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Globally Optimal Closed-Loop Control

» Deterministic finite-horizon continuous-time optimal control:

-
repciin oy VT (0%0) 12/0 U(x(¢), m(t, x(t)))dt + q(x(T))
st x(t) = f(x(t),u(t)), x(0)=xo

x(t) e X, w(t,x(t)) el

» Hamiltonian: H(x, u,p) = {(x,u) + p" f(x, u)

HJB PDE: Sufficient Conditions for Optimality

If V(t,x) satisfies the HIB PDE:

_3‘/(;’;’ x) _ min H(x(£), u, VV(t, ), V(T.x)=q(x), Vxe X, teo,T]

then it is the optimal value function and the policy 7 (¢, x) that attains the
minimum is an optimal policy.




Locally Optimal Open-Loop Control

» Deterministic finite-horizon continuous-time optimal control:

min (0, %) / (x X(£))dt + a(x(T))

TePCO([0, T1,U)

s.t. x(t) = f(x(t),u(t)), x(0)=xo
x(t) € X, w(t,x(t)) elU

» Hamiltonian: H(x,u,p) := {(x,u) + p" f(x, u)

PMP ODE: Necessary Conditions for Optimality

If (x*(t), u*(t)) for t € [0, T] is a trajectory from an optimal policy 7*(t, x),
then it satisfies:

x(t) = F(x*(¢), u™(1)), x*(0) = xo
P(t) = =Vil(x*(2), u"(£)) = [V ((2), " (DT P (1), P(T) = Vxa(x*(T))
u*(t) = argergin H(x*(t), u, p*(t)), vVt e [0, T]
H(x*(t), u*(t), p*(t)) = constant, vVt e [0, T]




Tractable Problems

» Consider a deterministic finite-horizon problem with dynamics and cost:

1
x = a(x) + Bu U(x, u):q(x)—i—EuTRu R>=0

1
H ) Uy = + = TR + T —+ TB
» Hamiltonian: (x;u,p) = q(x) U P a(x)+p' Bu

VyH(x,u,p) = Ru+BTp V2H(x,u,p) = R
» HJB PDE: obtains globally optimal value and policy:
7 (t,x) = arg min H(x, u, Vi (t,x)) = —R71BT V,(t, x), tel0,Tl,xeX
uel
V(T,x) = q(x), xeX

—Vi(t,x) = q(x) +a’ Vi(t,x) — %vx(t,x)TBRflsTvX(t,x), tel0, Tl,xe X
» PMP: both necessary and sufficient for a local minimum:
u(t) = argmin H(x,u,p) = —R7'BTp(t), te]0,T]
ueld
x=a(x) - BR'BTp, x(0) = xo
p=—ax(x)" —a(x)"p, p(T) = Via(x(T)) 4



Example: Pendulum

L] [
209~ | cosn) 0]

k cos(x1)

» Cost-to-go and trajectories:

» Cost:

Ux, u) = 1—e_2X12-|—£u2 and q(x) =0
» Optimal policy (from HJB):
» PMP: locally optimal policy:

u(t) = —r 1py(t), te [0, T]

f(l = X2, X1(0) =0

% = ksin(x) — r py,  x(0)=0
pr=—4e 2 —pp,  pi(T)=0
p2 = —kcos(x1)p1, p2(T) =0




Linear Quadratic Control

» The key assumptions that allowed us to minimize the Hamiltonian
analytically were:
» The system dynamics are linear in the control u
» The stage-cost is quadratic in the control u

» Let us study the simplest such setting in which a deterministic
time-invariant linear system needs to minimize a quadratic cost over a
finite horizon:

i
V7 (0, x0) ::/0 %x(t)TQx(t)Jr %u(t)TRu(t) dt+%x(T)TQTx(T)

£(x(t),u(t) a(x(T))

min
TePCO([0, T],R™)

st. x=Ax+ Bu, x(0)=xp
x(t) € R", u(t) = n(t,x(t)) € R™

where Q = QT = 0, QT:Q}—EO,andR:RT>O

» This problem is called the Linear Quadratic Regulator (LQR)



LQR via the PMP
» Hamiltonian: H(x,u,p) = %XTQX + %UTRU +pTAx+pTBu
» Canonical equations with boundary conditions:
x = VpH(x, u, p) = Ax + Bu, x(0) = xo
b= ViH(xup) = —Qx—ATp,  p(T) = Vxa(x(T)) = Qrx(T)
» Minimum principle:
VuH(x,u,p)=Ru+BTp=0 = u*(t)=—-RBTp(t)
V2H(x,u,p) = R = 0 = u*(t) is a minimum

» Hamiltonian matrix: the canonical equations can now be simplified to
a linear time-invariant (LTI) system with two-point boundary conditions:

-5 b 873



LQR via the PMP

>

Claim: There exists a matrix M(t) = M(t)" = 0 such that
p(t) = M(t)x(t) for all t € [0, T]

We can solve the LTI system described by the Hamiltonian matrix
backwards in time:
A —BR'BT T
[x(t)]_e—Q —AT (e ){ x(T) ]
t)| T
p(t) s Qrx(T)

X(t) = ((Dll(t, T) + (Dlg(t, T)QT)X( T)
p(t) = (P21(t, T) + Po2(t, T)QT)x(T)

It turns out that D(t, T) := ®11(¢t, T) + P12(t, T)Q7 is invertible for
t € [0, T] and thus:

p(t) = (Por(t, T) + Soo(t, T)QT)D(t, T) x(t), Vte [0, T]
=:M(t)




LQR via the PMP
» From x(0) = D(0, T)x(T), we obtain an open-loop control policy:
u(t) = —R_IBT((Dzl(t, T) 4+ dx(t, T)QT)D(O0, T)_1X0

» From the claim that p(t) = M(t)x(t), however, we can also obtain a
linear state feedback control policy:

u(t) = —R BT M(t)x(t)
» We can obtain a better description of M(t) by differentiating
p(t) = M(t)x(t) and using the canonical equations:

p(t) = M(t)x(t) + M(£)x(t)
—Qx(t) — AT p(t) = M(t)x(t) + M(t)Ax(t) — M(t)BR™*B7 p(t)
—M(t)x(t) = Qx(t) + ATM(t)x(t) + M(t)Ax(t) — M(t)BR™1BT M(t)x(t)

which needs to hold for all x(t) and t € [0, T] and satisfy the boundary
condition p(T) = M(T)x(T) = Qrx(T)



LQR via the PMP (Summary)

» A unique candidate u(t) = —R™1BT M(t)x(t) satsifies the necessary
conditions of the PMP for optimality

» The candidate policy is linear in the state and the matrix M(t) satisfies
a quadratic Riccati differential equation (RDE):

—M(t) = Q + ATM(t) + M(t)A— M(t)BRIBTM(t), M(T)=Qr

» Other tools (e.g., the HJB PDE) are needed to decide whether u(t) is a
globally optimal policy

10



LQR via the HIB PDE
» Hamiltonian: H(x,u,p) = %XTQX + %UTRU +pTAx+pTBu
» HJB PDE:
T™(t,x) = argerzrj{in H(x, u, Vi(t,x)) = —R7IBT V,(t,x), tel0,Tl,xe X
Vit x) = %XTQX +xTAT V(£ x) — %Vx(t,x)TBR_lBTVX(t,x), te[o,ThxeX
V(T,x) = %XTQTX
» Guess a solution to the HIJB PDE based on the intuition from the PMP:
m(t,x) = =R BT M(t)x
V(t,x) = %X
Vi(t,x) = %XTM(t)X
Vi(t,x) = M(t)x

TM(t)x

11



LQR via the HJB PDE

» Substituting the candidate V/(t, x) into the HJB PDE leads to the same
RDE as before and we know that M(t) satisfies it!

» Conclusion: Since M(t) satisfies the RDE, V/(t,x) = x" M(t)x is the
unique solution to the HJB PDE and is the optimal value function for
the linear quadratic problem with an associated optimal policy
7(t,x) = —R~1BT M(t)x.

» General Strategy for Continuous-time Optimal Control Problems:

1. ldentify a candidate policy using the PMP
2. Use intuition from 1. to guess a candidate value function
3. Verify that the candidate policy and value function satisfy the HIB PDE

12



Continuous-time Finite-horizon LQG

» Linear Quadratic Gaussian (LQG) regulation problem:

ﬁePCOrP[(i)r,]T],Rm)VW(O’XO) = %E{/Tg% [xT(t) uT(1)] {g PRT} hgg} dt + eigx(T)TQTX(T)}

0
st.  dx = (Ax + Bu)dt + Cdw, x(0) = xo
x(t) € R", u(t) = n(t,x(t)) e R

» Discount factor: v € [0, o0]
> Optimal value: V*(t,x) = 1xT M(t)x + m(t)
» Optimal policy: 7*(t,x) = —R™1(P + BT M(t))x

» Riccati Equation:
—M(t) = Q+ ATM(t) + M(t)A— (P + BT M(t))TR™X(P + BT M(t)) — %M(t), M(T) = Qr

.1 1
—m= Etr(CCTM(t)) - ;m(t)7 m(T)=0

» M(t) is independent of the noise amplitude C, which implies that the
optimal policy 7*(t, x) is the same for the stochastic (LQG) and

deterministic (LQR) problems! 13



Continuous-time Infinite-horizon LQG
» Linear Quadratic Gaussian (LQG) regulation problem:

Wepcr?(iﬂgn’mv (x0) == E{/Oooe Y [xT(t) uT(1)] [g PRT} m;ﬂ dt}

s.t. dx = (Ax + Bu)dt + Cdw, x(0) = xp
x(t) € R", u(t) = n(x(t)) € R™
Discount factor: v € [0, )
Optimal value: V*(x) = 1x"Mx +m
Optimal policy: 7*(x) = —R~Y(P + BT M)x
Riccati Equation (‘care’ in Matlab):

1
“M=Q+ATM+MA—(P+B " M)TR"YP+BT™M)
5

- %tr(CCTI\/I)

» M is independent of the noise amplitude C, which implies that the
optimal policy 7*(x) is the same for LQG and LQR!

14



Discrete-time Linear Quadratic
Control

15



Discrete-time Finite-horizon Linear Quadratic Regulator
» Linear Quadratic Regulator (LQR) problem:
1 (T2

min Vg (x) = = Z (XtTth + utTRut) + xF QrxT

T0:T—1 2 —0

s.it. Xer1 = Axe + Buy, xg = x

X(t) € Rn, Uy — 7T1;(Xt) € R™
» Since this is a discrete-time finite-horizon problem, we can use Dynamic
Programming

» At t = T, there are no control choices and the value function is
quadratic in x:

1 1
Vi(x) = EXTI\/ITX = EXTQTX, Vx € R"
» lterate backwards in time t =T —1,...,0:

1
Vi (x) = min {2 (XTQX + uTRu> + Vi1 (Ax + Bu)}
u

16



Discrete-time Finite-horizon Linear Quadratic Regulator

> Att=T —1:

1
Vi_1(x) = min 5 {XTQX + u” Ru+ (Ax + Bu)T Mt (Ax + Bu)}

» Vi . (x) is a positive-definite quadratic function of u since R > 0

» Taking the gradient and setting it equal to O:

-1
T (x) = — (BTQTB + R) BT Q7 Ax

1
Vi_i(x) = EXTI\/IT_lx

-1
Mr oy =ATMrA+Q—ATM7B (BTMrB+R) BT MrA

17



Discrete-time Finite-horizon Linear Quadratic Regulator

> Att=T -2
* I 1 T T T
VT72(X)—m|n§ x'@Qx+u' Ru+ (Ax+ Bu)' Mr_;1 (Ax + Bu)
u

» Vi ,(x) is a positive-definite quadratic function of u since R >~ 0

» Taking the gradient and setting it equal to 0:

~1
(X)) = — (BTMT_lB n R) BT My_1Ax

. 1
Vi_o(x) = EXTMT,QX

~1
Mr_o=ATMr_iA+Q— ATMr_1B (BTMT_lB n R) BT My 1A

18



Discrete-time Finite-horizon Linear Quadratic Regulator

» Batch Approach: instead of using the DPA, express the system
evolution as a large matrix system

0 e . 0
X0 / B 0 --- 0 uop
X1 A u
=| . |x+ | AB .
XT AT : ' R I 74 1
AT-1B ... ... B|w—e——
s A - -~ - v
B

» Write the objective function in terms of s and v:

Q :=diag(Q,...,Q,Q7) =0

1
v7T _ = T TR
0 (x0) (s Ls+v "> R := diag(R, ...,R) = 0

2
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Discrete-time Finite-horizon Linear Quadratic Regulator

» Express V{(xg) only in terms of the initial condition xo and the control
sequence v by using the batch dynamics s = Axg + Bv:

1
V5 (x0) = 5 (v7 (B7QB+R)v+2x] (ATQA)v+x] ATQAx)
» V] (xo) is a positive-definite quadratic function of v since R > 0

» Taking the gradient wrt v and setting it equal to 0:
-1
vi= - (BTQB +R) BT QAx

Vi (x0) = 5 A (ATQA ATOB (BTQB+R> BTQA) X0

» The optimal sequence of control inputs ug.+_; is a linear function of xg

» The optimal value function V{(xo) is a quadratic function of xg

20



Discrete-time Finite-horizon LQG

» Linear Quadratic Gaussian (LQG) regulation problem:

T0:T—1

min - Vg (x *E { > (XtTQXt +2u] Px; + utTRut) + 'YTX-;I-—QTXT}

stt. xep1 = Axe + Buy + Cwy, x0 = x, we ~ N(0,1)
x(t) € R", ur = me(x¢) € R™

» Discount factor: v € [0, 1]
> Optimal value: V;(x) = 3x" Mex + m;
» Optimal policy: 7;(x) = —(R +vyB"M¢11B) 1P +vBT M 11A)x
» Riccati Equation:
M= Q + YA My 1A — (P + BT M1 A)T(R+vB My 1B) Y (P + 4B M1 A), Mt = Qr

1
my = YMeyq + ’YE tr(CCTMt+1), mr = 0
» M, is independent of the noise amplitude C, which implies that the

optimal policy 7} (x) is the same for LQG and LQR!
21



Discrete-time Infinite-horizon LQG
» Linear Quadratic Gaussian (LQG) regulation problem:

m|n V7 (x): E{Z'y ( tTQXt—i—QutTth—l-utTRut)}
sit. Xer1 = Axe + Bup + Cwe, x¢y = x0, we ~ N(0,1)
X(t) S Rn, Uy — 7T(Xt) S R™
» Discount factor: v € [0, 1)
> Optimal value: V*(x) = $x"Mx + m
» Optimal policy: 7*(x) = —(R +~vyBTMB)~1(P +yBT MA)x
» Riccati Equation (‘dare’ in Matlab):
M=Q-+~ATMA—(P+~B"MAY(R+~BTMB) (P +~BT MA)
v T
= _———tr(CC'M
20— )

» M is independent of the noise amplitude C, which implies that the
optimal policy 7*(x) is the same for LQG and LQR! 22



Relation between Continuous- and Discrete-time LQR
» The continuous-time system:

x = Ax + Bu

1 1
Ux,u) = §XTQX + EuTRu

can be discretized with time step 7:
xe+1 = (I + 7A)xt + 7Buy
Tl(x, u) = ngQx + %UTRU
» In the limit as 7 — 0, the discrete-time Riccati equation reduces to the
continuous one:

M=71Q+ (I +7A)TM(I + TA)
— (I +7A)"MrB(rR+ BT MrB)1rBT M(I + 7A)
M=7Q+M+ 1AM+ 7MA — TMB(R + BT MB)™*BT M + o(?)
1
0=Q+A"M+ MA—MB(R+7B"MB)1BTM + Zo(?)
T
23



Encoding Goals as Quadratic Costs

» In the finite-horizon case, the matrices A, B, @, R can be time-varying
which is useful for specifying reference trajectories x; and for
approximating non-LQG problems

» The cost ||x; — x;||? can be captured in the LQG formulation by
modifying the state and cost as follows:

X = [ﬂ A= [é\ g] , etc.

Lorase  lom nThe < ] o *

5 QR:X = 5% (D} Dy)x D:%: = [/ —xt] Xe =Xt — X;

> If the target/goal is stationary, we can instead include it in the state X
and use D := [/ —/]. This has the advantage that the resulting policy
is independent of x* and can be used for any target x*.
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