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Continuous-time System Dynamics

I time: t ∈ [0,T ]

I state: x(t) ∈ X ⊆ Rn, ∀t ∈ [0,T ]

I control: u(t) ∈ U ⊆ Rm, ∀t ∈ [0,T ]

I motion model: a stochastic differential equation (SDE):

dx = f (x(t), u(t))dt + C (x(t), u(t))dω, x(0) = x0

I noise: Brownian motion ω(t) (integral of white noise)
I Robert Brown made microscopic observations in 1827 that small particles

in plant pollen, when immersed in liquid, exhibit highly irregular motion

I Definition: a continuous stationary stochastic process ω(t) satisfying:
I ω(0) = 0
I ω(t) is almost surely continuous (but nowhere differentiable)
I ω(t) has independent increments, i.e., (ω(t2)− ω(t1)) and (ω(t4)− ω(t3))

are independent for 0 ≤ t1 < t2 ≤ t3 < t4
I ω(t)− ω(s) ∼ N (0, t − s) for 0 ≤ s ≤ t
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Continuous-time System Dynamics

I The SDE means that the time-integrals of the two sides are equal:

x(T )− x(0) =

∫ T

0
f (x(t), u(t))dt +

∫ T

0
C (x(t), u(t))dω(t)︸ ︷︷ ︸

Ito intergral

I Cannot be written as ẋ = f (x , u) + C (x , u)ω̇ because ω̇ does not exist

I The Ito integral of a random process y(t) adapted to ω(t), i.e., y(t)
depends on the sample path of ω(t) up to time t, is:

∫ T

0
y(t)dω(t) := lim

N→∞
0=t0<t1<···<tN=T

N−1∑
i=0

y(ti )(ω(ti+1)− ω(ti ))
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Continuous-time Optimal Control

I Infinite-dimensional dynamic constrained optimization:

min
π∈PC0([0,T ],U)

V π(0, x0) := E

{∫ T

0
`(x(t), π(t, x(t)))dt︸ ︷︷ ︸

stage cost

+ q(x(T ))︸ ︷︷ ︸
terminal cost

∣∣∣∣ x(0) = x0

}

s.t. dx = f (x(t), π(t, x(t)))dt + C (x(t), π(t, x(t)))dω.

x(t) ∈ X , π(t, x(t)) ∈ U

I Admissible policies: u(t) := π(t, x(t)) ∈ Π := PC 0([0,T ],U) are
piecewise cont. functions that map a state x at time t to a control input

I T can be free or fixed; x(T ) can be free or in a target set T

I Additional state and control constraints can be imposed via the sets X
and U
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Assumptions

I f is continuously differentiable wrt to x and continuous wrt u

I Existence and Uniqueness: for any admissible policy π ∈ Π and initial
x(τ) ∈ X , τ ∈ [0,T ], the noise-free system, ẋ(t) = f (x(t), π(t, x(t))),
has a unique state trajectory x(t), t ∈ [τ,T ].

I The stage cost `(x , u) is continuously differentiable wrt x and
continuous wrt u

I The terminal cost q(x) is continuously differentiable wrt x
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Examples: Existence and Uniqueness

I Example: Existence in not guaranteed in general

ẋ(t) = x(t)2, x(0) = 1

Solution does not exist forT ≥ 1 : x(t) =
1

1− t

I Example: Uniqueness in not guaranteed in general

ẋ(t) = x(t)
1
3 , x(0) = 0

Infinite number of solutions :

x(t) = 0, ∀t

x(t) =

{
0 for 0 ≤ t ≤ τ(
2
3(t − τ)

)3/2
for t > τ
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Special case: Calculus of Variations

I Calculus of Variations: an infinite-dimensional static constrained
optimization:

min
y∈C1([a,b],Rm)

∫ b

a
`(y(x), ẏ(x))dx + q(y(b))

s.t. y(a) = y0, y(b) = yf

I It is a special case of the deterministic continuous-time optimal control
problem for a fully-actuated system (ẋ = u) with t ← x , x(t)← y(x),
u(t) = ẋ(t)← ẏ(x)
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Optimal Value Function

I The closed-loop cost V ∗(t, x) associated with an optimal control policy
u∗(t) := π∗(t, x(t)) at state x and time t:

V ∗(t, x) ≤ V π(t, x), ∀π ∈ Π, x ∈ X

HJB PDE

The Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE) is
satisfied for all time-state pairs (t, x) by the optimal value V ∗(t, x):

V ∗(T , x) = q(x), ∀x ∈ X

− ∂

∂t
V ∗(t, x) = min

u∈U(x)

{
`(x , u) +∇xV

∗(t, x)T f (x , u) +
1

2
tr
(
Σ(x , u)

[
∇2

xV
∗(t, x)

])}
for all t ∈ [0,T ] and x ∈ X and where Σ(x , u) := C (x , u)CT (x , u).

I The HJB PDE is the continuous-time analog of the Bellman Equation
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HJB PDE Derivation

I A discrete-time approximation of the cont.-time optimal control problem
can be used to derive the HJB PDE from the DP algorithm

I Motion model: dx = f (x(t), u(t))dt + C (x(t), u(t))dω with x(0) = x0

I Euler Discretization of the SDE with time step τ :
I Discretize [0,T ] into N pieces of width τ := T

N
I Define xk := x(kτ) and uk := u(kτ) for k = 0, . . . ,N
I Discretized system dynamics:

xk+1 = xk + τ f (xk , uk) + εk , εk ∼ N (0, τΣ(xk , uk))

so that the motion model is specified by a Gaussian pdf:

pf (x ′ | x , u) = φ(x ′; x + τ f (x , u), τΣ(x , u))

I Discretized stage cost: τ`(x , u)

I Idea: apply the Bellman Equation to the now discrete-time problem and
take the limit as τ → 0 to obtain a “continuous-time Bellman Equation”
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HJB PDE Derivation

I Bellman Equation: finite-horizon problem with t := kτ

V (t, x) = min
u∈U(x)

{
τ`(x , u) + Ex ′∼pf (·|x ,u)

[
V (t + τ, x ′)

]}
I Note that x ′ = x + d where d ∼ N (τ f (x , u), τΣ(x , u))

I Taylor-series expansion of V (t + τ, x ′) around (t, x):

V (t + τ, x + d) =V (t, x) + τ
∂V

∂t
(t, x) + o(τ2)

+ [∇xV (t, x)]T d +
1

2
dT
[
∇2

xV (t, x)
]
d + o(d3)
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HJB PDE Derivation

I Note that E
[
dTMd

]
= tr(ΣM) + tr(µµTM) for d ∼ N (µ,Σ) so that:

Ex ′∼pf (·|x ,u)
[
V (t + τ, x ′)

]
= V (t, x) + τ

∂V

∂t
(t, x) + o(τ2)

+ τ [∇xV (t, x)]T f (x , u) +
τ

2
tr
(
Σ(x , u)

[
∇2

xV (t, x)
])

I Substituting in the Bellman Equation and simplifying, we get:

0 = min
u∈U(x)

{
`(x , u) +

∂V

∂t
(t, x) + [∇xV (t, x)]T f (x , u) +

1

2
tr
(
Σ(x , u)

[
∇2

xV (t, x)
])

+
o(τ2)

τ

}

I Taking the limit as τ → 0 (assuming it can be exchanged with
minu∈U(x)) leads to the HJB PDE:

−∂V
∂t

(t, x) = min
u∈U(x)

{
`(x , u) + [∇xV (t, x)]T f (x , u) +

1

2
tr
(
Σ(x , u)

[
∇2

xV (t, x)
])}
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Infinite-Horizon Stochastic Optimal Control

I V π(x) := E

∫ ∞
0

e−
t
γ︸︷︷︸

discount

`(x(t), π(t, x(t)))dt

 with γ ∈ [0,∞)

HJB PDEs for the Optimal Value Function

Hamiltonian: H[x , u, p(·)] = `(x , u) + p(x)T f (x , u) +
1

2
tr (Σ(x , u)[∇xp(x)])

Finite Horizon: −∂V
∗

∂t
(t, x) = min

u∈U(x)
H[x , u,∇xV

∗(t, ·)], V ∗(T , x) = q(x)

First Exit: 0 = min
u∈U(x)

H[x , u,∇xV
∗(·)], V ∗(x ∈ T ) = q(x)

Discounted:
1

γ
V ∗(x) = min

u∈U(x)
H[x , u,∇xV

∗(·)]
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Existence and Uniqueness of HJB PDE Solutions
I The HJB PDE has at most one classical solution (i.e., a function which

satisfies the PDE everywhere)

I If a classical solution exists then it is the optimal value function

I The HJB PDE may not have a classical solution, in which case the
optimal value function is not smooth (e.g. bang-bang control)

I The HJB PDE always has a unique viscosity solution which is the
optimal value function

I Approximation schemes based on MDP discretization are guaranteed to
converge to the unique viscosity solution

I Most continuous function approximation schemes (which scale better)
are unable to represent non-smooth solutions

I All examples of non-smoothness seem to be deterministic, i.e., noise
tends to smooth the optimal value function
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Example 1: Guessing a Solution for the HJB PDE

I System: ẋ(t) = u(t), |u(t)| ≤ 1, 0 ≤ t ≤ 1

I Costs: `(x , u) = 0 and q(x) = 1
2x

2 for all x ∈ X and u ∈ U

I Since we only care about the square of the terminal state, we can
construct a candidate optimal policy that drives the state towards 0 as
quickly as possible and maintains it there:

π(t, x) = −sgn(x) :=


−1 if x > 0

0 if x = 0

1 if x < 0

I The value in not smooth: V π(t, x) = 1
2 (max {0, |x | − (1− t)})2

I We will verify that this function satisfies the HJB and is therefore indeed
the optimal value function
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Example 1: Partial Derivative wrt x

I Value function and its partial derivative wrt x for fixed t:

V π(t, x) =
1

2
(max {0, |x | − (1− t)})2 ∂V π(t, x)

∂x
= sgn(x) max{0, |x | − (1− t)}
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Example 1: Partial Derivative wrt t

I Value function and its partial derivative wrt t for fixed x :

V π(t, x) =
1

2
(max {0, |x | − (1− t)})2 ∂V π(t, x)

∂t
= max{0, |x | − (1− t)}
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Example 1: Guessing a Solution for the HJB PDE

I Boundary condition: V π(1, x) = 1
2x

2 = q(x)

I The minimum in the HJB PDE is obtained by u = −sgn(x):

min
|u|≤1

(
∂V π(t, x)

∂t
+
∂V π(t, x)

∂x
u

)
= min
|u|≤1

((1 + sgn(x)u) (max{0, |x | − (1− t)})) = 0

I Conclusion: V π(t, x) = V ∗(t, x) and π∗(t, x) = −sgn(x) is an optimal
policy

I Note that this is a simple example. In general, solving the HJB PDE is
nontrivial.
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Example 2: HJB PDE without a Classical Solution

I System: ẋ(t) = x(t)u(t), |u(t)| ≤ 1, 0 ≤ t ≤ 1

I Costs: `(x , u) = 0 and q(x) = x for all x ∈ X and u ∈ U

I Optimal policy:

π(t, x) =


−1 if x > 0

0 if x = 0

1 if x < 0

I Optimal value function:

V π(t, x) =


et−1x x > 0

0 x = 0

e1−tx x < 0

I The value function is not differentiable wrt x at x = 0 and hence does
not satisfy the HJB PDE in the classical sense
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Optimality Conditions

I The HJB PDE is not a necessary condition for optimality of the
continuous-time optimal control problem but it is sufficient

Theorem: HJB PDE Sufficiency

Suppose that V (t, x) is continuously differentiable in t and x and solves the
HJB PDE:

V (T , x) = q(x), ∀x ∈ X

−∂V (t, x)

∂t
= min

u∈U(x)

[
`(x , u) +∇xV (t, x)T f (x , u) +

1

2
tr
(
Σ(x , u)

[
∇2

xV (t, x)
])]

for all x ∈ X and 0 ≤ t ≤ T . Suppose also that the policy π∗(t, x) attains
the minimum in the HJB PDE for all t and x and is piecewise-continuous in
t. Then, under the assumptions on Slide 5, V (t, x) is the unique solution of
the HJB PDE and is equal to the optimal value function V ∗(t, x), while
π∗(t, x) is an optimal policy.
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More Tractable Problems

I Consider a restricted class of system dynamics and cost functions:

dx = (a(x) + B(x)u)dt + C (x)dω

`(x , u) = q(x) +
1

2
uTR(x)u

I The Hamiltonian can be minimized analytically wrt u for such problems
(suppressing the dependence on x for clarity):

π∗ = arg min
u

{
q +

1

2
uTRu + (a + Bu)TVx +

1

2
tr(CCTVxx)

}
= −R−1BTVx

I The HJB PDE becomes second-order quadratic, no longer involving the
min operator!

H[x , π∗,Vx ] = q + aTVx +
1

2
tr(CCTVxx)− 1

2
V T
x BR−1BTVx
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More Tractable Problems (Generalizations)

I Control-multiplicative Noise: Σ(x , u) = C0(x)C0(x)T +
∑
j

Cj(x)uuTCj(x)T

π∗ = −
(
R +

∑
j

CT
j VxxCj

)−1
BTVx

I Convex-in-control Costs: `(x , u) = q(x) +
∑

j r(uj) with convex r(·):

π∗ = arg min
u

{∑
j

r(uj) + uTBTVx

}
= (r ′)−1

(
−BTVx

)
I Example:

r(u) = s

∫ |u|
0

atanh

(
ω

umax

)
dω ⇒ π∗ = umax tanh

(
−s−1BTVx

)
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Pendulum Example

I Pendulum dynamics (Newton’s second law for
rotational systems):

mL2θ̈ = u −mgL sin θ + noise

I State-space form with x = (x1, x2) = (θ, θ̇):

dx =

[
x2

k sin(x1)

]
dt +

[
0
1

]
(udt + σdω)

I Stage cost: `(x , u) = q(x) + r
2u

2

I Optimal value and policy (discounted problem):

π∗(x) = −1

r
V ∗x2(x)

1

γ
V ∗(x) = q(x) + x2V

∗
x1(x) + k sin(x1)V ∗x2(x) +

σ2

2
V ∗x2x2(x)− 1

2r
(V ∗x2(x))2
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Pendulum Example
I Parameters: k = σ = r = 1, γ = 0.3, q(θ, θ̇) = 1− exp(−2θ2)

I Discretize the state space, approximate derivatives via finite differences,
and iterate:

V (n+1)(x) = V (n)(x)− α
(
V (n)(x)− γmin

u
H[x , u,∇xV

(n)(·)]
)
, α = 0.01
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MDP Discretization
I Define discrete state space X(h) ⊂ Rn, control space U(h) ⊂ Rm, and

time step τ(h), where h is a coarseness parameter such that h→ 0
corresponds to infinitely dense discretization

I Local Consistency: construct a motion
model x ′(h) = x(h) + d with:

E[d ] = τ(h)f (x(h), u(h)) + o(τ(h))

cov[d ] = τ(h)Σ(x(h), u(h)) + o(τ(h))

I Kushner and Dupois: In the limit h→ 0, the MDP solution V ∗(h)
converges to the solution V ∗ of the continuous problem (even for
non-smooth V ∗)
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MDP Discretization
I For each x(h), u(h) choose vectors {dj}Kj=1 such that all possible next

states are x ′(h) = x(h) + hdj

I Specify τ(h) and pj(h) := pf (x(h) + hdj | x(h), u(h)) according to one of the
strategies:

1. τ(h) = h2

h+1 and pj(h) =
hαj+βj
h+1

for αj , βj such that:∑
jαjdj = f (x(h), u(h))∑
jβjdj = 0∑

jβjdjd
T
j = Σ(x(h), u(h))∑

jαj = 1, αj ≥ 0∑
jβj = 1, βj ≥ 0

2. τ(h) = h and

min
{pj

(h)
}
‖Σ− h

∑
j

pj(h)(dj − f )(dj − f )T‖2

s.t
∑
j

pj(h)dj = f (x(h), u(h))∑
j

pj(h) = 1, pj(h) ≥ 0

3. τ(h) = h and

pj(h) ∝ φ(x(h) + hdj ; hf (x(h), u(h)), hΣ(x(h), u(h)))
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