
ECE276B: Planning & Learning in Robotics
Lecture 12: Model-free Control

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Zhichao Li: zhl355@eng.ucsd.edu
Ehsan Zobeidi: ezobeidi@eng.ucsd.edu
Ibrahim Akbar: iakbar@eng.ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:zhl355@eng.ucsd.edu
mailto:ezobeidi@eng.ucsd.edu
mailto:iakbar@eng.ucsd.edu

Model-free Generalized Policy Iteration
I Model-based case: our main tool for solving a stochastic

infinite-horizon problem was Generalized Policy Iteration (GPI):

I Policy Evaluation: Given π, compute V π:

V π(x) = `(x , π(x)) + γEx′∼pf (·|x,π(x)) [V π(x ′)] , ∀x ∈ X
I Policy Improvement: Given V π obtain a new policy π′:

π′(x) = arg min
u∈U(x)

{
`(x , u) + γEx′∼pf (·|x,u) [V π(x ′)]

}︸ ︷︷ ︸
Qπ(x,u)

, ∀x ∈ X

I Model-free case: is it still possible to implement the GPI algorithm?

I Policy Evaluation: given π, we saw in the previous lecture that MC or
TD can be used to estimate V π or Qπ

I Policy Improvement: computing π′ based on V π requires access to
`(x , u) but based on Qπ can be done without knowing `(x , u):

π′(x) = arg min
u∈U(x)

Qπ(x , u)

2

Policy Evaluation (Recap)
I Given π, iterate Tπ to compute V π or Qπ via Dynamic Programming

(DP), Temporal Difference (TD), or Monte Carlo (MC)

I DP needs a model but TD and MC are model-free

I Value function:

DP : Tπ[V](xt) = `(xt , π(xt)) + γExt+1∼pf (·|xt ,π(xt)) [V (xt+1)]

TD : Tπ[V](xt) ≈ V (xt) + α [`(xt , ut) + γV (xt+1)− V (xt)]

MC : Tπ[V](xt) ≈ V (xt) + α

[
T−t−1∑
k=0

γk`(xt+k , ut+k) + γT−tq(xT)− V (xt)

]
I Q function:

DP : Tπ[Q](xt , ut) = `(xt , ut) + γExt+1∼pf (·|xt ,ut) [Q(xt+1, π(xt+1))]

TD : Tπ[Q](xt , ut) ≈ Q(xt , ut) + α [`(xt , ut) + γQ(xt+1, ut+1)− Q(xt , ut)]

MC : Tπ[Q](xt , ut) ≈ Q(xt , ut) + α

[
T−t−1∑
k=0

γk`(xt+k , ut+k) + γT−tq(xT)− Q(xt , ut)

]

3

Model-free Policy Improvement

I If Qπ, instead of V π, is estimated via MC or TD, the policy
improvement step can be implemented model-free, i.e., can compute
minu Q

π(x , u) without knowing the motion model pf or the state cost `

I The fact that Qπ is an approximation to the true Q-function still causes
problems:

I Picking the “best” control according to the current estimate Qπ might
not be the actual best control

I If a deterministic policy is used for Evaluation/Improvement, one will
observe returns for only one of the possible controls at each state and also
might not visit many states. Hence, estimating Qπ will not be possible at
those never-visited states and controls.

4

Example: Greedy Control Selection (David Silver)

I There are two doors in front of you

I You open the left door and get reward 0
`(left) = 0

I You open the right door and get reward +1
`(right) = −1

I You open the right door and get reward +3
`(right) = −3

I You open the right door and get reward +2
`(right) = −2

I Are you sure the right door is the best
long-term choice?

5

Model-free Control

I Two ideas to ensure that you do not commit to the wrong controls too
early and continue exploring the state and control spaces:

1. Exploring Starts: in each episode ρ(k) ∼ π, choose initial state-control
pairs with non-zero probability among all possible pairs X × U

2. ε-Soft Policy: a stochastic policy under which every control has a
non-zero probability of being chosen and hence every reachable state will
have non-zero probability of being encountered

6

First-visit MC Policy Iteration with Exploring Starts

Algorithm 1 MC Policy Iteration with Exploring Starts
1: Init: Q(x , u), π(x) for all x ∈ X and u ∈ U
2: loop
3: Choose (x0, u0) ∈ X × U randomly . exploring starts!
4: Generate an episode ρ = x0, u0, x1, u1, . . . , xT−1, ut−1, xT from π
5: for each x , u in ρ do
6: L← return following the first occurrence of x , u
7: Q(x , u)← Q(x , u) + α (L− Q(x , u))

8: for each x in ρ do
9: π(x)← arg min

u
Q(x , u)

7

ε-Greedy Exploration

I An alternative to exploring starts

I To ensure exploration it must be possible to encounter all |U(x)|
controls at state x with non-zero probability

I ε-Greedy Policy: a stochastic policy that picks the best control
according to Q(x , u) in the policy improvement step but ensures that all
other controls are selected with a small (non-zero) probability:

π(u | x) = P(ut = u | xt = x) :=

1− ε+ ε
|U(x)| if u = arg min

u′∈U(x)
Q(x , u′)

ε
|U(x)| otherwise

8

ε-Greedy Policy Improvement

Theorem: ε-Greedy Policy Improvement

For any ε-soft policy π with associated Qπ, the ε-greedy policy π′ with
respect to Qπ is an improvement, i.e., V π′(x) ≤ V π(x) for all x ∈ X

I Proof:

Eu′∼π′(·|x)
[
Qπ(x , u′)

]
=

∑
u′∈U(x)

π′(u′ | x)Qπ(x , u′)

=
ε

|U(x)|
∑

u′∈U(x)

Qπ(x , u′) + (1− ε) min
u∈U(x)

Qπ(x , u)

≤ ε

|U(x)|
∑

u′∈U(x)

Qπ(x , u′) + (1− ε)
∑

u∈U(x)

π(u | x)− ε
|U(x)|

1− ε
Qπ(x , u)

=
∑

u∈U(x)

π(u | x)Qπ(x , u) = V π(x)

I Then, from the policy improvement theorem, V π′(x) ≤ V π(x), ∀x ∈ X
9

First-visit MC Policy Iteration with ε-Greedy Improvement

Algorithm 2 First-visit MC Policy Iteration with ε-Greedy Improvement
1: Init: Q(x , u), π(u|x) (ε-soft policy) for all x ∈ X and u ∈ U
2: loop
3: Generate an episode ρ := x0, u0, x1, u1, . . . , xT−1, ut−1, xT from π
4: for each x , u in ρ do
5: L← return following the first occurrence of x , u
6: Q(x , u)← Q(x , u) + α (L− Q(x , u))

7: for each x in ρ do
8: u∗ ← arg min

u
Q(x , u)

9: π(u|x)←

{
1− ε+ ε

|U(x)| if u = u∗

ε
|U(x)| if u 6= u∗

10

Temporal-Difference Control

I TD prediction has several advantages over MC prediction:
I Works with incomplete episodes

I Can perform online updates to Qπ after every transition

I The TD estimate of Qπ has lower variance than the MC one

I TD in the policy iteration algorithm:
I Use TD for policy evaluation

I Can update Q(x , u) after every transition within an episode

I Use an ε-greedy policy for policy improvement because we still need to
trade off exploration and exploitation

11

TD Policy Iteration with ε-Greedy Improvement (SARSA)

I SARSA: estimates the action-value function Qπ using TD updates after
every St ,At ,Rt+1,St+1,At+1 transition:

Q(xt , ut)← Q(xt , ut) + α [`(xt , ut) + γQ(xt+1, ut+1)− Q(xt , ut)]

I Ensures exploration via an ε-greedy policy in the policy improvement step

Algorithm 3 SARSA

1: Init: Q(x , u) for all x ∈ X and all u ∈ U
2: loop
3: π ← ε-greedy policy derived from Q
4: Generate episode ρ := (x0:T , u0:T−1) from π
5: for (x , u, x ′, u′) ∈ ρ do
6: Q(x , u)← Q(x , u) + α [`(x , u) + γQ(x ′, u′)− Q(x , u)]

12

Convergence of Model-free Policy Iteration

I Greedy in the Limit with Infinite Exploitation (GLIE):
I All state-control pairs are explored infinitely many times: lim

k→∞
N(x , u) =∞

I The ε-greedy policy converges to a greedy policy

lim
k→∞

πk(u | x) = 1{u = arg min
u′∈U(x)

Q(x , a′)}

I Example: If εk = 1
k , then ε-greedy is GLIE

Theorem: Convergence of Model-free Policy Iteration

Both MC Policy Iteration and SARSA converge to the optimal action-value
function, Q(x , u)→ Q∗(x , u), as the number of episodes k →∞ as long as:

I the sequence of ε-greedy policies πk(u | x) is GLIE,

I the sequence of step sizes αk is Robbins-Monro.

13

On-Policy vs Off-Policy Learning

I On-policy Prediction: estimate V π or Qπ using experience from π

I Off-policy Prediction: estimate V π or Qπ using experience from µ

I On-policy methods:
I evaluate or improve the policy π that is used to make decisions and

collect experience
I require well-designed exploration functions
I empirically successful with function approximation

I Off-policy methods:
I evaluate or improve a policy π that is different from the (behavior) policy

µ used to generate data
I can use an effective exploratory policy µ to generate data while learning

about an optimal policy
I can learn from observing other agents (or humans)
I can re-use experience from old policies π1, π2, . . . , πk−1
I can learn about multiple policies while following one policy
I have problems with function approximation and eligibility traces

14

Importance Sampling for Off-policy Learning

I Off-policy learning: use returns generated from µ to evaluate π

I The stage costs obtained from µ, need to be re-weighted according to
the similarity (i.e., likelihood) of the states encountered by π

I Importance Sampling: estimates the expectation of a function with
respect to a different distribution:

Ex∼p(·)[f (x)] =

∫
p(x)f (x)dx

=

∫
q(x)

p(x)

q(x)
f (x)dx = Ex∼q(·)

[
p(x)

q(x)
f (x)

]

15

Importance Sampling for Off-policy MC Learning

I To use returns generated from µ to evaluate π via MC, weight the
long-term cost Lt via importance-sampling corrections along the whole
episode:

L
π/µ
t =

π(ut |xt)
µ(ut |xt)

π(ut+1|xt+1)

µ(ut+1|xt+1)
· · · π(uT−1|xT−1)

µ(uT−1|xT−1)
Lt

I Update the value estimate towards the corrected return:

V (xt)← V (xt) + α
(
L
π/µ
t − V (xt)

)
I Importance sampling in MC can dramatically increase the variance and

cannot be used if µ is zero when π is non-zero

16

Importance Sampling for Off-policy TD Learning

I To use returns generated from µ to evaluate π via TD, weight the TD
target `(x , u) + γV (x ′) by importance sampling:

V (xt)← V (xt) + α

(
π(ut | xt)
µ(ut | xt)

(`(xt , ut) + γV (xt+1))− V (xt)

)
I Importance sampling in TD is much lower variance than in MC and the

policies need to be similar (i.e., µ should not be zero when π is
non-zero) over a single step only

17

Off-policy TD Control without Importance Sampling

I Q-Learning (Watkins, 1989): one of the early breakthroughs in
reinforcement learning was the development of an off-policy TD
algorithm that does not use importance sampling

I Q-Learning approximates T∗[Q](x , u) directly using samples:

Q(xt , ut)← Q(xt , ut)+α

[
`(xt , ut) + γ min

u∈U(xt+1)
Q(xt+1, u)− Q(xt , ut)

]
I The learned Q function eventually approximates Q∗ regardless of the

policy being followed!

Theorem: Convergence of Q-Learning

Q-Learning converges almost surely to Q∗ assuming all state-control pairs
continue to be updated and the sequence of step sizes αk is Robbins-Monro.

I C. J. Watkins and P. Dayan. “Q-learning,” Machine learning, 1992.

18

Q-Learning: Off-policy TD Learning

Algorithm 4 Q-Learning

1: Init: Q(x , u) for all x ∈ X and all u ∈ U
2: loop
3: π ← ε-greedy policy derived from Q
4: Generate episode ρ := (x0:T , u0:T−1) from π
5: for (x , u, x ′) ∈ ρ do
6: Q(x , u)← Q(x , u) + α [`(x , u) + γminu′ Q(x ′, u′)− Q(x , u)]

19

Relationship Between Full and Sample Backups

Full Backups (DP) Sample Backups (TD)

Policy Evaluation TD Prediction
V (x)← Tπ[V](x) = `(x , π(x)) + γEx ′

[
V (x ′)

]
V (x)← V (x) + α(`(x , u) + γV (x ′)− V (x))

Policy Q-Evaluation TD Prediction Step in SARSA
Q(x , u)← Tπ[Q](x , u) = `(x , u) + γEx ′

[
Q(x ′, π(x ′))

]
Q(x , u)← Q(x , u) + α(`(x , u) + γQ(x ′, u′)− Q(x , u))

Value Iteration N/A
V (x)← T∗[V](x) = min

u

{
`(x , u) + γEx ′

[
V (x ′)

]}
Q-Value Iteration Q-Learning

Q(x , u)← T∗[Q](x , u) = `(x , u) + γEx ′

[
min
u′

Q(x ′, u′)

]
Q(x , u)← Q(x , u) + α

(
`(x , u) + γmin

u′
Q(x ′, u′)− Q(x , u)

)

20

Batch Sampling-based Q-Value Iteration

Algorithm 5 Batch Sampling-based Q-Value Iteration

1: Init: Q0(x , u) for all x ∈ X and all u ∈ U
2: loop
3: π ← ε-greedy policy derived from Q
4: Generate episodes {ρ(k)}Kk=1 from π
5: for (x , u) ∈ X × U do

6: Qi+1(x , u) =
1

K

K∑
k=1

∑T
t=0 T∗[Qi](x

(k)
t , u

(k)
t , x

(k)
t+1)1{(x (k)t , u

(k)
t) = (x , u)}∑T

t=0 1{(x
(k)
t , u

(k)
t) = (x , u)}

I Batch Sampling-based Q-Value Iteration behaves like
Qi+1 = T∗[Qi] + noise. Does it actually converge?

21

Least-squares Backup Version
I Qi+1(x , u) = mean

{
T∗[Qi](x

(k)
t , u

(k)
t , x

(k)
t+1), ∀k, t such that (x

(k)
t , u

(k)
t) = (x , u)

}
I Note that: mean

{
x (k)

}
= arg min

x

∑K
k=1 ‖x (k) − x‖2

I Qi+1(x , u) = arg min
q

K∑
k=1

∑
(x

(k)
t ,u

(k)
t)=(x ,u)

∥∥∥T∗[Qi](x
(k)
t , u

(k)
t , x

(k)
t+1)− q

∥∥∥2
I Qi+1 = arg min

Q

K∑
k=1

T∑
t=0

∥∥∥T∗[Qi](x
(k)
t , u

(k)
t , x

(k)
t+1)− Q(x

(k)
t , u

(k)
t)
∥∥∥2

Algorithm 6 Batch Least-squares Q-Value Iteration

1: Init: Q0(x , u) for all x ∈ X and all u ∈ U
2: loop
3: π ← ε-greedy policy derived from Q
4: Generate episodes {ρ(k)}Kk=1 from π

5: Qi+1 = arg min
Q

K∑
k=1

T∑
t=0

∥∥∥T∗[Qi](x
(k)
t , u

(k)
t , x

(k)
t+1)− Q(x

(k)
t , u

(k)
t)
∥∥∥2

22

Small Steps in the Backup Direction
I Full backup: Qi+1 ← T∗[Qi] + noise

I Partial backup: Qi+1 ← αT∗[Qi] + (1− α)Qi + noise

I Equivalent to a gradient step on squared error objective function:

Qi+1 ← αT∗[Qi] + (1− α)Qi + noise

= Qi − α (Qi − T∗[Qi]) + noise

= Qi − α

(
1

2
∇Q‖Q − T∗[Qi]‖2

∣∣∣∣
Q=Qi

+ noise

)
I Behaves like stochastic gradient descent for f (Q) := 1

2‖T∗[Q]−Q‖2 but
the objective is changing, i.e., T∗[Qi] is a moving target

I Stochastic Approximation Theory: a “partial update” to ensure
contraction + appropriate step size α implies convergence to the
contraction fixed point: limi→∞Qi = Q∗

I T. Jaakkola, M. Jordan, S. Singh, “On the convergence of stochastic
iterative dynamic programming algorithms,” Neural computation, 1994.23

Least-squares Partial Backup Version

Algorithm 7 Batch Gradient Least-squares Q-Value Iteration

1: Init: Q0(x , u) for all x ∈ X and all u ∈ U
2: loop
3: π ← ε-greedy policy derived from Q
4: Generate episodes {ρ(k)}Kk=1 from π

5: Qi+1 ← Qi −
α

2
∇Q

[
K∑

k=1

T∑
t=0

‖T∗[Qi](x
(k)
t , u

(k)
t , x

(k)
t+1)− Q(x

(k)
t , u

(k)
t)‖2

]∣∣∣∣
Q=Qi

I Watkins Q-learning is a special case with T = 1

24

