ECE276B: Planning & Learning in Robotics
Lecture 11: Model-free Prediction

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Zhichao Li: zhI355@eng.ucsd.edu
Ehsan Zobeidi: ezobeidi@eng.ucsd.edu
Ibrahim Akbar: iakbar@eng.ucsd.edu

UCSan Diego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

mailto:natanasov@ucsd.edu
mailto:zhl355@eng.ucsd.edu
mailto:ezobeidi@eng.ucsd.edu
mailto:iakbar@eng.ucsd.edu

From Optimal Control To Reinforcement Learning

» Stochastic Optimal Control: MDP with known motion model
pr(x’ | x,u) and cost function ¢(x, u)
» Model-based Prediction: computes the value function V™ of a given
policy 7 (policy evaluation theorem)

» Model-based Control: optimizes the value function V™ to obtain an
improved policy 7' (policy improvement theorem)

» Reinforcement Learning: MDP with unknown motion model
pr(x’ | x, u) and cost function £(x, u) but access to examples of system
transitions and incurred costs
»> Model-free Prediction: estimates the value function V™ of a given
policy m:
» Monte-Carlo (MC) Prediction
» Temporal-Difference (TD) Prediction

» Model-free Control: optimizes the value function:
» On-policy MC Control: e-greedy
» On-policy TD Control: SARSA
» Off-policy MC Control: Importance Sampling
» Off-policy TD Control: Q-Learning

Dynamic Programming Backup Operators

» Operators for policy-specific value functions:
» Policy Evaluation Backup Operator:

T=[VI(x) := H[x, m(x), V] = £(x, (X)) + VExs e py (-}, (x)) [V (X)]
» Policy Q-Evaluation Backup Operator:
Tl QI(x, u) == £(x, u) + VBoxr e, (1,0 [R(X, 7(x'))]

» QOperators for the optimal value function:
» Value Iteration Backup Operator:

«V = min H[x,u,V]= min {{(x, ot o (-1x.) [V (X
TVI() = min Hix,u. V] ug?x){ (5) + VB x,0) [V
» Q-Value Iteration Backup Operator:

7:ﬂ[Q](Xa U) = K(Xa LI) + ’VEX/pr(~|X,u) |: min Q(X/a ul)]

u’ €U(x")

Model-free Prediction

» The main idea of model-free prediction is to approximate the Policy
Evaluation backup operators 7.[V] and 7:[Q] using samples instead of
computing the expectation exactly:

> Monte-Carlo (MC) methods:
» Expected cost can be approximated by a sample average over whole
system trajectories (until termination in the SSP and final-horizon setting)

» Temporal-Difference (TD) methods:
> Expected cost can be approximated by a sample average over a single
system transition and an estimate of the expected cost at the new state
(bootstrapping)

» Sampling: value estimates rely on samples:
» DP does not sample
» MC samples
» TD samples

» Bootstrapping: value estimates rely on other value estimates:
» DP bootstraps
» MC does not bootstrap
» TD bootstraps

Unified View of Reinforcement Learning
Exhaustive

Dynamic search
programming

full \
backups]
bisaacwuprl)g Y Temporal- Monte Carlo
difference
learning

shallow ~ DoOISIrapping, A deep
backups backups I

Monte-Carlo Policy Evaluation

» Episode: a random sequence p; of states and controls from the start x;,
following the system dynamics to termination under policy = (SSP):

Pt = Xt, Uty X1, Ug15 - - - 3 XT 1, UT -1, XT ~ T

» Goal: approximate V™(xp) from several episodes p(()k) = x(():k%, u((,f(%fl

under policy

» Recall that the long-term cost is the sum of discounted stage costs:

T-1
Le(pt) = Le(xeT, UrT-1) = Z YT (xr s ur) + ’YT_tCI(XT)
T=t

» Monte-Carlo (MC) Policy Evaluation: uses the empirical mean of
long-term costs obtained from different episodes pgk) to approximate the

value of 7, i.e., the expected long-term cost:

K
1
V() = EpunlLe(p) | xe = x] = 2 D Lelpt")
k=1

First-visit Monte-Carlo Policy Evaluation

> Prediction: estimate V™(x) from trajectory samples p(k) ~ 7

» For each state x and episode p(k), find the first time step t that state x
is visited in p(%) and increment:

> the number of visits to x: N(x) + N(x)+1
> the long-term cost starting from x: C(x) < C(x) + L¢(p(¥)

» Approximate value function: V7(x) ~ 6

» Every-visit MC Policy Evaluation: same idea but the long-term costs
are accumulated following every time step t that state x is visited in p(K)

First-visit MC Policy Evaluation

Algorithm 1 First-visit MC Policy Evaluation

1: Initialize V7 (x), 7(x), C(x) <=0, N(x) <0

2: loop

3: Generate p := (xo.T, Up:7—1) from 7

4 for x € p do

5: L < return following first appearance of x in p
6: N(x) «+ N(x)+1

7: C(x) «+ C(x)+L

8 V(x) < 583

» Every-visit MC would add to C(x) not a single return L but the returns
{L} following all appearances of x in p

Running Sample Average

» Consider a sequence xi, Xo, ..., of samples from a random variable
> Usual way of computing the sample mean: ji41 = 1 jk+11xj
» Running sample average:
]k 1 k 1
Hk+1 k+1;; PR k+1+;J k+1(k+1+ 14k)
= pk + P 1(></<+1 — k)

» Recency-weighted average: update iy using a step-size o # k%rl:

pir1 = pk+ (g1 —) = (1= a)fxa + > a(l = a) xp,
j=1
» Robbins-Monro Step Sizes: convergence to the true mean is
guaranteed almost surely under the following conditions:

o0

independence from _ 2
(neepencence oom) E Qg = 00 E aj < oo (ensure convergenceg
k=1

First-visit MC Policy Evaluation

Algorithm 2 First-visit MC Policy Evaluation

1. Initialize V7 (x), m(x)

2: loop

3: Generate p := (xo.7, Up.:7—1) from 7

4: for x € p do

5: L < return following first appearance of x in p

6: V7 (x) < V™(x) + a(L — V™(x)) > usual choice: o = W

» The recency-weighted updates can be useful to track the value average
in non-stationary problems (e.g., forgeting old episodes)

10

Temporal-Difference Policy Evaluation

» Bootstrapping: the value estimate of state x relies on the value
estimate of another state

» TD combines the sampling of MC with the bootstrapping of DP:
V7 (x) = EperlLe(p) | xe = X]

r7-1
mcC _ _
==Epur | D7 Ul un) + 9T alxT) | xe = X]

L7T=t

T-1
= EPN# E(Xh Ut) +7 (Z VTitilg(Xﬁ UT) + VTth(XT)> | Xt = X]
T=t+1

TD(0
2O (6,) + YV (xe41) | %= x]
bootstrap
TD(n) [&
n —
2O g S AT s 1) + AV (i) | e = X]
bootstrap p—’

11

Temporal-Difference Policy Evaluation

| 2

| 2

Prediction: estimate V™ from trajectory samples p = xo. T, Ug:7—1 ~ 7
MC Policy Evaluation: updates the value estimate V7 (x;) towards the
long-term cost L¢(x¢.7, U 7-1):

V7 (xt) < V™ (xt) + a(Le(xe.7, ue7 1) — V(X))

TD(0) Policy Evaluation: updates the value estimate V™ (x;) towards
an estimated long-term cost ¢(x¢, ut) + yV™ (xe41):

VT (xe) < V7 (xe) + a(l(xe,) + 7V (xep1) = VT(xe))

TD(n) Policy Evaluation: updates the value estimate V™(x;) towards
t+n
an estimated long-term cost ZVT*%(XT, ur) + 7"V (X ng1):

T=t

t+n
Vi(xt) = V(%) +a (Z VO ur) + YTV (Xe) — VW(Xt)>

T=t

12

TD(n) Prediction

1D (1-step) 2-step

3-step

r-step

Monte Carlo

13

MC and TD Errors

» TD Error: measures the difference between the estimated value V™ (x;)
and the better estimate ¢(x¢, ut) + v V™ (xr41):

Ot == l(xe, ue) + YV (xe41) — V7 (%)
» MC Error: a sum of TD errors:

Le(xe.7, up7—1) — V7 (xe) = €(Xe, Ue) + vLep1(Xeq1: 75 Upg1:7-1) — V7 (Xt)
=0t + v (Lexa (Xt 17, Uey1:7-1) — V™ (Xe41))

=0: + ’75t+1’Y2 (Lego(XeqoT, Urro.7—1) — V™ (Xe42))
T—t—1

= Z 7n5t+n
n=0

» MC and TD converge: V™(x) approaches the true value of 7 as the
number of sampled episodes — oo as long as «ay is a Robbins-Monro
sequence and X is finite (needed for TD convergence)

14

Monte-Carlo Backup

VT (x¢) < V™ (xe) + a(Le(xe.T, 1) — V(X))

Xt ®

.H\

15

Temporal-Difference Backup

V7 (xt) < VT (xt) + allxe, ur) + 7V (xe1) — VT (xe))

X4

O O O O
\

O O
QOMEQ O L& O Q0 0O

| / l
/ g /]

16

Dynamic-Programming Backup

Vﬁ(Xt) < E(Xtv ut) + /VExt+1~pf(~|xt,ut) [Vﬂ(xt-i-l)]

Pa ¥

17

MC vs TD Policy Evaluation

> MC:
>

>

Must wait until the end of an episode before updating V™ (x)

The value estimates are zero bias but high variance (long-term cost
depends on many random transitions)

P> Not very sensitive to initialization

> Has good convergence properties even with function approximation (i.e.,

> TD:

non-tabular setting)

Can update V™(x) before knowing the complete episode and hence can
learn online, after each transition, regardless of subsequent controls

The value estimates are biased but low variance (TD(0) target depends
on one random transition)

» More sensitive to initialization than MC

> May not converge with function approximation (i.e., non-tabular setting)

18

Bias-Variance Trade-off

Low Variance High Variance
2
m J
z
=
-, -
L7

&

==}

5

T

19

Batch MC and TD Policy Evaluation

> Batch setting: given finite experience {p(K)}K_,
» Accumulate value function updates according to MC or TD for
k=1,....K
» Apply the update to the value function only after a complete pass
through the data
P> Repeat until the value function estimate converges

» Batch MC: converges to V™ that best fits the observed costs:

K Tk 5
V™(x) = arg‘;nin ZZ <Lt(,0(k)) — V)]l{ng) = x}
k=1 t=0

» Batch TD(0): converges to V™ of the maximum likelihood MDP
model that best fits the observed data
K T«

. 1 k k k
pf(lexju):mZZ]l{xﬁ):x,ug):u,xt(+)1le}

k=1 t=1

K T
B0) = gy 2o D2 1) =l = (), of)
k=

1t=1 20

Averaging n-Step Returns

» Define the n-step return:

Lgn)(l’) = (e, te) + VU(Xeq1, Uegr) + oo+ YU Xetny Uegn) + W"H V7 (Xt4nt1)
O Xes te) + YV (xer1) (TD(0))

t (p)
(Xty Ut) + YU(Xe1, Urs1) + 72V (Xe12)

LO) = ¢
L (p) =
LEN(p) = e,)+ (xe1, tesa) + o3 T M, uro1) +97 q(xr) (MC)
» TD(n):
V7(xt) = V7(xe) + a(Li” (p) = V7(xt))
» Averaged-return TD: combines bootstrapping from several states:

1

V) e Vi) +a (5000 + 51000 - i)

» Can we combine information from all time-steps?

21

Forward-view TD(\)

» A-return: combines all n-step returns: TD(), A-return
Lo Z AL E
1-&
» Forward-view TD()\): e,
VT (xe) < V7 (xe) + a (L?(p) - V”(xt)> e
» Like MC, the L} return can only be ¥ - L
computed from complete episodes e
- t::'é’.“;é’;”iﬂj% total area = 1
‘ decay by &
WBighi 1-A \ wtegh}_gi\;enttu

Time ——= 2

Backward-view TD(\)

» Forward-view TD(\) is equivalent to TD(0) for A = 0 and to every-visit
MC for A =1

» Backward-view TD()) allows online updates from incomplete episodes

» Credit assighment problem: did the bell or the light cause the shock?

e %0 A

» Frequency heuristic: assigns credit to the most frequent states
» Recency heuristic: assigns credit to the most recent states
» Eligibility trace: combines both heuristics

er(x) = yAer—1(x) + L{x = x;}

» Backward-view TD(\): updates in proportion to the TD error §; and
the eligibility trace e;(x):

VT (x¢) = V™ (xt) + o (U(xe, ue) + 7V (xer1) — VT (xe)) ee(xe)
23

