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Continuous-time System Dynamics
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time: t € [0, T]
state: x(t) e X CR", Vt € [0, T]
control: u(t) ed CR™, Vte [0, T]
motion model: a stochastic differential equation (SDE):
dx = f(x(t), u(t))dt + C(x(t), u(t))dw, x(0) = xo

noise: Brownian motion w(t) (integral of white noise)
» Robert Brown made microscopic observations in 1827 that small particles
in plant pollen, when immersed in liquid, exhibit highly irregular motion

» Definition: a continuous stationary stochastic process w(t) satisfying:
> w(0)=0
> w(t) is almost surely continuous (but nowhere differentiable)
» w(t) has independent increments, i.e., (w(t2) — w(t1)) and (w(ts) — w(t3))
are independent for 0 < i < b < tz3 < ta
> w(t) —w(s) ~N(0,t—s)for0<s<t



Continuous-time System Dynamics

» The SDE means that the time-integrals of the two sides are equal:

T T
— X 0):/0 f(x(t),u(t))dt+/0 C(x(t), u(t))dw(t)

Ito intergral

» Cannot be written as x = f(x, u) + C(x, u)w because w does not exist

» The Ito integral of a random process y(t) adapted to w(t), i.e., y(t)
depends on the sample path of w(t) up to time t, is:
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Continuous-time Optimal Control

» Infinite-dimensional dynamic constrained optimization:

;
V7(0,x0) = E{/O ((x (), m(t, x(t)))dt + a(x(T))

terminal cost

x(0) = Xo}

min
TePCO([0,T],U)

stage cost
s.t.  dx = f(x(t), 7(t,x(t)))dt + C(x(t), 7(t, x(t)))dw.
x(t) € X, n(t,x(t)) elU

» Admissible policies: u(t) := 7(t,x(t)) € M := PCO([0, T],U) are
piecewise cont. functions that map a state x at time t to a control input

» T can be free or fixed; x(T) can be free or in a target set T

» Additional state and control constraints can be imposed via the sets X
and U



Assumptions

» f is continuously differentiable wrt to x and continuous wrt u

» Existence and Uniqueness: for any admissible policy m € 1 and initial
x(1) € X, 7 € [0, T], the noise-free system, x(t) = f(x(t), 7(t, x(t))),
has a unique state trajectory x(t), t € [r, T].

» The stage cost ¢(x, u) is continuously differentiable wrt x and
continuous wrt u

» The terminal cost q(x) is continuously differentiable wrt x



Examples: Existence and Uniqueness

» Example: Existence in not guaranteed in general
x(t) = x(t)?, x(0) =1

Solution does not exist forT > 1: x(t) = 13

» Example: Uniqueness in not guaranteed in general

Infinite number of solutions : 0 foro<t<r
t 2 3/2
(5(t—7)) fort > 71



Special case: Calculus of Variations

» Calculus of Variations: an infinite-dimensional static constrained
optimization:
x))dx +
o [ 00,56+ ety
st. y(a) = yo, y(b) = yr

» It is a special case of the deterministic continuous-time optimal control
problem for a fully-actuated system (x = u) with t < x, x(t) < y(x),

u(t) = x(t) < y(x)



Optimal Value Function

» The closed-loop cost V*(t, x) associated with an optimal control policy
u*(t) := 7*(t,x(t)) at state x and time t:

V*(t,x) < V™(t,x), VYmellxeX

HJB PDE

The Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE) is
satisfied for all time-state pairs (t, x) by the optimal value V*(t, x):

V*(T,x)=q(x), VxeX

—% V*(t,x) = ug;/{ipx) {E(x, u) 4+ Vi V*(t,x) T f(x, u) + %tr (Z(x, u) [V2 V*(t,x)])}

for all t € [0, T] and x € X and where ¥(x, u) := C(x,u)C'(x, uv).

» The HJB PDE is the continuous-time analog of the Bellman Equation



HJB PDE Derivation

» A discrete-time approximation of the cont.-time optimal control problem
can be used to derive the HJB PDE from the DP algorithm

» Motion model: dx = f(x(t), u(t))dt + C(x(t), u(t))dw with x(0) = xo

» Euler Discretization of the SDE with time step 7:
» Discretize [0, T] into N pieces of width 7 := I
» Define xx := x(k7) and uy := u(kT) for k =0,..., N
» Discretized system dynamics:

=

Xk+1 :Xk+Tf(Xk,Uk)+€k, €k NN(O,TZ(Xk,Uk))
so that the motion model is specified by a Gaussian pdf:
pr(x" | x,u) = ¢(x'; x + 7F(x, u), TZ(x, u))

> Discretized stage cost: 7¢(x, u)

» Idea: apply the Bellman Equation to the now discrete-time problem and
take the limit as 7 — 0 to obtain a “continuous-time Bellman Equation”
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HJB PDE Derivation

» Bellman Equation: finite-horizon problem with t := k71

V(t,x) = uénulpx) {Tﬁ x,u) +E, I (1,0) [V(t + T, X/)] }

> Note that x’ = x + d where d ~ N (7f(x, u), 7%(x, u))
» Taylor-series expansion of V/(t + 7,x’) around (t, x):
V(t+7,x+d)=V(t, X)—I—T (t x) + o(7?)

FIVV(E )] d 4 50T [V2V(E )] d +o(d?)
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HJB PDE Derivation

> Note that E [d7 Md] = tr(EM) + tr(up” M) for d ~ N(p1, X) so that:

oV
By [V(E+7,X)] = V(t,x) + Ta(t,X) + o(7?)

[V V(X)) T F(x, u) + %tr (S(x, u) [V2V(t,x)])

» Substituting in the Bellman Equation and simplifying, we get:

72
0= min {é(x7 u)+%—\:(t,x)—&-[VXV(t,x)]Tf(x, u)+%tr (Z(x, u) [ViV(t,x)}) + o )}

u€U(x) T

» Taking the limit as 7 — 0 (assuming it can be exchanged with
min,cui(x)) leads to the HJB PDE:

%\t/(t x) = uénui(nx) {E(X, u) + [V V(t, )] T Fx, u) + %tr( (x, u) [V V(t, X)])}
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Infinite-Horizon Stochastic Optimal Control

> VT(x)=E {/OOO e\:i 0(x(t), w(t, x(t)))dt| with v € [0, c0)

discount

HJB PDEs for the Optimal Value Function

Hamiltonian: HIx, u, p(-)] = €(x, u) + p(x) T f(x, u) + %tr (Z(x, v)[Vxp(X)])

*

Finite Horizon: oz (t,x) = min H[x,u, V,V*(t,")], V*(T,x)=q(x)

ot uel(x)
First Exit: 0= nzllp Hx, u, Vi V* ()], V*(x €T)=q(x)
u€eU(x)
Discounted: —V*(x)= min H[x, u, V,V*(-)]
y u€U(x)

12



Existence and Uniqueness of HJB PDE Solutions

» The HJB PDE has at most one classical solution (i.e., a function which
satisfies the PDE everywhere)

» If a classical solution exists then it is the optimal value function

» The HJB PDE may not have a classical solution, in which case the
optimal value function is not smooth (e.g. bang-bang control)

» The HJB PDE always has a unique viscosity solution which is the
optimal value function

» Approximation schemes based on MDP discretization are guaranteed to
converge to the unique viscosity solution

» Most continuous function approximation schemes (which scale better)
are unable to represent non-smooth solutions

» All examples of non-smoothness seem to be deterministic, i.e., noise
tends to smooth the optimal value function
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Example 1: Guessing a Solution for the HJB PDE

>

>

System: x(t) = u(t), |u(t)| <1,0<t<1
Costs: £(x,u) =0 and q(x) = 3x> for all x € X and u € U

Since we only care about the square of the terminal state, we can
construct a candidate optimal policy that drives the state towards 0 as
quickly as possible and maintains it there:

-1 ifx>0
m(t,x) = —sgn(x) =<0 ifx=0
1 if x <0

The value in not smooth: V™(t,x) = 1 (max {0, x| — (1 — t)})?

We will verify that this function satisfies the HJB and is therefore indeed
the optimal value function
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Example 1: Partial Derivative wrt x

» Value function and its partial derivative wrt x for fixed t:

VT (t x) = %(max {0, x| = (1 = £)})? 8‘/;(;“) — sgn(x) max{0, x| — (1 — t)}
Jﬂ:(t,x) BJ"a(t,x)

—(1—1) /
—(1—t) 0 (1-1) x / 0 (1—1) x
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Example 1: Partial Derivative wrt t

» Value function and its partial derivative wrt t for fixed x:

- o 1 2 8V7T(t,X)
V7 (t,x) = > (max {0, [x| — (1 - t)}) o
JH(t,x)
el — 1 x| —1
0 1—|x] 0
—|xI>1
— =1

= max{0, |x| — (1 — t)}

1— x|

1
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Example 1: Guessing a Solution for the HJB PDE

> Boundary condition: V™(1,x) = 3x? = q(x)

» The minimum in the HJB PDE is obtained by u = —sgn(x):

i (8\/;(:7 o av;(xt, 9 “> = min ((1-+ sgn(x)u) (max{0,|x| — (1~ 1)})) = 0

» Conclusion: V™(t,x) = V*(t,x) and 7*(t,x) = —sgn(x) is an optimal
policy

» Note that this is a simple example. In general, solving the HJB PDE is
nontrivial.
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Example 2: HJB PDE without a Classical Solution

>

>

System: x(t) = x(t)u(t), |u(t)] <1,0<t<1

Costs: ¢(x,u) =0 and q(x) =x forall x € X and u € U

Optimal policy:
-1 ifx>0
m(t,x) =40 ifx=0
1 if x<0
Optimal value function:
et“Ix x>0
VT(t,x) =<0 x=0 xe

el“tx x<0

J, (%,x)

»
g
wie

ol

The value function is not differentiable wrt x at x = 0 and hence does
not satisfy the HIB PDE in the classical sense
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Optimality Conditions

» The HJB PDE is not a necessary condition for optimality of the
continuous-time optimal control problem but it is sufficient

Theorem: HJB PDE Sufficiency

Suppose that V/(t, x) is continuously differentiable in t and x and solves the
HJB PDE:

V(T,x)=q(x), VxeX

7% = ug{i(n)() 0(x, u) + YV V(t,x) T f(x,u) + %tr (Z(x, u) [V2V(t,X)])
for all x € X and 0 < t < T. Suppose also that the policy 7*(t, x) attains
the minimum in the HJB PDE for all t and x and is piecewise-continuous in
t. Then, under the assumptions on Slide 5, V/(t, x) is the unique solution of
the HJB PDE and is equal to the optimal value function V*(t, x), while
7*(t,x) is an optimal policy.
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More Tractable Problems

» Consider a restricted class of system dynamics and cost functions:
dx = (a(x) + B(x)u)dt + C(x)dw
1
{(x,u) = 9(x) + 5u" R(x)u

» The Hamiltonian can be minimized analytically wrt u for such problems
(suppressing the dependence on x for clarity):

1 1
Tr*:argmin{q+ uTRu+(a +Bu)TVX+2tr(CCTVXX)}
—R7'BTV,

» The HJB PDE becomes second-order quadratic, no longer involving the
min operator!

1
Hlx,7*,Vi] = q+a’ V4 + (CCTVXX)—EVXTBR_lBTVX
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More Tractable Problems (Generalizations)

> Control-multiplicative Noise: ¥(x,u) = Co(x)Co(x)" + > G(x)uu" G(x)"
J

-1
T = <R +> chvXXCJ) BTV,
J
> Convex-in-control Costs: {(x, u) = q(x) + >_; r(u;) with convex r(-):
7 = arg min{z r(uj) + uTBTVX} =(r)? (—BTVX>
! j

» Example:

|ul
r(u) = s/ atanh ( d ) dw = 7 = umaxtanh (—sleTVX)
0

Umax
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Pendulum Example

» Pendulum dynamics (Newton's second law for
rotational systems):

mL2%0 = u — mglLsin 6 + noise

> State-space form with x = (x1, x2) = (6, 6):

dx = [ksif’(m] dt + m (udt + odw)

mg cosl

> Stage cost: {(x, u) = q(x) + 5u?
» Optimal value and policy (discounted problem):
* 1 *
73 = Vi (x)
1 2 1

;V*(X) = q(x) + x2 V3, (x) + ksin(x1) Vg, (x) + %V:m(x) - 2r(V);';(x))z



Pendulum Example

» Parameters: k=0=r=1,v=0.3, q(0, 9) =1 — exp(—26?)

» Discretize the state space, approximate derivatives via finite differences,
and iterate:

VD (x) = V) (x) — o <V(")(x) — ~min H[x, u, Vi v<">(-)]), a = 0.01

q(x) V(x) n(x)
+8
2
30 \) I.'hh-
(&)
>
-8
- 0 +7
position
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MDP Discretization

> Define discrete state space X,y C R”, control space Uy C R™, and
time step 7(p,), where h is a coarseness parameter such that h — 0

corresponds to infinitely dense discretization

» Local Consistency: construct a motion
model X(,h) = x(p) + d with:

E[d] = 7(n)f (X(h), t(n)) + 0(7(ny)
cov[d] = T(n) X (X(hy, U(ny) + o(7(n))

()

zf

()

T

» Kushner and Dupois: In the limit h — 0, the MDP solution V(*h)
converges to the solution V* of the continuous problem (even for

non-smooth V*)
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MDP Discretization

» For each x(p), u(p) choose vectors {dJ}JK:1 such that all possible next
states are X(,) = () + hd

» Specify 7(p) and p{h) = pr(X(n) + hd; | X(n), t(n)) according to one of the
strategies:

2 / ha; i =
L 7(h) = 7iig and pf, = 5% 2. 7 = hand

for aj, B; such that:

min ||X — thjh)(d £)(di— )7

220445 = F(X(ny: U(n)) o)
5y = 0 st sl =
J
BididT = E(xpy, u j '
ZJBJ jd; (X(h)> u(n)) Zp(h) =1, péh) >0
> =1 020 J
Zjﬁj =1,06=20 3. 7(ny = h and

Py o Sx(n) + hdljs hF (X(nys (), BE (X ()
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