ECE276B: Planning & Learning in Robotics Lecture 14: Continuous-time Optimal Control

Instructor:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:

Zhichao Li: zhl355@eng.ucsd.edu Ehsan Zobeidi: ezobeidi@eng.ucsd.edu Ibrahim Akbar: iakbar@eng.ucsd.edu

Continuous-time System Dynamics

- ▶ time: $t \in [0, T]$
- ▶ state: $x(t) \in \mathcal{X} \subseteq \mathbb{R}^n$, $\forall t \in [0, T]$
- ▶ **control**: $u(t) \in \mathcal{U} \subseteq \mathbb{R}^m$, $\forall t \in [0, T]$
- **motion model**: a stochastic differential equation (SDE):

$$dx = f(x(t), u(t))dt + C(x(t), u(t))d\omega, \qquad x(0) = x_0$$

- **noise**: Brownian motion $\omega(t)$ (integral of white noise)
 - ▶ Robert Brown made microscopic observations in 1827 that small particles in plant pollen, when immersed in liquid, exhibit highly irregular motion
 - **Definition**: a continuous stationary stochastic process $\omega(t)$ satisfying:
 - $\sim \omega(0) = 0$
 - $ightharpoonup \omega(t)$ is almost surely continuous (but nowhere differentiable)
 - $\omega(t)$ has independent increments, i.e., $(\omega(t_2) \omega(t_1))$ and $(\omega(t_4) \omega(t_3))$ are independent for $0 < t_1 < t_2 < t_3 < t_4$
 - $\omega(t) \omega(s) \sim \mathcal{N}(0, t s)$ for $0 \le s \le t$

Continuous-time System Dynamics

▶ The SDE means that the time-integrals of the two sides are equal:

$$x(T) - x(0) = \int_0^T f(x(t), u(t)) dt + \underbrace{\int_0^T C(x(t), u(t)) d\omega(t)}_{\text{Ito intergral}}$$

- ▶ Cannot be written as $\dot{x} = f(x, u) + C(x, u)\dot{\omega}$ because $\dot{\omega}$ does not exist
- The **Ito integral** of a random process y(t) adapted to $\omega(t)$, i.e., y(t) depends on the sample path of $\omega(t)$ up to time t, is:

$$\int_0^T y(t)d\omega(t) := \lim_{\substack{N \to \infty \\ 0 = t_0 < t_1 < \dots < t_N = T}} \sum_{i=0}^{N-1} y(t_i)(\omega(t_{i+1}) - \omega(t_i))$$

Continuous-time Optimal Control

Infinite-dimensional dynamic constrained optimization:

$$\min_{\pi \in PC^0([0,T],\mathcal{U})} V^{\pi}(0,x_0) := \mathbb{E}\left\{\underbrace{\int_0^T \ell(x(t),\pi(t,x(t)))dt}_{\text{stage cost}} + \underbrace{\mathfrak{q}(x(T))}_{\text{terminal cost}} \middle| x(0) = x_0\right\}$$
s.t.
$$dx = f(x(t),\pi(t,x(t)))dt + C(x(t),\pi(t,x(t)))d\omega.$$

$$x(t) \in \mathcal{X}, \ \pi(t,x(t)) \in \mathcal{U}$$

- ▶ Admissible policies: $u(t) := \pi(t, x(t)) \in \Pi := PC^0([0, T], \mathcal{U})$ are piecewise cont. functions that map a state x at time t to a control input
- ightharpoonup T can be free or fixed; x(T) can be free or in a target set T
- \blacktriangleright Additional state and control constraints can be imposed via the sets ${\mathcal X}$ and ${\mathcal U}$

Assumptions

- f is continuously differentiable wrt to x and continuous wrt u
- **Existence and Uniqueness**: for any admissible policy $\pi \in \Pi$ and initial $x(\tau) \in \mathcal{X}$, $\tau \in [0, T]$, the **noise-free** system, $\dot{x}(t) = f(x(t), \pi(t, x(t)))$, has a **unique state trajectory** x(t), $t \in [\tau, T]$.
- ▶ The stage cost $\ell(x, u)$ is continuously differentiable wrt x and continuous wrt u
- ightharpoonup The terminal cost $\mathfrak{q}(x)$ is continuously differentiable wrt x

Examples: Existence and Uniqueness

Example: Existence in not guaranteed in general

$$\dot{x}(t)=x(t)^2, \ x(0)=1$$
 Solution does not exist for $T\geq 1: x(t)=rac{1}{1-t}$

Example: Uniqueness in not guaranteed in general

$$\dot{x}(t) = x(t)^{\frac{1}{3}}, \ x(0) = 0$$

$$x(t) = 0, \ \forall t$$
 Infinite number of solutions :
$$x(t) = \begin{cases} 0 & \text{for } 0 \leq t \leq \tau \\ \left(\frac{2}{3}(t-\tau)\right)^{3/2} & \text{for } t > \tau \end{cases}$$

Special case: Calculus of Variations

Calculus of Variations: an infinite-dimensional static constrained optimization:

$$\min_{y \in C^{1}([a,b],\mathbb{R}^{m})} \int_{a}^{b} \ell(y(x),\dot{y}(x))dx + \mathfrak{q}(y(b))$$
s.t.
$$y(a) = y_{0}, \ y(b) = y_{f}$$

It is a special case of the deterministic continuous-time optimal control problem for a **fully-actuated** system $(\dot{x} = u)$ with $t \leftarrow x$, $x(t) \leftarrow y(x)$, $u(t) = \dot{x}(t) \leftarrow \dot{y}(x)$

Optimal Value Function

The closed-loop cost $V^*(t,x)$ associated with an optimal control policy $u^*(t) := \pi^*(t,x(t))$ at state x and time t:

$$V^*(t,x) < V^{\pi}(t,x), \quad \forall \pi \in \Pi, x \in \mathcal{X}$$

HJB PDE

The Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE) is satisfied for all time-state pairs (t,x) by the optimal value $V^*(t,x)$:

$$V^*(T,x) = \mathfrak{q}(x), \quad \forall x \in \mathcal{X}$$

$$-\frac{\partial}{\partial t}V^*(t,x) = \min_{u \in \mathcal{U}(x)} \left\{ \ell(x,u) + \nabla_x V^*(t,x)^T f(x,u) + \frac{1}{2} \operatorname{tr} \left(\Sigma(x,u) \left[\nabla_x^2 V^*(t,x) \right] \right) \right\}$$

for all $t \in [0, T]$ and $x \in \mathcal{X}$ and where $\Sigma(x, u) := C(x, u)C^T(x, u)$.

▶ The HJB PDE is the continuous-time analog of the Bellman Equation

HJB PDE Derivation

- ► A discrete-time approximation of the cont.-time optimal control problem can be used to derive the HJB PDE from the DP algorithm
- ▶ Motion model: $dx = f(x(t), u(t))dt + C(x(t), u(t))d\omega$ with $x(0) = x_0$
- **Euler Discretization** of the SDE with time step τ :
 - ▶ Discretize [0, T] into N pieces of width $\tau := \frac{T}{N}$
 - ▶ Define $x_k := x(k\tau)$ and $u_k := u(k\tau)$ for k = 0, ..., N
 - Discretized system dynamics:

$$x_{k+1} = x_k + \tau f(x_k, u_k) + \epsilon_k, \quad \epsilon_k \sim \mathcal{N}(0, \tau \Sigma(x_k, u_k))$$

so that the motion model is specified by a Gaussian pdf:

$$p_f(x' \mid x, u) = \phi(x'; x + \tau f(x, u), \tau \Sigma(x, u))$$

- **Discretized stage cost**: $\tau \ell(x, u)$
- ▶ **Idea**: apply the Bellman Equation to the now discrete-time problem and take the limit as $\tau \to 0$ to obtain a "continuous-time Bellman Equation"

HJB PDE Derivation

Bellman Equation: finite-horizon problem with $t := k\tau$

$$V(t,x) = \min_{u \in \mathcal{U}(x)} \left\{ \tau \ell(x,u) + \mathbb{E}_{x' \sim p_f(\cdot|x,u)} \left[V(t+\tau,x') \right] \right\}$$

- Note that x' = x + d where $d \sim \mathcal{N}(\tau f(x, u), \tau \Sigma(x, u))$
- ► Taylor-series expansion of $V(t + \tau, x')$ around (t, x):

$$V(t+\tau,x+d) = V(t,x) + \tau \frac{\partial V}{\partial t}(t,x) + o(\tau^2)$$
$$+ \left[\nabla_x V(t,x)\right]^T d + \frac{1}{2} d^T \left[\nabla_x^2 V(t,x)\right] d + o(d^3)$$

HJB PDE Derivation

▶ Note that $\mathbb{E}\left[d^TMd\right] = \operatorname{tr}(\Sigma M) + \operatorname{tr}(\mu\mu^TM)$ for $d \sim \mathcal{N}(\mu, \Sigma)$ so that:

$$\mathbb{E}_{x' \sim p_f(\cdot|x,u)} \left[V(t+\tau,x') \right] = V(t,x) + \tau \frac{\partial V}{\partial t}(t,x) + o(\tau^2)$$
$$+ \tau \left[\nabla_x V(t,x) \right]^T f(x,u) + \frac{\tau}{2} \operatorname{tr} \left(\Sigma(x,u) \left[\nabla_x^2 V(t,x) \right] \right)$$

Substituting in the Bellman Equation and simplifying, we get:

$$0 = \min_{u \in \mathcal{U}(x)} \left\{ \ell(x, u) + \frac{\partial V}{\partial t}(t, x) + \left[\nabla_x V(t, x)\right]^T f(x, u) + \frac{1}{2} \operatorname{tr}\left(\Sigma(x, u) \left[\nabla_x^2 V(t, x)\right]\right) + \frac{o(\tau^2)}{\tau} \right\}$$

▶ Taking the limit as $\tau \to 0$ (assuming it can be exchanged with $\min_{u \in \mathcal{U}(x)}$) leads to the HJB PDE:

$$-\frac{\partial V}{\partial t}(t,x) = \min_{u \in \mathcal{U}(x)} \left\{ \ell(x,u) + \left[\nabla_x V(t,x) \right]^T f(x,u) + \frac{1}{2} \operatorname{tr} \left(\Sigma(x,u) \left[\nabla_x^2 V(t,x) \right] \right) \right\}$$

Infinite-Horizon Stochastic Optimal Control

$$V^{\pi}(x) := \mathbb{E}\left[\int_0^{\infty} \underbrace{e^{-\frac{t}{\gamma}}}_{\text{discount}} \ell(x(t), \pi(t, x(t))) dt\right] \text{ with } \gamma \in [0, \infty)$$

HJB PDEs for the Optimal Value Function

Hamiltonian:
$$H[x, u, p(\cdot)] = \ell(x, u) + p(x)^T f(x, u) + \frac{1}{2} \operatorname{tr} (\Sigma(x, u) [\nabla_x p(x)])$$

Finite Horizon:
$$-\frac{\partial V^*}{\partial t}(t,x) = \min_{u \in \mathcal{U}(x)} H[x,u,\nabla_x V^*(t,\cdot)], \qquad V^*(T,x) = \mathfrak{q}(x)$$

Finite Horizon:
$$-\frac{1}{\partial t}(t,x) = \min_{u \in \mathcal{U}(x)} H[x,u,\nabla_x V^*(t,\cdot)], \qquad V^*(T,x) = \mathfrak{q}(x)$$

First Exit:
$$0 = \min_{u \in \mathcal{U}(x)} H[x, u, \nabla_x V^*(\cdot)], \qquad V^*(x \in \mathcal{T}) = \mathfrak{q}(x)$$

Discounted:
$$\frac{1}{\gamma}V^*(x) = \min_{u \in \mathcal{U}(x)} H[x, u, \nabla_x V^*(\cdot)]$$

Existence and Uniqueness of HJB PDE Solutions

- ► The HJB PDE has at most one classical solution (i.e., a function which satisfies the PDE everywhere)
- ▶ If a classical solution exists then it is the optimal value function
- ► The HJB PDE may not have a classical solution, in which case the optimal value function is not smooth (e.g. bang-bang control)
- The HJB PDE always has a unique viscosity solution which is the optimal value function
- ► Approximation schemes based on MDP discretization are guaranteed to converge to the unique viscosity solution
- ► Most continuous function approximation schemes (which scale better) are unable to represent non-smooth solutions
- ▶ All examples of non-smoothness seem to be deterministic, i.e., noise tends to smooth the optimal value function

Example 1: Guessing a Solution for the HJB PDE

- ► System: $\dot{x}(t) = u(t)$, $|u(t)| \le 1$, $0 \le t \le 1$
- ▶ Costs: $\ell(x, u) = 0$ and $\mathfrak{q}(x) = \frac{1}{2}x^2$ for all $x \in \mathcal{X}$ and $u \in \mathcal{U}$
- ➤ Since we only care about the square of the terminal state, we can construct a candidate optimal policy that drives the state towards 0 as quickly as possible and maintains it there:

$$\pi(t,x) = -sgn(x) := \begin{cases} -1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ 1 & \text{if } x < 0 \end{cases}$$

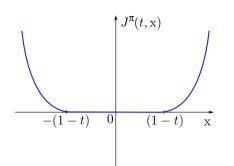
- ► The value in not smooth: $V^{\pi}(t,x) = \frac{1}{2} (\max\{0,|x|-(1-t)\})^2$
- ▶ We will verify that this function satisfies the HJB and is therefore indeed the optimal value function

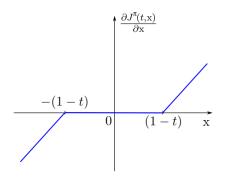
Example 1: Partial Derivative wrt x

Value function and its partial derivative wrt x for fixed t:

$$V^{\pi}(t,x) = \frac{1}{2} \left(\max \left\{ 0, |x| - (1-t) \right\} \right)^2$$

$$V^{\pi}(t,x) = \frac{1}{2} \left(\max \left\{ 0, |x| - (1-t) \right\} \right)^{2} \qquad \frac{\partial V^{\pi}(t,x)}{\partial x} = sgn(x) \max \left\{ 0, |x| - (1-t) \right\}$$

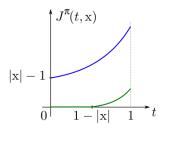


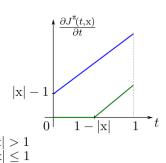


Example 1: Partial Derivative wrt t

▶ Value function and its partial derivative wrt t for fixed x:

$$V^{\pi}(t,x) = rac{1}{2} \left(\max \left\{ 0, |x| - (1-t)
ight\}
ight)^2 \qquad rac{\partial V^{\pi}(t,x)}{\partial t} = \max \{ 0, |x| - (1-t) \}$$





Example 1: Guessing a Solution for the HJB PDE

- ▶ Boundary condition: $V^{\pi}(1,x) = \frac{1}{2}x^2 = \mathfrak{q}(x)$
- ▶ The minimum in the HJB PDE is obtained by u = -sgn(x):

$$\min_{|u|\leq 1}\left(\frac{\partial V^\pi(t,x)}{\partial t}+\frac{\partial V^\pi(t,x)}{\partial x}u\right)=\min_{|u|\leq 1}\left((1+sgn(x)u)\left(\max\{0,|x|-(1-t)\}\right)\right)=0$$

- ► Conclusion: $V^{\pi}(t,x) = V^{*}(t,x)$ and $\pi^{*}(t,x) = -sgn(x)$ is an optimal policy
- Note that this is a simple example. In general, solving the HJB PDE is nontrivial.

Example 2: HJB PDE without a Classical Solution

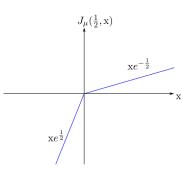
- ► System: $\dot{x}(t) = x(t)u(t)$, $|u(t)| \le 1$, $0 \le t \le 1$
- ▶ Costs: $\ell(x, u) = 0$ and $\mathfrak{q}(x) = x$ for all $x \in \mathcal{X}$ and $u \in \mathcal{U}$
- Optimal policy:

$$\pi(t,x) = \begin{cases} -1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ 1 & \text{if } x < 0 \end{cases}$$

Optimal value function:

$$V^{\pi}(t,x) = \begin{cases} e^{t-1}x & x > 0 \\ 0 & x = 0 \\ e^{1-t}x & x < 0 \end{cases}$$

The value function is not differentiable wrt x at x = 0 and hence does not satisfy the HJB PDE in the classical sense



Optimality Conditions

► The HJB PDE is not a necessary condition for optimality of the continuous-time optimal control problem but it is sufficient

Theorem: HJB PDE Sufficiency

Suppose that V(t,x) is continuously differentiable in t and x and solves the HJB PDE:

$$V(T,x) = \mathfrak{q}(x), \quad \forall x \in \mathcal{X}$$

$$-\frac{\partial V(t,x)}{\partial t} = \min_{u \in \mathcal{U}(x)} \left[\ell(x,u) + \nabla_x V(t,x)^T f(x,u) + \frac{1}{2} \operatorname{tr} \left(\Sigma(x,u) \left[\nabla_x^2 V(t,x) \right] \right) \right]$$

for all $x \in \mathcal{X}$ and $0 \le t \le T$. Suppose also that the policy $\pi^*(t,x)$ attains the minimum in the HJB PDE for all t and x and is piecewise-continuous in t. Then, under the assumptions on Slide 5, V(t,x) is the unique solution of the HJB PDE and is equal to the optimal value function $V^*(t,x)$, while $\pi^*(t,x)$ is an optimal policy.

More Tractable Problems

Consider a restricted class of system dynamics and cost functions:

$$dx = (a(x) + B(x)u)dt + C(x)d\omega$$
$$\ell(x, u) = q(x) + \frac{1}{2}u^{T}R(x)u$$

The Hamiltonian can be minimized analytically wrt u for such problems (suppressing the dependence on x for clarity):

$$\pi^* = \arg\min_{u} \left\{ q + \frac{1}{2} u^T R u + (a + B u)^T V_x + \frac{1}{2} \operatorname{tr}(CC^T V_{xx}) \right\}$$
$$= -R^{-1} B^T V_x$$

► The HJB PDE becomes second-order quadratic, no longer involving the min operator!

$$H[x, \pi^*, V_x] = q + a^T V_x + \frac{1}{2} \operatorname{tr}(CC^T V_{xx}) - \frac{1}{2} V_x^T B R^{-1} B^T V_x$$

More Tractable Problems (Generalizations)

▶ Control-multiplicative Noise: $\Sigma(x, u) = C_0(x)C_0(x)^T + \sum_i C_j(x)uu^T C_j(x)^T$

$$\pi^* = -\left(R + \sum_{i} C_j^T V_{xx} C_j\right)^{-1} B^T V_x$$

Convex-in-control Costs: $\ell(x, u) = q(x) + \sum_j r(u_j)$ with convex $r(\cdot)$:

$$\pi^* = \arg\min_{u} \left\{ \sum_{i} r(u_i) + u^T B^T V_x \right\} = (r')^{-1} \left(-B^T V_x \right)$$

► Example:

$$r(u) = s \int_0^{|u|} extbf{atanh}\left(rac{\omega}{u_{max}}
ight) d\omega \quad \Rightarrow \quad \pi^* = u_{max} anh\left(-s^{-1}B^TV_x
ight)$$

Pendulum Example

▶ Pendulum dynamics (Newton's second law for rotational systems):

$$mL^2\ddot{\theta} = u - mgL\sin\theta + noise$$

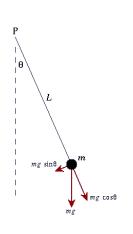
▶ State-space form with $x = (x_1, x_2) = (\theta, \dot{\theta})$:

$$dx = \begin{bmatrix} x_2 \\ k \sin(x_1) \end{bmatrix} dt + \begin{bmatrix} 0 \\ 1 \end{bmatrix} (udt + \sigma d\omega)$$

- ► Stage cost: $\ell(x, u) = q(x) + \frac{r}{2}u^2$
- ▶ Optimal value and policy (discounted problem):

$$\pi^*(x) = -\frac{1}{r}V_{x_2}^*(x)$$

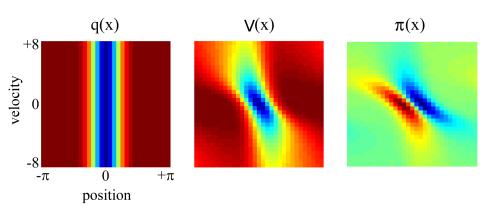
$$\frac{1}{\gamma}V^*(x) = q(x) + x_2V_{x_1}^*(x) + k\sin(x_1)V_{x_2}^*(x) + \frac{\sigma^2}{2}V_{x_2x_2}^*(x) - \frac{1}{2r}(V_{x_2}^*(x))^2$$



Pendulum Example

- Parameters: $k = \sigma = r = 1$, $\gamma = 0.3$, $q(\theta, \dot{\theta}) = 1 \exp(-2\theta^2)$
- Discretize the state space, approximate derivatives via finite differences, and iterate:

$$V^{(n+1)}(x) = V^{(n)}(x) - \alpha \left(V^{(n)}(x) - \gamma \min_{u} H[x, u, \nabla_{x} V^{(n)}(\cdot)] \right), \quad \alpha = 0.01$$



MDP Discretization

▶ Define discrete state space $\mathcal{X}_{(h)} \subset \mathbb{R}^n$, control space $\mathcal{U}_{(h)} \subset \mathbb{R}^m$, and time step $\tau_{(h)}$, where h is a coarseness parameter such that $h \to 0$ corresponds to infinitely dense discretization

▶ **Local Consistency**: construct a motion model $x'_{(h)} = x_{(h)} + d$ with:

$$\mathbb{E}[d] = \tau_{(h)} f(x_{(h)}, u_{(h)}) + o(\tau_{(h)})$$

$$\mathbf{cov}[d] = \tau_{(h)} \Sigma(x_{(h)}, u_{(h)}) + o(\tau_{(h)})$$



▶ Kushner and Dupois: In the limit $h \to 0$, the MDP solution $V_{(h)}^*$ converges to the solution V^* of the continuous problem (even for non-smooth V^*)

MDP Discretization

- ► For each $x_{(h)}$, $u_{(h)}$ choose vectors $\{d_i\}_{i=1}^K$ such that all possible next states are $x'_{(h)} = x_{(h)} + hd_j$
- ▶ Specify $\tau_{(h)}$ and $p_{(h)}^{J} := p_f(x_{(h)} + hd_j \mid x_{(h)}, u_{(h)})$ according to one of the strategies:

strategies:
$$1. \ \tau_{(h)} = \frac{h^2}{h+1} \text{ and } p_{(h)}^j = \frac{h\alpha_j + \beta_j}{h+1} \qquad 2. \ \tau_{(h)} = h \text{ and}$$

$$\sum_{j} \alpha_{j} d_{j} = f(x_{(h)}, u_{(h)})$$
$$\sum_{j} \beta_{j} d_{j} = 0$$

for α_i, β_i such that:

$$\sum_{j} \beta_{j} d_{j} d_{j}^{T} = \Sigma(x_{(h)}, u_{(h)})$$

$$\sum_{j} \alpha_{j} = 1, \ \alpha_{j} \geq 0$$

$$\sum_{j} p_{(h)}^{j} = 1, \ p_{(h)}^{j} \geq 0$$

 $\min_{\{p_{(h)}^{j}\}} \|\Sigma - h \sum_{i} p_{(h)}^{j} (d_{j} - f) (d_{j} - f)^{T}\|^{2}$

s.t $\sum_{i} p_{(h)}^{j} d_{j} = f(x_{(h)}, u_{(h)})$

 $\sum_{i} \beta_{i} = 1, \ \beta_{i} \geq 0$ 3. $\tau_{(h)} = h$ and $p_{(h)}^{J} \propto \phi(x_{(h)} + hd_j; hf(x_{(h)}, u_{(h)}), h\Sigma(x_{(h)}, u_{(h)}))$