ECE276B: Planning \& Learning in Robotics
 Lecture 14: Continuous-time Optimal Control

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Zhichao Li: zhl355@eng.ucsd.edu
Ehsan Zobeidi: ezobeidi@eng.ucsd.edu
Ibrahim Akbar: iakbar@eng.ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Continuous-time System Dynamics

- time: $t \in[0, T]$
- state: $x(t) \in \mathcal{X} \subseteq \mathbb{R}^{n}, \forall t \in[0, T]$
- control: $u(t) \in \mathcal{U} \subseteq \mathbb{R}^{m}, \forall t \in[0, T]$
- motion model: a stochastic differential equation (SDE):

$$
d x=f(x(t), u(t)) d t+C(x(t), u(t)) d \omega, \quad x(0)=x_{0}
$$

- noise: Brownian motion $\omega(t)$ (integral of white noise)
- Robert Brown made microscopic observations in 1827 that small particles in plant pollen, when immersed in liquid, exhibit highly irregular motion
- Definition: a continuous stationary stochastic process $\omega(t)$ satisfying:
- $\omega(0)=0$
- $\omega(t)$ is almost surely continuous (but nowhere differentiable)
- $\omega(t)$ has independent increments, i.e., $\left(\omega\left(t_{2}\right)-\omega\left(t_{1}\right)\right)$ and $\left(\omega\left(t_{4}\right)-\omega\left(t_{3}\right)\right)$ are independent for $0 \leq t_{1}<t_{2} \leq t_{3}<t_{4}$
- $\omega(t)-\omega(s) \sim \mathcal{N}(0, t-s)$ for $0 \leq s \leq t$

Continuous-time System Dynamics

- The SDE means that the time-integrals of the two sides are equal:

$$
x(T)-x(0)=\int_{0}^{T} f(x(t), u(t)) d t+\underbrace{\int_{0}^{T} C(x(t), u(t)) d \omega(t)}_{\text {Ito intergral }}
$$

- Cannot be written as $\dot{x}=f(x, u)+C(x, u) \dot{\omega}$ because $\dot{\omega}$ does not exist
- The Ito integral of a random process $y(t)$ adapted to $\omega(t)$, ie., $y(t)$ depends on the sample path of $\omega(t)$ up to time t, is:

$$
\int_{0}^{T} y(t) d \omega(t):=\lim _{\substack{N \rightarrow \infty \\ 0=t_{0}<t_{1}<\cdots<t_{N}=T}} \sum_{i=0}^{N-1} y\left(t_{i}\right)\left(\omega\left(t_{i+1}\right)-\omega\left(t_{i}\right)\right)
$$

Continuous-time Optimal Control

- Infinite-dimensional dynamic constrained optimization:

$$
\begin{aligned}
& \min _{\pi \in C^{C}([0, T], \mathcal{U})} V^{\pi}\left(0, x_{0}\right):=\mathbb{E}\{\underbrace{\int_{0}^{T} \ell(x(t), \pi(t, x(t))) d t}_{\text {stage cost }}+\underbrace{\mathfrak{q}(x(T))}_{\text {terminal cost }} \mid x(0)=x_{0}\} \\
& \text { s.t. } d x=f(x(t), \pi(t, x(t))) d t+C(x(t), \pi(t, x(t))) d \omega . \\
& x(t) \in \mathcal{X}, \pi(t, x(t)) \in \mathcal{U}
\end{aligned}
$$

- Admissible policies: $u(t):=\pi(t, x(t)) \in \Pi:=P C^{0}([0, T], \mathcal{U})$ are piecewise cont. functions that map a state x at time t to a control input
- T can be free or fixed; $x(T)$ can be free or in a target set \mathcal{T}
- Additional state and control constraints can be imposed via the sets \mathcal{X} and \mathcal{U}

Assumptions

- f is continuously differentiable wry to x and continuous wry u
- Existence and Uniqueness: for any admissible policy $\pi \in \Pi$ and initial $x(\tau) \in \mathcal{X}, \tau \in[0, T]$, the noise-free system, $\dot{x}(t)=f(x(t), \pi(t, x(t)))$, has a unique state trajectory $x(t), t \in[\tau, T]$.
- The stage cost $\ell(x, u)$ is continuously differentiable wot x and continuous wry u
- The terminal cost $\mathfrak{q}(x)$ is continuously differentiable writ x

Examples: Existence and Uniqueness

- Example: Existence in not guaranteed in general

$$
\dot{x}(t)=x(t)^{2}, x(0)=1
$$

$$
\text { Solution does not exist for } T \geq 1: x(t)=\frac{1}{1-t}
$$

- Example: Uniqueness in not guaranteed in general

$$
\dot{x}(t)=x(t)^{\frac{1}{3}}, x(0)=0
$$

$$
x(t)=0, \forall t
$$

Infinite number of solutions:

$$
x(t)= \begin{cases}0 & \text { for } 0 \leq t \leq \tau \\ \left(\frac{2}{3}(t-\tau)\right)^{3 / 2} & \text { for } t>\tau\end{cases}
$$

Special case: Calculus of Variations

- Calculus of Variations: an infinite-dimensional static constrained optimization:

$$
\begin{aligned}
\min _{y \in C^{1}\left([a, b], \mathbb{R}^{m}\right)} & \int_{a}^{b} \ell(y(x), \dot{y}(x)) d x+\mathfrak{q}(y(b)) \\
\text { s.t. } & y(a)=y_{0}, y(b)=y_{f}
\end{aligned}
$$

- It is a special case of the deterministic continuous-time optimal control problem for a fully-actuated system $(\dot{x}=u)$ with $t \leftarrow x, x(t) \leftarrow y(x)$, $u(t)=\dot{x}(t) \leftarrow \dot{y}(x)$

Optimal Value Function

- The closed-loop cost $V^{*}(t, x)$ associated with an optimal control policy $u^{*}(t):=\pi^{*}(t, x(t))$ at state x and time t :

$$
V^{*}(t, x) \leq V^{\pi}(t, x), \quad \forall \pi \in \Pi, x \in \mathcal{X}
$$

HJB PDE

The Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE) is satisfied for all time-state pairs (t, x) by the optimal value $V^{*}(t, x)$:

$$
\begin{aligned}
V^{*}(T, x) & =\mathfrak{q}(x), \quad \forall x \in \mathcal{X} \\
-\frac{\partial}{\partial t} V^{*}(t, x) & =\min _{u \in \mathcal{U}(x)}\left\{\ell(x, u)+\nabla_{x} V^{*}(t, x)^{T} f(x, u)+\frac{1}{2} \operatorname{tr}\left(\Sigma(x, u)\left[\nabla_{x}^{2} V^{*}(t, x)\right]\right)\right\}
\end{aligned}
$$

for all $t \in[0, T]$ and $x \in \mathcal{X}$ and where $\Sigma(x, u):=C(x, u) C^{T}(x, u)$.

- The HJB PDE is the continuous-time analog of the Bellman Equation

HJB PDE Derivation

- A discrete-time approximation of the cont.-time optimal control problem can be used to derive the HJB PDE from the DP algorithm
- Motion model: $d x=f(x(t), u(t)) d t+C(x(t), u(t)) d \omega$ with $x(0)=x_{0}$
- Euler Discretization of the SDE with time step τ :
- Discretize $[0, T]$ into N pieces of width $\tau:=\frac{T}{N}$
- Define $x_{k}:=x(k \tau)$ and $u_{k}:=u(k \tau)$ for $k=0, \ldots, N$
- Discretized system dynamics:

$$
x_{k+1}=x_{k}+\tau f\left(x_{k}, u_{k}\right)+\epsilon_{k}, \quad \epsilon_{k} \sim \mathcal{N}\left(0, \tau \Sigma\left(x_{k}, u_{k}\right)\right)
$$

so that the motion model is specified by a Gaussian pdf:

$$
p_{f}\left(x^{\prime} \mid x, u\right)=\phi\left(x^{\prime} ; x+\tau f(x, u), \tau \Sigma(x, u)\right)
$$

- Discretized stage cost: $\tau \ell(x, u)$
- Idea: apply the Bellman Equation to the now discrete-time problem and take the limit as $\tau \rightarrow 0$ to obtain a "continuous-time Bellman Equation"

HJB PDE Derivation

- Bellman Equation: finite-horizon problem with $t:=k \tau$

$$
V(t, x)=\min _{u \in \mathcal{U}(x)}\left\{\tau \ell(x, u)+\mathbb{E}_{x^{\prime} \sim p_{f}(\cdot \mid x, u)}\left[V\left(t+\tau, x^{\prime}\right)\right]\right\}
$$

- Note that $x^{\prime}=x+d$ where $d \sim \mathcal{N}(\tau f(x, u), \tau \Sigma(x, u))$
- Taylor-series expansion of $V\left(t+\tau, x^{\prime}\right)$ around (t, x) :

$$
\begin{aligned}
V(t+\tau, x+d)= & V(t, x)+\tau \frac{\partial V}{\partial t}(t, x)+o\left(\tau^{2}\right) \\
& +\left[\nabla_{x} V(t, x)\right]^{T} d+\frac{1}{2} d^{T}\left[\nabla_{x}^{2} V(t, x)\right] d+o\left(d^{3}\right)
\end{aligned}
$$

HJB PDE Derivation

- Note that $\mathbb{E}\left[d^{\top} M d\right]=\operatorname{tr}(\Sigma M)+\operatorname{tr}\left(\mu \mu^{\top} M\right)$ for $d \sim \mathcal{N}(\mu, \Sigma)$ so that:

$$
\begin{aligned}
\mathbb{E}_{x^{\prime} \sim p_{f}(\cdot \mid x, u)}[& \left.V\left(t+\tau, x^{\prime}\right)\right]=V(t, x)+\tau \frac{\partial V}{\partial t}(t, x)+o\left(\tau^{2}\right) \\
& +\tau\left[\nabla_{x} V(t, x)\right]^{T} f(x, u)+\frac{\tau}{2} \operatorname{tr}\left(\Sigma(x, u)\left[\nabla_{x}^{2} V(t, x)\right]\right)
\end{aligned}
$$

- Substituting in the Bellman Equation and simplifying, we get:

$$
0=\min _{u \in U(x)}\left\{\ell(x, u)+\frac{\partial V}{\partial t}(t, x)+\left[\nabla_{x} V(t, x)\right]^{T} f(x, u)+\frac{1}{2} \operatorname{tr}\left(\Sigma(x, u)\left[\nabla_{x}^{2} V(t, x)\right]\right)+\frac{o\left(\tau^{2}\right)}{\tau}\right\}
$$

- Taking the limit as $\tau \rightarrow 0$ (assuming it can be exchanged with $\min _{u \in \mathcal{U}(x)}$) leads to the HJB PDE:

$$
-\frac{\partial V}{\partial t}(t, x)=\min _{u \in \mathcal{U}(x)}\left\{\ell(x, u)+\left[\nabla_{x} V(t, x)\right]^{T} f(x, u)+\frac{1}{2} \operatorname{tr}\left(\Sigma(x, u)\left[\nabla_{x}^{2} V(t, x)\right]\right)\right\}
$$

Infinite-Horizon Stochastic Optimal Control

- $V^{\pi}(x):=\mathbb{E}[\int_{0}^{\infty} \underbrace{e^{-\frac{t}{v}}}_{\text {discount }} \ell(x(t), \pi(t, x(t))) d t]$ with $\gamma \in[0, \infty)$

HJB PDEs for the Optimal Value Function

Hamiltonian: $\quad H[x, u, p(\cdot)]=\ell(x, u)+p(x)^{T} f(x, u)+\frac{1}{2} \operatorname{tr}\left(\Sigma(x, u)\left[\nabla_{x} p(x)\right]\right)$

Finite Horizon: $\quad-\frac{\partial V^{*}}{\partial t}(t, x)=\min _{u \in \mathcal{U}(x)} H\left[x, u, \nabla_{x} V^{*}(t, \cdot)\right], \quad V^{*}(T, x)=\mathfrak{q}(x)$

First Exit:

$$
0=\min _{u \in \mathcal{U}(x)} H\left[x, u, \nabla_{x} V^{*}(\cdot)\right], \quad V^{*}(x \in \mathcal{T})=\mathfrak{q}(x)
$$

Discounted:

$$
\frac{1}{\gamma} V^{*}(x)=\min _{u \in \mathcal{U}(x)} H\left[x, u, \nabla_{x} V^{*}(\cdot)\right]
$$

Existence and Uniqueness of HJB PDE Solutions

- The HJB PDE has at most one classical solution (i.e., a function which satisfies the PDE everywhere)
- If a classical solution exists then it is the optimal value function
- The HJB PDE may not have a classical solution, in which case the optimal value function is not smooth (e.g. bang-bang control)
- The HJB PDE always has a unique viscosity solution which is the optimal value function
- Approximation schemes based on MDP discretization are guaranteed to converge to the unique viscosity solution
- Most continuous function approximation schemes (which scale better) are unable to represent non-smooth solutions
- All examples of non-smoothness seem to be deterministic, i.e., noise tends to smooth the optimal value function

Example 1: Guessing a Solution for the HJB PDE

- System: $\dot{x}(t)=u(t),|u(t)| \leq 1,0 \leq t \leq 1$
- Costs: $\ell(x, u)=0$ and $\mathfrak{q}(x)=\frac{1}{2} x^{2}$ for all $x \in \mathcal{X}$ and $u \in \mathcal{U}$
- Since we only care about the square of the terminal state, we can construct a candidate optimal policy that drives the state towards 0 as quickly as possible and maintains it there:

$$
\pi(t, x)=-\operatorname{sgn}(x):= \begin{cases}-1 & \text { if } x>0 \\ 0 & \text { if } x=0 \\ 1 & \text { if } x<0\end{cases}
$$

- The value in not smooth: $V^{\pi}(t, x)=\frac{1}{2}(\max \{0,|x|-(1-t)\})^{2}$
- We will verify that this function satisfies the HJB and is therefore indeed the optimal value function

Example 1: Partial Derivative wrt x

- Value function and its partial derivative wrt x for fixed t :

$$
V^{\pi}(t, x)=\frac{1}{2}(\max \{0,|x|-(1-t)\})^{2} \quad \frac{\partial V^{\pi}(t, x)}{\partial x}=\operatorname{sgn}(x) \max \{0,|x|-(1-t)\}
$$

Example 1: Partial Derivative wrt t

- Value function and its partial derivative wrt t for fixed x :

$$
V^{\pi}(t, x)=\frac{1}{2}(\max \{0,|x|-(1-t)\})^{2} \quad \frac{\partial V^{\pi}(t, x)}{\partial t}=\max \{0,|x|-(1-t)\}
$$

$$
\begin{aligned}
& \text { 二 }|x|>1 \\
& \text { 二 }|x| \leq 1
\end{aligned}
$$

Example 1: Guessing a Solution for the HJB PDE

- Boundary condition: $V^{\pi}(1, x)=\frac{1}{2} x^{2}=\mathfrak{q}(x)$
- The minimum in the HJB PDE is obtained by $u=-\operatorname{sgn}(x)$:

$$
\min _{|u| \leq 1}\left(\frac{\partial V^{\pi}(t, x)}{\partial t}+\frac{\partial V^{\pi}(t, x)}{\partial x} u\right)=\min _{|u| \leq 1}((1+\operatorname{sgn}(x) u)(\max \{0,|x|-(1-t)\}))=0
$$

- Conclusion: $V^{\pi}(t, x)=V^{*}(t, x)$ and $\pi^{*}(t, x)=-\operatorname{sgn}(x)$ is an optimal policy
- Note that this is a simple example. In general, solving the HJB PDE is nontrivial.

Example 2: HJB PDE without a Classical Solution

- System: $\dot{x}(t)=x(t) u(t),|u(t)| \leq 1,0 \leq t \leq 1$
- Costs: $\ell(x, u)=0$ and $\mathfrak{q}(x)=x$ for all $x \in \mathcal{X}$ and $u \in \mathcal{U}$
- Optimal policy:

$$
\pi(t, x)= \begin{cases}-1 & \text { if } x>0 \\ 0 & \text { if } x=0 \\ 1 & \text { if } x<0\end{cases}
$$

- Optimal value function:

$$
V^{\pi}(t, x)= \begin{cases}e^{t-1} x & x>0 \\ 0 & x=0 \\ e^{1-t} x & x<0\end{cases}
$$

- The value function is not differentiable wrt x at $x=0$ and hence does not satisfy the HJB PDE in the classical sense

Optimality Conditions

- The HJB PDE is not a necessary condition for optimality of the continuous-time optimal control problem but it is sufficient

Theorem: HJB PDE Sufficiency

Suppose that $V(t, x)$ is continuously differentiable in t and x and solves the HJB PDE:

$$
\begin{aligned}
V(T, x) & =\mathfrak{q}(x), \quad \forall x \in \mathcal{X} \\
-\frac{\partial V(t, x)}{\partial t} & =\min _{u \in \mathcal{U}(x)}\left[\ell(x, u)+\nabla_{x} V(t, x)^{T} f(x, u)+\frac{1}{2} \operatorname{tr}\left(\Sigma(x, u)\left[\nabla_{x}^{2} V(t, x)\right]\right)\right]
\end{aligned}
$$

for all $x \in \mathcal{X}$ and $0 \leq t \leq T$. Suppose also that the policy $\pi^{*}(t, x)$ attains the minimum in the HJB PDE for all t and x and is piecewise-continuous in t. Then, under the assumptions on Slide $5, V(t, x)$ is the unique solution of the HJB PDE and is equal to the optimal value function $V^{*}(t, x)$, while $\pi^{*}(t, x)$ is an optimal policy.

More Tractable Problems

- Consider a restricted class of system dynamics and cost functions:

$$
\begin{aligned}
d x & =(a(x)+B(x) u) d t+C(x) d \omega \\
\ell(x, u) & =q(x)+\frac{1}{2} u^{T} R(x) u
\end{aligned}
$$

- The Hamiltonian can be minimized analytically wrt u for such problems (suppressing the dependence on x for clarity):

$$
\begin{aligned}
\pi^{*} & =\underset{u}{\arg \min }\left\{q+\frac{1}{2} u^{T} R u+(a+B u)^{T} V_{x}+\frac{1}{2} \operatorname{tr}\left(C C^{T} V_{x x}\right)\right\} \\
& =-R^{-1} B^{T} V_{x}
\end{aligned}
$$

- The HJB PDE becomes second-order quadratic, no longer involving the min operator!

$$
H\left[x, \pi^{*}, V_{x}\right]=q+a^{T} V_{x}+\frac{1}{2} \operatorname{tr}\left(C C^{T} V_{x x}\right)-\frac{1}{2} V_{x}^{T} B R^{-1} B^{T} V_{x}
$$

More Tractable Problems (Generalizations)

- Control-multiplicative Noise: $\Sigma(x, u)=C_{0}(x) C_{0}(x)^{T}+\sum_{j} C_{j}(x) u u^{T} C_{j}(x)^{T}$

$$
\pi^{*}=-\left(R+\sum_{j} C_{j}^{T} V_{x x} C_{j}\right)^{-1} B^{T} V_{x}
$$

- Convex-in-control Costs: $\ell(x, u)=q(x)+\sum_{j} r\left(u_{j}\right)$ with convex $r(\cdot)$:

$$
\pi^{*}=\underset{u}{\arg \min }\left\{\sum_{j} r\left(u_{j}\right)+u^{T} B^{T} V_{x}\right\}=\left(r^{\prime}\right)^{-1}\left(-B^{T} V_{x}\right)
$$

- Example:

$$
r(u)=s \int_{0}^{|u|} \operatorname{atanh}\left(\frac{\omega}{u_{\max }}\right) d \omega \Rightarrow \pi^{*}=u_{\max } \tanh \left(-s^{-1} B^{T} V_{x}\right)
$$

Pendulum Example

- Pendulum dynamics (Newton's second law for rotational systems):

$$
m L^{2} \ddot{\theta}=u-m g L \sin \theta+\text { noise }
$$

- State-space form with $x=\left(x_{1}, x_{2}\right)=(\theta, \dot{\theta})$:

$$
d x=\left[\begin{array}{c}
x_{2} \\
k \sin \left(x_{1}\right)
\end{array}\right] d t+\left[\begin{array}{l}
0 \\
1
\end{array}\right](u d t+\sigma d \omega)
$$

- Stage cost: $\ell(x, u)=q(x)+\frac{r}{2} u^{2}$
- Optimal value and policy (discounted problem):

$$
\begin{aligned}
\pi^{*}(x) & =-\frac{1}{r} V_{x_{2}}^{*}(x) \\
\frac{1}{\gamma} V^{*}(x) & =q(x)+x_{2} V_{x_{1}}^{*}(x)+k \sin \left(x_{1}\right) V_{x_{2}}^{*}(x)+\frac{\sigma^{2}}{2} V_{x_{2} x_{2}}^{*}(x)-\frac{1}{2 r}\left(V_{x_{2}}^{*}(x)\right)^{2}
\end{aligned}
$$

Pendulum Example

- Parameters: $k=\sigma=r=1, \gamma=0.3, q(\theta, \dot{\theta})=1-\exp \left(-2 \theta^{2}\right)$
- Discretize the state space, approximate derivatives via finite differences, and iterate:

$$
V^{(n+1)}(x)=V^{(n)}(x)-\alpha\left(V^{(n)}(x)-\gamma \min _{u} H\left[x, u, \nabla_{x} V^{(n)}(\cdot)\right]\right), \quad \alpha=0.01
$$

MDP Discretization

- Define discrete state space $\mathcal{X}_{(h)} \subset \mathbb{R}^{n}$, control space $\mathcal{U}_{(h)} \subset \mathbb{R}^{m}$, and time step $\tau_{(h)}$, where h is a coarseness parameter such that $h \rightarrow 0$ corresponds to infinitely dense discretization
- Local Consistency: construct a motion model $x_{(h)}^{\prime}=x_{(h)}+d$ with:

$$
\begin{aligned}
\mathbb{E}[d] & =\tau_{(h)} f\left(x_{(h)}, u_{(h)}\right)+o\left(\tau_{(h)}\right) \\
\operatorname{cov}[d] & =\tau_{(h)} \Sigma\left(x_{(h)}, u_{(h)}\right)+o\left(\tau_{(h)}\right)
\end{aligned}
$$

- Kushner and Dupois: In the limit $h \rightarrow 0$, the MDP solution $V_{(h)}^{*}$ converges to the solution V^{*} of the continuous problem (even for non-smooth V^{*})

MDP Discretization

- For each $x_{(h)}, u_{(h)}$ choose vectors $\left\{d_{j}\right\}_{j=1}^{K}$ such that all possible next states are $x_{(h)}^{\prime}=x_{(h)}+h d_{j}$
- Specify $\tau_{(h)}$ and $p_{(h)}^{j}:=p_{f}\left(x_{(h)}+h d_{j} \mid x_{(h)}, u_{(h)}\right)$ according to one of the strategies:

1. $\tau_{(h)}=\frac{h^{2}}{h+1}$ and $p_{(h)}^{j}=\frac{h \alpha_{j}+\beta_{j}}{h+1}$
2. $\tau_{(h)}=h$ and for α_{j}, β_{j} such that:

$$
\begin{aligned}
\sum_{j} \alpha_{j} d_{j} & =f\left(x_{(h)}, u_{(h)}\right) \\
\sum_{j} \beta_{j} d_{j} & =0 \\
\sum_{j} \beta_{j} d_{j} d_{j}^{T} & =\Sigma\left(x_{(h)}, u_{(h)}\right) \\
\sum_{j} \alpha_{j} & =1, \alpha_{j} \geq 0 \\
\sum_{j} \beta_{j} & =1, \beta_{j} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \min _{\left\{p_{(h)}^{j}\right\}}\left\|\Sigma-h \sum_{j} p_{(h)}^{j}\left(d_{j}-f\right)\left(d_{j}-f\right)^{T}\right\|^{2} \\
& \text { s.t } \sum_{j} p_{(h)}^{j} d_{j}=f\left(x_{(h)}, u_{(h)}\right) \\
& \quad \sum_{j} p_{(h)}^{j}=1, p_{(h)}^{j} \geq 0 \\
& \tau_{(h)}=h \text { and }
\end{aligned}
$$

$$
p_{(h)}^{j} \propto \phi\left(x_{(h)}+h d_{j} ; h f\left(x_{(h)}, u_{(h)}\right), h \Sigma\left(x_{(h)}, u_{(h)}\right)\right)
$$

