ECE276B: Planning & Learning in Robotics
Lecture 12: Model-free Control

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Zhichao Li: zhI355@eng.ucsd.edu
Ehsan Zobeidi: ezobeidi@eng.ucsd.edu
Ibrahim Akbar: iakbar@eng.ucsd.edu

UCSan Diego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

mailto:natanasov@ucsd.edu
mailto:zhl355@eng.ucsd.edu
mailto:ezobeidi@eng.ucsd.edu
mailto:iakbar@eng.ucsd.edu

Model-free Generalized Policy lteration

» Model-based case: our main tool for solving a stochastic
infinite-horizon problem was Generalized Policy Iteration (GPI):

» Policy Evaluation: Given 7, compute V™:
VF(X) = K(X,W(X)) + ’YEX’pr(<|X,7r(X)) [VTF(XI)] , VxeX
» Policy Improvement: Given V™ obtain a new policy 7'

7' (x) = arg min {€(x, u) + VB op,(ooy [VT (X))}, Vx€EX
u€U(x)

QT (x,u)
» Model-free case: is it still possible to implement the GPI algorithm?

» Policy Evaluation: given 7, we saw in the previous lecture that MC or
TD can be used to estimate V™ or QT

» Policy Improvement: computing 7’ based on V™ requires access to
{(x, u) but based on Q™ can be done without knowing /(x, u):

7' (x) = arg min Q" (x, u)
u€U(x)

Policy Evaluation (Recap)

» Given T, iterate 7, to compute V™ or Q™ via Dynamic Programming
(DP), Temporal Difference (TD), or Monte Carlo (MC)

» DP needs a model but TD and MC are model-free

» Value function:
DP : T [V]I(xt) = (xe, m(xt)) + YEx 1 mpr (cIxesm()) [V (Xe41)]
TD : Tx[V](xt) = V(xt) + a [l(xe, ur) + 7V (xer1) — V(xe)]
T-t-1

Z VU Xeh i) 7T Fa(xr) = V(%)
k=0

MC : T[V](x) = V(x:) + «

» Q function:

DP: 7;1'[Q](Xf7 uf) = E(Xtv ut) + FYEX1+1NPf(‘|Xt7U[) [Q(Xﬂrl’ 71'(Xf+1))]
TD : Tr[Q](xe, ue) = Q(xe, ue) + o [((xe, ue) + ¥ Q(Xet1, trt1) — Qxe, ut)]

MC : TR[Q](xt, ur) = Q(xt, ur) + «

T—t-1
> AU i) + T ta(xr) = Qe ut)}
k=0

3

Model-free Policy Improvement

» If Q7, instead of V™, is estimated via MC or TD, the policy
improvement step can be implemented model-free, i.e., can compute
min, Q™ (x, u) without knowing the motion model ps or the state cost ¢

» The fact that Q™ is an approximation to the true Q-function still causes
problems:

» Picking the “best” control according to the current estimate Q™ might
not be the actual best control

> If a deterministic policy is used for Evaluation/Improvement, one will
observe returns for only one of the possible controls at each state and also
might not visit many states. Hence, estimating Q™ will not be possible at
those never-visited states and controls.

Example: Greedy Control Selection (David Silver)

| 2

>

There are two doors in front of you

You open the left door and get reward 0
((left) =0

You open the right door and get reward +1
U(right) = —1

You open the right door and get reward +3
{(right) = =3

You open the right door and get reward +2
{(right) = =2

Are you sure the right door is the best
long-term choice?

“Behind one door |s tenure - behind the other
is flipping burgers at McDonald's.”

Model-free Control

» Two ideas to ensure that you do not commit to the wrong controls too
early and continue exploring the state and control spaces:

1. Exploring Starts: in each episode p(K) ~ 7, choose initial state-control
pairs with non-zero probability among all possible pairs X x U

2. e-Soft Policy: a stochastic policy under which every control has a
non-zero probability of being chosen and hence every reachable state will
have non-zero probability of being encountered

First-visit MC Policy Iteration with Exploring Starts

Algorithm 1 MC Policy Iteration with Exploring Starts

1: Init: Q(x,u),m(x) for all x € X and u e U

2: loop

3: Choose (xo, o) € X x U randomly > exploring starts!
4. Generate an episode p = xo, Uo, X1, U1, . . ., XT—1, Us—1, X7 from 7w

5: for each x, u in p do

6: L < return following the first occurrence of x, u

7: Q(x,u) + Q(x,u) + a(L— Q(x,u))

8: for each x in p do

9:

w(x) « arg min Q(x, u)

e-Greedy Exploration

» An alternative to exploring starts

> To ensure exploration it must be possible to encounter all [1/(x)|
controls at state x with non-zero probability

» ¢-Greedy Policy: a stochastic policy that picks the best control
according to Q(x, u) in the policy improvement step but ensures that all
other controls are selected with a small (non-zero) probability:

1— €+ gt if u=argmin Q(x, v’)
m(u|x)=Plur=u|x =x):= u'eU(x)
. .
el otherwise

e-Greedy Policy Improvement

Theorem: e-Greedy Policy Improvement

For any e-soft policy 7 with associated Q™, the e-greedy policy 7’ with
respect to Q™ is an improvement, i.e., V™ (x) < V7(x) for all x € X

» Proof:
IEu’w'n”(~|)<) [QW(Xa ul)] = Z 7_(,/(“/ | X)QW(Xv ul)
u'€U(x)
(UIEZL{%X)Q (x, ")+ (1L —%¢) ug{l(nx)Q (x, u)
(u] x) EX
S Z Q™ (x,u')+ (L —¢) Z T O] Q™ (x, u)
' EU(x) uet(x) €
= Z m(u [x)Q7(x,u) = V7(x)

u€U(x)

» Then, from the policy improvement theorem, V™ (x) < V™(x), ¥x € X
9

First-visit MC Policy lteration with e-Greedy Improvement

Algorithm 2 First-visit MC Policy lteration with e-Greedy Improvement

1: Init: Q(x, u), w(u|x) (e-soft policy) for all x € X and u € U

2: loop

3: Generate an episode p := xo, Up, X1, U1, . . . , XT—1, Ut—1, XT from 7
4: for each x, u in p do

5: L < return following the first occurrence of x, u

6: Q(x,u) < Q(x,u) + a(L — Q(x, u))

7 for each x in p do

8:

u* «+ argmin Q(x, u)
u

1—6+m ifU:U*

m(ulx) + { .

©

W if uu”

Temporal-Difference Control

» TD prediction has several advantages over MC prediction:
» Works with incomplete episodes

» Can perform online updates to Q™ after every transition

» The TD estimate of Q@™ has lower variance than the MC one
» TD in the policy iteration algorithm:

» Use TD for policy evaluation

> Can update Q(x, u) after every transition within an episode

» Use an e-greedy policy for policy improvement because we still need to
trade off exploration and exploitation

11

TD Policy Iteration with e-Greedy Improvement (SARSA)

» SARSA: estimates the action-value function Q™ using TD updates after
every S¢, As, Ret1, St1, Arr1 transition:

Q(xt, u) < Q(x¢, ut) + a [0(xe, ue) + v Q(Xeq1, Ups1) — QXe, ue)]

» Ensures exploration via an e-greedy policy in the policy improvement step

Algorithm 3 SARSA

1: Init: Q(x,u) forall x € X and all u € U

2: loop

3 T < e-greedy policy derived from Q

4: Generate episode p := (xo.T, Up.7—1) from 7

5: for (x,u,x’,u') € p do

6: Q(x,u) + Q(x,u) + all(x,u) + yQ(X',u') — Q(x, u)]

12

Convergence of Model-free Policy lteration

> Greedy in the Limit with Infinite Exploitation (GLIE):
> All state-control pairs are explored infinitely many times: klim N(x,u) = o0
— 00

» The e-greedy policy converges to a greedy policy

lim m(u | x) = 1{u = argmin Q(x, a’)}
k—o0 U'EM(X)

» Example: If ¢ = % then e-greedy is GLIE

Theorem: Convergence of Model-free Policy Iteration

Both MC Policy Iteration and SARSA converge to the optimal action-value
function, Q(x, u) — Q*(x, u), as the number of episodes k — oo as long as:

» the sequence of e-greedy policies mx(u | x) is GLIE,

» the sequence of step sizes ay is Robbins-Monro.

13

On-Policy vs Off-Policy Learning

» On-policy Prediction: estimate V™ or Q™ using experience from 7

» Off-policy Prediction: estimate V™ or Q™ using experience from g

» On-policy methods:
» evaluate or improve the policy 7 that is used to make decisions and
collect experience
> require well-designed exploration functions
» empirically successful with function approximation

» Off-policy methods:
> evaluate or improve a policy 7 that is different from the (behavior) policy
1 used to generate data
can use an effective exploratory policy u to generate data while learning
about an optimal policy
can learn from observing other agents (or humans)
can re-use experience from old policies 71, m, ..., Tk_1
can learn about multiple policies while following one policy
have problems with function approximation and eligibility traces

v

vvyvyy

14

Importance Sampling for Off-policy Learning

» Off-policy learning: use returns generated from p to evaluate 7

» The stage costs obtained from p, need to be re-weighted according to
the similarity (i.e., likelihood) of the states encountered by 7

» Importance Sampling: estimates the expectation of a function with
respect to a different distribution:

Exop(y[F(X)] = / p(x)F (x)dx

15

Importance Sampling for Off-policy MC Learning

» To use returns generated from p to evaluate 7 via MC, weight the
long-term cost L; via importance-sampling corrections along the whole
episode:

[T/ — 7 (ue|xe) T(uega|Xe41) _.'W(UT—1|XT—1)
' p(uelxe) p(ues1]xes1) w(ur_1]x7T-1)

L
» Update the value estimate towards the corrected return:
V(x) < Vix) +a (L7 = V(x))

» Importance sampling in MC can dramatically increase the variance and
cannot be used if u is zero when 7 is non-zero

16

Importance Sampling for Off-policy TD Learning

» To use returns generated from u to evaluate 7 via TD, weight the TD
target £(x, u) +vV/(x’) by importance sampling:

m(ut | xt)

V(xt) < V(x) + </L(Ut | Xt)

(£) + 7V (x52)) — V(xt)>

» Importance sampling in TD is much lower variance than in MC and the
policies need to be similar (i.e., u should not be zero when 7 is
non-zero) over a single step only

17

Off-policy TD Control without Importance Sampling

» Q-Learning (Watkins, 1989): one of the early breakthroughs in
reinforcement learning was the development of an off-policy TD
algorithm that does not use importance sampling

» Q-Learning approximates 7.[Q](x, u) directly using samples:

Q(xe, ur) = Q(x¢, ug)+ v [£(xe, ur) + 7y ezT(in | Q(Xt+1, u) — Q(xe, ue)
u Xt+1

» The learned Q function eventually approximates Q* regardless of the
policy being followed!

Theorem: Convergence of Q-Learning

Q-Learning converges almost surely to @* assuming all state-control pairs
continue to be updated and the sequence of step sizes ay is Robbins-Monro.

» C. J. Watkins and P. Dayan. “Q-learning,” Machine learning, 1992.
18

Q-Learning: Off-policy TD Learning

Algorithm 4 Q-Learning

1 Init: Q(x,u) forall x € X and all u e U
2: loop
3: m < e-greedy policy derived from Q
Generate episode p := (xo.T, Up.7—1) from 7
for (x,u,x’) € p do
Q(x, 1) 4 Q(x, u) + o [£(x, u) + 7 miny Q(, u') — Q(x, u)]

AN

19

Relationship Between Full and Sample Backups

Full Backups (DP) Sample Backups (TD)

Policy Evaluation TD Prediction

V(x) < To[VI(x) = €(x, 7(x)) + 1B [V(X)] V(x) < V(x) + all(x, u) + V(X)) = V(x)

Policy Q-Evaluation TD Prediction Step in SARSA

Qx, u) T QI(x, u) = £(x, u) + 1By [Q(X, 7(x)] | Qx, u) « Q(x, u) + a((x, 1) +7Q(X', ') — Q(x, u))
Value lteration N/A

V(x) + T V](x) = muin {e(x,u) +1Ey [V(X)]}

Q-Value Ilteration Q-Learning

Q(x, u) + T[Q](x, u) = l(x,u) + VEy [nz,'/" Q(x, ul)] Q(x, u) + Q(x,u) + « (Z(XA, u)+y nll/n Q') — Q(x, u))

20

Batch Sampling-based Q-Value Iteration

Algorithm 5 Batch Sampling-based Q-Value Iteration

1: Init: Qo(x,u) forall x € X and all u e U

2: loop

3: m < e-greedy policy derived from Q
4: Generate episodes {p(K)}K_| from
5: for(xu)eXxZ/{do

(k) (k) (k)) 1{(x! (k) ui(:k)):

(

X, U

)}

6: Qit1(x,u)

Zt ﬁ[Q,](Xt y U 7 X¢
KZ 0 {(xﬁk%+ ulﬁ“) (x, u)}

» Batch Sampling-based Q-Value Iteration behaves like
Qi+1 = T:[Qi] + noise. Does it actually converge?

21

L east-squares Backup Version
» Qit1(x,u) = mean {T*[Q](xt ,ugk), t(+)1) Vk, t such that (xt 7ut)— (x, u)}
» Note that: mean {x(k } = argmin Zk:l [x(F) — x]|2

X

K
> Qit+1(x, u) = argmin Z Z ’

T k= 1() u)=(x,u)

| 2 Q,+1 = arg mlnzz ‘ 7;[QI) 1(5k)7 t(-l:-)l) - (t (k))H2

k=1 t=0

2
TR, . x) — q

Algorithm 6 Batch Least-squares Q-Value Iteration

1. Init: Qo(x,u) forall x € X and all u € U

2: loop
3: 7w < e-greedy policy derived from Q
4: Generate episodes {p k)}k , from m
k) (k) _(k k
Qi3S [0,) - 0)

k=1 t=0

N
N

Small Steps in the Backup Direction
» Full backup: Qi1 < 7[Qi] + noise
» Partial backup: Qi1 + aT.[Qi] + (1 — @) Q; + noise
» Equivalent to a gradient step on squared error objective function:
Qi+1 < aT:[Qi] + (1 — @) Q; + noise
= Q; — a(Q; — T:[Qi]) + noise

1 .
=Q —« <2VQHQ—7§<[Q,']H2 —i—nmse)
Q=Q;
» Behaves like stochastic gradient descent for f(Q) := %||7;[Q] — Q|? but
the objective is changing, i.e., T.[Q;] is a moving target

» Stochastic Approximation Theory: a “partial update” to ensure
contraction + appropriate step size v implies convergence to the
contraction fixed point: lim;_ . Q; = Q*

» T. Jaakkola, M. Jordan, S. Singh, “On the convergence of stochastic
iterative dynamic programming algorithms,” Neural computation, 19943

L east-squares Partial Backup Version

Algorithm 7 Batch Gradient Least-squares Q-Value lteration

=

Init: Qo(x,u) for all x € X and all u e U
2: loop

3: 7w < e-greedy policy derived from Q
4 Generate episodes {p k)}k , from 7

Qi1+ Q= 5Va Zano, {9, uf <) - @,

k=1 t=0

o

uék’)ﬂ

R=Q;

» Watkins Q-learning is a special case with T =1

24

