\right], \ldots \rightarrow V^{*}$

Algorithm 1 Value Iteration

1: Initialize V_{0}

2: for $k=0,1,2, \ldots$ do
3: $\quad V_{k+1}=\mathcal{T}_{*}\left[V_{k}\right]$

- Q^{*} is a fixed point of $\mathcal{T}_{*}: Q_{0}, \mathcal{T}_{*}\left[Q_{0}\right], \mathcal{T}_{*}^{2}\left[Q_{0}\right], \mathcal{T}_{*}^{3}\left[Q_{0}\right], \ldots \rightarrow Q^{*}$

Algorithm 2 Q-Value Iteration

1: Initialize Q_{0}
2: for $k=0,1,2, \ldots$ do
3: $\quad Q_{k+1}=\mathcal{T}_{*}\left[Q_{k}\right]$

Policy Iteration

- Policy Evaluation: $V_{0}, \mathcal{T}_{\pi}\left[V_{0}\right], \mathcal{T}_{\pi}^{2}\left[V_{0}\right], \mathcal{T}_{\pi}^{3}\left[V_{0}\right], \ldots \rightarrow V^{\pi}$

Algorithm 3 Policy Iteration

1: Initialize V_{0}
2: for $k=0,1,2, \ldots$ do
3: $\quad \pi_{k+1}(x)=\underset{u \in \mathcal{U}(x)}{\arg \min } H\left[x, u, V_{k}(\cdot)\right]$
\triangleright Policy Improvement
\triangleright Policy Evaluation

- Policy Q-Evaluation: $Q_{0}, \mathcal{T}_{\pi}\left[Q_{0}\right], \mathcal{T}_{\pi}^{2}\left[Q_{0}\right], \mathcal{T}_{\pi}^{3}\left[Q_{0}\right], \ldots \quad \rightarrow Q^{\pi}$

Algorithm 4 Q-Policy Iteration
1: Initialize Q_{0}
2: for $k=0,1,2 \ldots$ do
3: $\quad \pi_{k+1}(x)=\arg \min Q_{k}(x, u)$
\triangleright Policy Improvement
4: $\quad Q_{k+1}=\mathcal{T}_{\pi_{k+1}}^{\infty}\left[Q_{k}\right]$
\triangleright Policy Evaluation

Generalized Policy Iteration

Algorithm 5 Generalized Policy Iteration

1: Initialize V_{0}
2: for $k=0,1,2, \ldots$ do
3: $\quad \pi_{k+1}(x)=\arg \min H\left[x, u, V_{k}(\cdot)\right]$ $u \in \mathcal{U}(x)$
4: $\quad V_{k+1}=\mathcal{T}_{\pi_{k+1}}^{n}\left[V_{k}\right], \quad$ for $n \geq 1$
\triangleright Policy Improvement
\triangleright Policy Evaluation

Algorithm 6 Generalized Q-Policy Iteration

1: Initialize Q_{0}
2: for $k=0,1,2, \ldots$ do
3: $\quad \pi_{k+1}(x)=\arg \min Q_{k}(x, u)$
\triangleright Policy Improvement
4: $\quad Q_{k+1}=\mathcal{T}_{\pi_{k+1}}^{n}\left[Q_{k}\right], \quad$ for $n \geq 1$
\triangleright Policy Evaluation

