
ECE276B: Planning & Learning in Robotics
Lecture 11: Model-free Prediction

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Zhichao Li: zhl355@eng.ucsd.edu
Ehsan Zobeidi: ezobeidi@eng.ucsd.edu
Ibrahim Akbar: iakbar@eng.ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:zhl355@eng.ucsd.edu
mailto:ezobeidi@eng.ucsd.edu
mailto:iakbar@eng.ucsd.edu


From Optimal Control To Reinforcement Learning
I Stochastic Optimal Control: MDP with known motion model

pf (x ′ | x , u) and cost function `(x , u)
I Model-based Prediction: computes the value function V π of a given

policy π (policy evaluation theorem)

I Model-based Control: optimizes the value function V π to obtain an
improved policy π′ (policy improvement theorem)

I Reinforcement Learning: MDP with unknown motion model
pf (x ′ | x , u) and cost function `(x , u) but access to examples of system
transitions and incurred costs
I Model-free Prediction: estimates the value function V π of a given

policy π:
I Monte-Carlo (MC) Prediction
I Temporal-Difference (TD) Prediction

I Model-free Control: optimizes the value function:
I On-policy MC Control: ε-greedy
I On-policy TD Control: SARSA
I Off-policy MC Control: Importance Sampling
I Off-policy TD Control: Q-Learning

2



Dynamic Programming Backup Operators

I Operators for policy-specific value functions:
I Policy Evaluation Backup Operator:

Tπ[V ](x) := H[x , π(x),V ] = `(x , π(x)) + γEx′∼pf (·|x,π(x)) [V (x ′)]

I Policy Q-Evaluation Backup Operator:

Tπ[Q](x , u) := `(x , u) + γEx′∼pf (·|x,u) [Q(x ′, π(x ′))]

I Operators for the optimal value function:
I Value Iteration Backup Operator:

T∗[V ](x) := min
u∈U(x)

H[x , u,V ] = min
u∈U(x)

{
`(x , u) + γEx′∼pf (·|x,u) [V (x ′)]

}
I Q-Value Iteration Backup Operator:

T∗[Q](x , u) := `(x , u) + γEx′∼pf (·|x,u)

[
min

u′∈U(x′)
Q(x ′, u′)

]

3



Model-free Prediction
I The main idea of model-free prediction is to approximate the Policy

Evaluation backup operators Tπ[V ] and Tπ[Q] using samples instead of
computing the expectation exactly:

I Monte-Carlo (MC) methods:
I Expected cost can be approximated by a sample average over whole

system trajectories (until termination in the SSP and final-horizon setting)

I Temporal-Difference (TD) methods:
I Expected cost can be approximated by a sample average over a single

system transition and an estimate of the expected cost at the new state
(bootstrapping)

I Sampling: value estimates rely on samples:
I DP does not sample
I MC samples
I TD samples

I Bootstrapping: value estimates rely on other value estimates:
I DP bootstraps
I MC does not bootstrap
I TD bootstraps

4



Unified View of Reinforcement Learning

5



Monte-Carlo Policy Evaluation
I Episode: a random sequence ρt of states and controls from the start xt ,

following the system dynamics to termination under policy π (SSP):

ρt := xt , ut , xt+1, ut+1, . . . , xT−1, uT−1, xT ∼ π

I Goal: approximate V π(x0) from several episodes ρ
(k)
0 := x

(k)
0:T , u

(k)
0:T−1

under policy π

I Recall that the long-term cost is the sum of discounted stage costs:

Lt(ρt) = Lt(xt:T , ut:T−1) :=
T−1∑
τ=t

γτ−t`(xτ , uτ ) + γT−tq(xT )

I Monte-Carlo (MC) Policy Evaluation: uses the empirical mean of

long-term costs obtained from different episodes ρ
(k)
t to approximate the

value of π, i.e., the expected long-term cost:

V π(x) = Eρ∼π[Lt(ρ) | xt = x ] ≈ 1

K

K∑
k=1

Lt(ρ
(k)
t )

6



First-visit Monte-Carlo Policy Evaluation

I Prediction: estimate V π(x) from trajectory samples ρ(k) ∼ π

I For each state x and episode ρ(k), find the first time step t that state x
is visited in ρ(k) and increment:
I the number of visits to x : N(x)← N(x) + 1
I the long-term cost starting from x : C (x)← C (x) + Lt(ρ

(k))

I Approximate value function: V π(x) ≈ C(x)
N(x)

I Every-visit MC Policy Evaluation: same idea but the long-term costs
are accumulated following every time step t that state x is visited in ρ(k)

7



First-visit MC Policy Evaluation

Algorithm 1 First-visit MC Policy Evaluation

1: Initialize V π(x), π(x), C (x)← 0, N(x)← 0
2: loop
3: Generate ρ := (x0:T , u0:T−1) from π
4: for x ∈ ρ do
5: L← return following first appearance of x in ρ
6: N(x)← N(x) + 1
7: C (x)← C (x) + L

8: V π(x)← C(x)
N(x)

I Every-visit MC would add to C (x) not a single return L but the returns
{L} following all appearances of x in ρ

8



Running Sample Average
I Consider a sequence x1, x2, . . . , of samples from a random variable
I Usual way of computing the sample mean: µk+1 = 1

k+1

∑k+1
j=1 xj

I Running sample average:

µk+1 =
1

k + 1

k+1∑
j=1

xj =
1

k + 1

xk+1 +
k∑

j=1

xj

 =
1

k + 1
(xk+1 + kµk)

= µk +
1

k + 1
(xk+1 − µk)

I Recency-weighted average: update µk using a step-size α 6= 1
k+1 :

µk+1 = µk + α(xk+1 − µk) = (1− α)kx1 +
k∑

j=1

α(1− α)k−jxj+1

I Robbins-Monro Step Sizes: convergence to the true mean is
guaranteed almost surely under the following conditions:

(independence from
initial conditions

)
∞∑
k=1

αk =∞
∞∑
k=1

α2
k <∞ (ensure convergence)

9



First-visit MC Policy Evaluation

Algorithm 2 First-visit MC Policy Evaluation

1: Initialize V π(x), π(x)
2: loop
3: Generate ρ := (x0:T , u0:T−1) from π
4: for x ∈ ρ do
5: L← return following first appearance of x in ρ
6: V π(x)← V π(x) + α(L− V π(x)) . usual choice: α := 1

N(x)+1

I The recency-weighted updates can be useful to track the value average
in non-stationary problems (e.g., forgeting old episodes)

10



Temporal-Difference Policy Evaluation

I Bootstrapping: the value estimate of state x relies on the value
estimate of another state

I TD combines the sampling of MC with the bootstrapping of DP:

V π(x) = Eρ∼π[Lt(ρ) | xt = x ]

MC
=== Eρ∼π

[
T−1∑
τ=t

γτ−t`(xτ , uτ ) + γT−tq(xT ) | xt = x

]

= Eρ∼π

[
`(xt , ut) + γ

(
T−1∑
τ=t+1

γτ−t−1`(xτ , uτ ) + γT−t−1q(xT )

)
| xt = x

]
TD(0)

=======
bootstrap

Eρ∼π [`(xt , ut) + γV π(xt+1) | xt = x ]

TD(n)
=======
bootstrap

Eρ∼π

[
t+n∑
τ=t

γτ−t`(xτ , uτ ) + γn+1V π(xt+n+1) | xt = x

]

11



Temporal-Difference Policy Evaluation
I Prediction: estimate V π from trajectory samples ρ = x0:T , u0:T−1 ∼ π

I MC Policy Evaluation: updates the value estimate V π(xt) towards the
long-term cost Lt(xt:T , ut:T−1):

V π(xt)← V π(xt) + α(Lt(xt:T , ut:T−1)− V π(xt))

I TD(0) Policy Evaluation: updates the value estimate V π(xt) towards
an estimated long-term cost `(xt , ut) + γV π(xt+1):

V π(xt)← V π(xt) + α(`(xt , ut) + γV π(xt+1)− V π(xt))

I TD(n) Policy Evaluation: updates the value estimate V π(xt) towards

an estimated long-term cost
t+n∑
τ=t

γτ−t`(xτ , uτ ) + γn+1V π(xt+n+1):

V π(xt)← V π(xt)+α

(
t+n∑
τ=t

γτ−t`(xτ , uτ ) + γn+1V π(xt+n+1)− V π(xt)

)
12



TD(n) Prediction

13



MC and TD Errors

I TD Error: measures the difference between the estimated value V π(xt)
and the better estimate `(xt , ut) + γV π(xt+1):

δt := `(xt , ut) + γV π(xt+1)− V π(xt)

I MC Error: a sum of TD errors:

Lt(xt:T , ut:T−1)− V π(xt) = `(xt , ut) + γLt+1(xt+1:T , ut+1:T−1)− V π(xt)

= δt + γ (Lt+1(xt+1:T , ut+1:T−1)− V π(xt+1))

= δt + γδt+1γ
2 (Lt+2(xt+2:T , ut+2:T−1)− V π(xt+2))

=
T−t−1∑
n=0

γnδt+n

I MC and TD converge: V π(x) approaches the true value of π as the
number of sampled episodes →∞ as long as αk is a Robbins-Monro
sequence and X is finite (needed for TD convergence)

14



Monte-Carlo Backup

V π(xt)← V π(xt) + α(Lt(xt:T , ut:T−1)− V π(xt))

15



Temporal-Difference Backup

V π(xt)← V π(xt) + α(`(xt , ut) + γV π(xt+1)− V π(xt))

16



Dynamic-Programming Backup

V π(xt)← `(xt , ut) + γExt+1∼pf (·|xt ,ut) [V π(xt+1)]

17



MC vs TD Policy Evaluation

I MC:
I Must wait until the end of an episode before updating V π(x)

I The value estimates are zero bias but high variance (long-term cost
depends on many random transitions)

I Not very sensitive to initialization

I Has good convergence properties even with function approximation (i.e.,
non-tabular setting)

I TD:
I Can update V π(x) before knowing the complete episode and hence can

learn online, after each transition, regardless of subsequent controls

I The value estimates are biased but low variance (TD(0) target depends
on one random transition)

I More sensitive to initialization than MC

I May not converge with function approximation (i.e., non-tabular setting)

18



Bias-Variance Trade-off

19



Batch MC and TD Policy Evaluation
I Batch setting: given finite experience {ρ(k)}Kk=1

I Accumulate value function updates according to MC or TD for
k = 1, . . . ,K

I Apply the update to the value function only after a complete pass
through the data

I Repeat until the value function estimate converges

I Batch MC: converges to V π that best fits the observed costs:

V π(x) = arg min
V

K∑
k=1

Tk∑
t=0

(
Lt(ρ

(k))− V
)2
1{x (k)t = x}

I Batch TD(0): converges to V π of the maximum likelihood MDP
model that best fits the observed data

p̂f (x ′ | x , u) =
1

N(x , u)

K∑
k=1

Tk∑
t=1

1{x (k)t = x , u
(k)
t = u, x

(k)
t+1 = x ′}

ˆ̀(x , u) =
1

N(x , u)

K∑
k=1

Tk∑
t=1

1{x (k)t = x , u
(k)
t = u}`(x (k)t , u

(k)
t )

20



Averaging n-Step Returns

I Define the n-step return:

L
(n)
t (ρ) := `(xt , ut) + γ`(xt+1, ut+1) + . . .+ γn`(xt+n, ut+n) + γn+1V π(xt+n+1)

L
(0)
t (ρ) = `(xt , ut) + γV π(xt+1) (TD(0))

L
(1)
t (ρ) = `(xt , ut) + γ`(xt+1, ut+1) + γ2V π(xt+2)

...

L
(∞)
t (ρ) = `(xt , ut) + γ`(xt+1, ut+1) + . . .+ γT−t−1`(xT−1, uT−1) + γT−tq(xT ) (MC )

I TD(n):

V π(xt)← V π(xt) + α(L
(n)
t (ρ)− V π(xt))

I Averaged-return TD: combines bootstrapping from several states:

V π(xt)← V π(xt) + α

(
1

2
L
(2)
t (ρ) +

1

2
L
(4)
t (ρ)− V π(xt)

)
I Can we combine information from all time-steps?

21



Forward-view TD(λ)
I λ-return: combines all n-step returns:

Lλt (ρ) = (1− λ)
∞∑
n=0

λnL
(n)
t (ρ)

I Forward-view TD(λ):

V π(xt)← V π(xt) + α
(
Lλt (ρ)− V π(xt)

)
I Like MC, the Lλt return can only be

computed from complete episodes

22



Backward-view TD(λ)
I Forward-view TD(λ) is equivalent to TD(0) for λ = 0 and to every-visit

MC for λ = 1

I Backward-view TD(λ) allows online updates from incomplete episodes

I Credit assignment problem: did the bell or the light cause the shock?

I Frequency heuristic: assigns credit to the most frequent states
I Recency heuristic: assigns credit to the most recent states
I Eligibility trace: combines both heuristics

et(x) = γλet−1(x) + 1{x = xt}

I Backward-view TD(λ): updates in proportion to the TD error δt and
the eligibility trace et(x):

V π(xt)← V π(xt) + α (`(xt , ut) + γV π(xt+1)− V π(xt)) et(xt)

23


