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Deterministic Continuous-time Optimal Control

i
elmin L V(00) = /0 0(x(8), 7(£, x(£)))dt + q(x(T))

s.t. x(t) = f(x(t),u(t)), x(0)=xo
x(t) € X, w(t,x(t)) eU

» Hamiltonian: H(x, u,p) = {(x,u) + p" f(x, u)

> Costate: p(t) is the gradient/sensitivity of the optimal value function
with respect to the state x.

» Relationship to Mechanics:
» Hamilton’s principle of least action: trajectories of mechanical systems

are extremals of the action integral fOT ¢(t)dt, where the Lagrangian
£(t) := K(t) — P(t) is the difference between kinetic and potential energy.

» |If we think of the stage cost as the Lagrangian of a mechanical system,
the Hamiltonian is the total energy (kinetic plus potential) of the system

2



» Extremal open-loop trajectories (i.e., local minima) can be computed
by solving a boundary-value ODE with initial state x(0) and terminal
costate p(T) = V,q(x)

Theorem: Pontryagin's Minimum Principle (PMP)

» Let u*(t): [0, T] — U be an optimal control trajectory

» Let x*(t) : [0, T] = X be the associated state trajectory from xg
» Then, there exists a costate trajectory p*(t) : [0, T] — X satisfying:
1. Canonical equations with boundary conditions:

X'(t) = VpH(x"(t),u"(1),p*(1)), x"(0) = xo
p*(t) = —Vx H(X*(t) “(1),p7(1),  PT(T) = Vxa(x*(T))

2. Minimum principle with constant (holonomic) constraint:

u*(t) = argmin H(x"(t),u, p*(t)), vVt € [0, T]
uel(x*(t))
H(x*(t), u*(t), p*(t)) = constant, vVt € [0, T]

» Proof: Liberzon, Calculus of Variations & Optimal Control, Ch. 4.2



Proof of PMP (Step 0: Preliminaries)

Lemma: V-min Exchange
Let F(t,x, u) be continuously differentiable in t € R, x € R", u € R™ and let

U C R™ be a convex set. Assume 7*(t, x) = arg min F(t, x, u) exists and is
uelU

continuously differentiable. Then, for all t and x:

d (minyey F(t,x,u))  OF(t,x,u)
ot ot

v in F(t = ViF(t
i (FE00) =T

» Proof: Let G(t,x) := min,gy F(t,x,u) = F(t,x,7*(t,x)). Then:

OF(t,x, u) or*(t, x)

0G(t,x)  OF(t,x,u)
ou ot

ot ot +

u=m*(t,x)

u=m*(t,x)

=0 by 1st order optimality condition

A similar derivation can be used for the partial derivative wrt x.



Proof of PMP (Step 1: HJB PDE gives V*(t, x))

» Extra Assumptions: V*(t,x) and 7*(t, x) are continuously
differentiable in t and x and U/ is convex. These assumptions can be
avoided in a more general proof.

» With a continuously differentiable value function, the HJB PDE is also a
necessary condition for optimality:

V(T,x)=q(x), VxeX

0= mizg <€(X, u)+ %V*(t,x) + V, V(1 x) T (x, u)>, Vte [0, T],xe X
uc

=F(t,x,u)

with 7*(t, x) a corresponding optimal policy.



Proof of PMP (Step 2: V-min Exchange Lemma)

» Apply the V-min Exchange Lemma to the HJB PDE:

0 . 32V*(t7x) ) X T .
0= (TGIZD F(t,x, U)> =5z T {EVXV (t,x)} f(x, 7 (t,x))

0=Vjy (min F(t,x, u))
ueU

AV*(t, x)

T [V2V*(t, X)]f(x, u*) + [Vif(x, u*)]T Vi V*(t, x)

= V,l(x,u*) + Vx

where uv* := 7*(t, x)
» Evaluate these along the trajectory x*(t) resulting from 7*(t, x*(t)):

X(t) = F(x*(1), u"(t)) = VpH(X(2), u*(28),p),  x"(0) = xo



Proof of PMP (Step 3: Evaluate along x*(t), u*(t))

» Evaluate the results of Step 2 along x*(t):

-
2\/*
0= 2Vt 2w v ) 0
ot x=x*(t) ot x=x*(t)
d | OV*(t,x) d
- = —r(t t)= t. vVt
p T N dtr( ) = r(t) = const. ¥
|
=r(t)
and

dt —_—
=:p*(t)

= Vil (x, ") [xmer (1) + B (8) + [Vf (%, 1) e ()] TP ()
= P (t) + Vi H(x*(2), u”(t), p*(1))

* d * * *
0= VXZ(X7 u )|x:x*(t) + = (VXV (t» X)lx-x*(t)) + [fo(X, u )‘X:X*(t)]T[va (tvx)‘x:x*(t)]



Proof of PMP (Step 4: Done)
» The boundary condition V*(T,x) = q(x) implies that

Vi V*(T,x) = Vxq(x) for all x € X and thus p*(T) = Vxq(x*(T))
» From the HJB PDE we have:

8V*(t,x) . *
_T = TGIZD H(X, u, vXV (t, ))

which along the optimal trajectory x*(t), u*(t) becomes:
—r(t) = H(x*(t), u*(t), p*(t)) = const
» Finally, note that
u*(t) = argmin F(t,x*(t), u)
ueU

= argmin  4(x*(t),u (8, %) |y (0)] T FOX (1), u
= argmin {£(x'(£), ) + [V (£ 9o (o] T (8), )}

= argmin { £(x*(t), u “(£)TF(x*(t), u
= argmin { (<" (1), ) + p"(8) £ (1), )}

= argmin H(x*(t), u, p*(t))
ueld



HJB PDE vs PMP

>

>

The HIB PDE provides a lot of information — the optimal value function
and an optimal policy for all time and all states!

Often, we only care about the optimal trajectory for a specific initial
condition xp. Exploiting that we need less information, we can arrive at
simpler conditions for optimality — Pontryagin's Minimum Principle

The PMP does not apply to infinite horizon problems, so one has to
use the HJB PDE in that case

The HJB PDE is a sufficient condition for optimality: it is possible
that the optimal solution does not satisfy it but a solution that satisfies
it is guaranteed to be optimal

The PMP is a necessary condition for optimality: it is possible that
non-optimal trajectories satisfy it so further analysis is necessary to
determine if a candidate PMP policy is optimal

The PMP requires solving an ODE with split boundary conditions (not

easy but easier than the nonlinear HIB PDE!) 9



Example: Resource Allocation for a Martian Base

| 2

>

| 4

A fleet of reconfigurable, general purpose robots is sent to Mars at t =0
The robots can 1) replicate or 2) make human habitats

The number of robots at time t is x(t), while the number of habitats is
z(t) and they evolve according to:

x(t) = u(t)x(t), x(0)=x>0
z(t) = (1 — u(t))x(t), z(0)=0

0<u(t)<1
where u(t) denotes the percentage of the x(t) robots used for replication

Goal: Maximize the size of the Martian base by a terminal time T, i.e.:

-
max z(T) = /0 (1 — u(t))x(t)dt

with f(x,u) = ux, (x,u) = (1 — u)x and q(x) =0
10



Example: Resource Allocation for a Martian Base

» Hamiltonian: H(x,u,p) = (1 — u)x + pux
» Apply the PMP:
<*(t) = VpH(x", u” P f(t)ur(t), x*(0) =x
(

X *)=x
B7(t) = ~VH(x" 0%, p*) = —1+ u™(t) — p*(t)u(t), p"(T) =
u ) u, ( :

(1) = argmax H(x(t), u, p7(1)) = arng(X* ) +x7(t)(p

(t)—l) )

» Since x*(t) >0 for t € [0, T]:

‘() = 0 ifp*(t) <1
B ERT I S
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Example: Resource Allocation for a Martian Base

» Work backwards from t = T to determine p*(t):
» Since p*(T) =0 for t close to T, we have u*(t) = 0 and the costate
dynamics become p*(t) = —1
> Attimet= T — 1, p*(t) = 1 and the control input switches to v*(t) =1
> Fort< T —-1:
pr(t) = —p(t), p(T-1)=1
=pt)=eT DV t>1 fort<T-1

» Optimal control:

. {1 fo<t<T-1
u(t) =

0 fT-1<t<T

12



Example: Resource Allocation for a Martian Base

» Optimal trajectories for the Martian resource allocation problem:

u*(t) p(t)

» Conclusions:
» Use all robots to replicate themselves from t =0 to t = T — 1 and then
use all robots to build habitats
> If T <1, then the robots should only build habitats
» If the Hamiltonian is linear in u, its min can only be attained on the
boundary of U, known as bang-bang control 13



PMP with Fixed Terminal State

» Suppose that in addition to x(0) = xs, a final state x(T) = x; is given.

» The terminal cost q(x(T)) is not useful since V*(T,x) = oo if
x(T) # x,. The terminal boundary condition for the costate
p(T) = Vq(x(T)) does not hold but as compensation we have a
different boundary condition x(T) = x-.

» We still have 2n ODEs with 2n boundary conditions:

x(t) = f(x(t), u(t)), x(0) = xs, x(T) = x,
p(t) = =VH(x(t), u(t), p(t))

» If only some terminal state are fixed x;j(T) = x,j for j € I, then:
x(t) = f(x(t), u(t)), x(0) =xs, xj(T)=xrj, Vjel

B(t) = —VeH(x(), u(t). p(1)),  pi(T) = ij«x(r)), Vigl
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PMP with Fixed Terminal Set

» Terminal set: a k dim surface in R” requiring:
x(T)Ye Xy ={xeR"| hi(x)=0,j=1,...,n—k}

» The costate boundary condition requires that p(T) is orthogonal to the
tangent space D = {d € R" | Vo hj(x(T))"d =0, j=1,...,n— k}:

x(t) = f(x(t), u(t)), x(0) =xs, hi(x(T))=0,j=1,...,n—k
p(t) = =ViH(x(t), u(t), p(t)), p(T) € span{V.hj(x(T)),V,}
OR d'p(T)=0,vdeD
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PMP with Free Initial State

» Suppose that xg is free and subject to optimization with additional cost
go(Xo) term

> The total cost becomes ¢o(x0) + V/(0, xo) and the necessary condition
for an optimal initial state xp is:

foo(x)|X:X0 + vX\/(07X)|X:Xo =0 = p(0)=—-V.lo(x)
—_—
=p(0)

» We lose the initial state boundary condition but gain an adjoint state
boundary condition:

x(t) = £(x(t), u(t))
p(t) = =V H(x(t), u(t), p(t)), p(0) = =Vilo(x0), p(T)=—Vxa(x(T))
» Similarly, we can deal with some parts of the initial state being free and

some not

16



PMP with Free Terminal Time

>

Suppose that the initial and/or terminal state are given but the terminal
time T is free and subject to optimization

We can compute the total cost of optimal trajectories for various
terminal times T and look for the best choice, i.e.:

0
— V*(t, x) =0
ot t=T,x=x(T)
Recall that on the optimal trajectory:
H(x*(t), u*(t), p*(t)) = —QV*(t,x) = const. Vt
ot x=x*(t)

Hence, in the free terminal time case, we gain an extra degree of
freedom with free T but lose one degree of freedom by the constraint:

H(x*(t), u*(t), p*(t)) =0, vVt e [0, T]

17



PMP with Time-varying System and Cost
» Suppose that the system and stage cost vary with time:

x = f(x(t),u(t),t)  L(x(t),u(t),t)
» A usual trick is to convert the problem to a time-invariant one by
making t part of the state. Let y(t) = t with dynamics:
y(t)=1, y(0)=0
» Augmented state z(t) := (x(t), y(t)) and system:

(t) =F(z(¢) u(p)) o= | (18]

Uz, u) =l(x,u,y) §(2) = q(x)
» The Hamiltonian need not to be constant along the optimal trajectory:
H(x,u, p,t) = l(x,u, t) + p" f(x,u,t)
x*(t) = F(x"(t), u" (1), 1), x"(0) = xo
p(t) = =VxH(x*(t), u™(t), p*(t), 1), p*(T) = Vxa(x*(T))
u*(t) = argnz)m H(x*(t), u, p*(t), t)
H(x*(t), u*(t), p*(t), t) # const 18



Singular Problems

» The minimum condition u(t) = arg min H(x*(t), u, p*(t), t) may be
ueld
insufficient to determine u*(t) for all ¢ in some cases because the values

of x*(t) and p*(t) are such that H(x*(t), u, p*(t), t) is independent of u
over a nontrivial interval of time

» The optimal trajectories consist of portions where u*(t) can be
determined from the minimum condition (regular arcs) and where u*(t)
cannot be determined from the minimum condition since the
Hamiltonian is independent of u (singular arcs)

19



Example: Fixed Terminal State

» System: x(t) = u(t), x(0) =0, x(1) =1, u(t) e R
> Cost: min 3 [5(x(t)? + u(t)?)dt

» Want x(t) and u(t) to be small but need to meet x(1) =1

1

0 1 ¢

» Approach: use PMP to find a locally optimal open-loop policy

20



Example: Fixed Terminal State
» Pontryagin's Minimum Principle
> Hamiltonian: H(x, u, p) = 3(x*> + u?) + pu
» Minimum principle: u(t) = arg min {3(x(t)? + v?) + p(t)u} = —p(t)
ueR
» Canonical equations with boundary conditions:

x(t) = VpH(x(t), u(t), p(t)) = u(t) = —p(t), x(0) =0, x(1) =1
p(t) = =ViH(x(t), u(t), p(t)) = —x(t)

. . Coeray ot B

> Candidate trajectory: X(t) = x(t) = x(t) =ae' +be ' ==51
> x(0)=0 = a+b=0

> x(1)=1 = ae+bel=1

1

—t

» Open-loop control: u(t) = x(t) = eetjeefl

21



Example: Free Initial State
» System: x(t) = u(t), x(0) = free, x(1) =1, u(t) € R
> Cost: min 3 [5(x(£)? + u(t)?)dt

» Picking x(0) = 1 will allow u(t) = 0 but we will accumulate cost due to
x(t). On the other hand, picking x(0) = 0 will accumulate cost due to
u(t) having to drive the state to x(1) = 1.

x(t)
1

0 1 ¢

» Approach: use PMP to find a locally optimal open-loop policy
22



Example: Free Initial State
» Pontryagin’'s Minimum Principle
> Hamiltonian: H(x, u, p) = 2(x* + u?) + pu
» Minimum principle: u(t) = argmin {3(x(t)? + v?) + p(t)u} = —p(t)
ueR
» Canonical equations with boundary conditions:
x(t) = VpH(x(t), u(t), p(t)) = u(t) = —p(t)
p(t) = =ViH(x(t), u(t), p(t)) = =x(t), p(0) =0

» Candidate trajectory:

et +et
x(t) = x(t = t)=agel+pet=_—_~
(O=x() = x(t)=se'+be =T
et et
t = —X t) = — t b_tzi
p(t) = —x(t) = —ae" + be i
> x(1)=1 = aet+bel=1
> p(0)=0 = —a+b=0
> x(0) ~ 0.65

t —t

» Open-loop control: u(t) = x(t) = &=+ 0 1 X

ete 1




Example: Free Terminal Time

» System: x(t) = u(t), x(0) =0, x(T) =1, u(t) eR
» Cost: min foT 1+ 3(x(t)? + u(t)?)dt
» Free terminal time: T = free

» Note: if we do not include 1 in the stage-cost (i.e., use the same cost as
before), we would get T* = co (see next slide for details)

» Approach: use PMP to find a locally optimal open-loop policy
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Example: Free Terminal Time
» Pontryagin’'s Minimum Principle

> Hamiltonian: H(x(t), u(t), p(t)) = 5(x(t)? Jhult )?) + p(t)u(t )

» Minimum principle: u(t) = argmin f%( (£)% + v?) + p(t)u} =
ueR

» Canonical equations with boundary conditions:

x(t) = VpH(x(t), u(t), p(t)) = u(t) = —p(t), x(0) =0, x(T) =1
p(t) = =V H(x(t), u(t), p(t)) = —x(t)
> Candidate trajectory: x(t) = x(t) = x(t)=ae'+ be t= :;:Z:T

> x(0)=0 = a+b=0
> x(T)=1 = ae’ +be T =1

» Free terminal time:
0= H(x(2), u(t), P(8) = 1+ 5 (x(t)”  p(t)?)
1/(ef —e” t)2—(e +e*t) 2
() ey

= T =0.66

=1+

25



Example: Time-varying Singular Problem

» System: x(t) = u(t), x(0) = free, x(1) = free, u(t) € [-1,1]
» Time-varying cost: min 3 fol(x(t) — z(t))?dt for z(t) = 1 — t2

» Example feasible state trajectory that tracks the desired z(t) until the
slope of z(t) becomes less than —1 and the input u(t) saturates:

1

0

» Approach: use PMP to find a locally optimal open-loop policy
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Example: Time-varying Singular Problem

» Pontryagin's Minimum Principle
» Hamiltonian: H(x, u,p, t) = 3(x — z(t))* + pu
» Minimum principle:

-1 if p(t) >0
u(t) = arg min H(x(t), u, p(t), t) = < undetermined if p(t) =0
)<t 1 if p(t) <0

»> Canonical equations with boundary conditions:

)
p(t) = =V H(x(t), u(t), p(t)) = =(x(t) — 2(t)), p(0) =0, p(1) =0

» Singular arc: when p(t) = 0 for a non-trivial time interval, the control
cannot be determined from PMP

» In this example, the singular arc can be determined from the costate
ODE. For p(t) = 0:

0=p(t)=—x(t)+2z(t) = u(t)=x(t)=2(t)= -2t
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Example: Time-varying Singular Problem

» Since p(0) = 0, the state trajectory follows a singular arc until t; < %
(since u(t) = —2t € [—1,1]) when it switches to a regular arc with
u(t) = —1 (since z(t) is decreasing and we are trying to track it).

> For0<t <t <3 x(t) = z(t) p(t)=0
» Forts <t<1:

t
() =-1 = x(t):z(ts)f/ds:lftszftths

P = —(x(t) —2(t) =€ —te— 41, p(ts) = p(1) = 0

S
= p(s) = p(ts) + / (t2 —ts — 2+ t)dt, s€[ts, 1]
Jts

1 1 2 12
:>O:p(1):tsftsf§+§ft§+t52+§s*?5
= 0=(ts — 1)%(1 — 4t5)

= ts:Z




Discrete-time PMP

» Consider a discrete-time problem with dynamics x¢y1 = f(x¢, ut)

» Introduce Lagrange multipliers pg.7 to relax the constraints:

T-1
L(x0:7 to: 71, Po:7) = A(xT) + X po+ 3 L(xe, ue) + (F(xe, ue) — xe1) T pera
=0
T-1
=q(xr) + XoTPO - X77:PT + Z H(xe, ue, pes1) — XtTPt
=0

> Setting VL = V,L =0 and explicitly minimizing wrt ug.7_1 yields:

Theorem: Discrete-time PMP

If x3.7» Ug.7_1 is an optimal state-control trajectory starting at xg, then there
exists a costate trajectory pj.; such that:

X:+l :va(X:,U;pL_l) = f(vau;:k)7 XS = Xo
pi = VxH(E, uf, piyn) = VO, uf) + Vaf O, u5) T piys,  PT = Vad(xF)

uj = argmin H(x;  u, piy1)
u 29




Gradient of the Value Function via the PMP

» The discrete-time PMP provides an efficient way to evaluate the
gradient of the value function with respect to u and thus optimize
control trajectories locally and numerically

Theorem: Value Function Gradient

Given an initial state xo and trajectory ug.7_1, let x1.7, po.T be such that:

xep1 = f(xe, ut), Xo given

Pt = ng(xta ut) + [fo(Xt, Ut)]Tpt+17 PT = vxq(XT)
Then:

Vut V(XO:T, Uo:T—1) = vuH(Xt, ug, Pt+1) = vuE(Xt, Ut) + vuf(Xh Ut)Tpt-H

» Note that x; can be found in a forward pass (since it does not depend
on p) and then p; can be found in a backward pass

30



Proof by Induction

» The accumulated cost can be written recursively:

Vi(xe.T, ue.m—1) = U(xt, Ur) + Vera (e 1.7, Urr1:7-1)
» Note that u; affects the future costs only through x;+1 = (X, ut):
Ve Ve(Xe: T, ue7-1) = Viul(xe, u) + [Vuf (xe, ut)] Tvxt+1Jt+1(Xt+1:T7 Upp1:T-1)
» Claim: p; = V,, Vi(xe.7, up.7-1):
> Base case: pr = V. q(x7)

» Induction: for t € [0, T):

th Vt(Xt:T7 Ut:T—l) = ng(xu Ut) + [fo(Xh Ut)]T vxm Vt+1(Xt+1:T7 Ut+1:T—1)

=Pt =Pt+1

which is identical with the costate ODE.

31



