
ECE276B: Planning & Learning in Robotics
Lecture 1: Markov Chains

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Zhichao Li: zhl355@eng.ucsd.edu
Ehsan Zobeidi: ezobeidi@eng.ucsd.edu
Ibrahim Akbar: iakbar@eng.ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:zhl355@eng.ucsd.edu
mailto:ezobeidi@eng.ucsd.edu
mailto:iakbar@eng.ucsd.edu

What is this class about?

I ECE276A: sensing and state estimation:
I how to model a robot’s motion and observations
I how to estimate (a distribution of) the robot state xt from the history of

observations z0:t and control inputs u0:t−1

I ECE276B: planning and decision making:
I how to select control u0:t−1 to achieve safe navigation or maximize

rewards

I References (not required):
I Dynamic Programming and Optimal Control: Bertsekas

I Planning Algorithms: LaValle (http://planning.cs.uiuc.edu)

I Reinforcement Learning: Sutton & Barto
(http://incompleteideas.net/book/the-book.html)

I Calculus of Variations and Optimal Control Theory: Liberzon
(http://liberzon.csl.illinois.edu/teaching/cvoc.pdf)

2

http://planning.cs.uiuc.edu
http://incompleteideas.net/book/the-book.html
http://liberzon.csl.illinois.edu/teaching/cvoc.pdf

Logistics
I Course website: https://natanaso.github.io/ece276b

I Includes links to (sign up!):
I Piazza: discussion – it is your responsibility to check Piazza regularly

because class announcements, updates, etc., will be posted there

I GradeScope: homework submissions and grades

I Four assignments:
I Project 1: Dynamic Programming (20% of final grade)
I Project 2: Motion Planning (25% of final grade)
I Project 3: Control & Reinforcement Learning (25% of final grade)
I Final Exam (30% of final grade)

I Each project includes:
I theoretical homework
I programming assignment(s) in python
I project report

I Grades:
I assigned based on the class performance, i.e., there will be a “curve”
I no late policy: Work submitted past the deadline will receive 0 credit 3

https://natanaso.github.io/ece276b

Prerequisites

I Probability theory: random vectors, probability density functions,
expectation, covariance, total probability, conditioning, Bayes rule

I Linear algebra/systems: eigenvalues, positive definiteness, linear
systems of ODEs, matrix exponential

I Optimization: gradient descent, linear constraints, convex functions

I Programming: experience with at least one language
(python/C++/Matlab), classes/objects, data structures (e.g., queue,
list), data input/output, plotting

I It is up to you to judge if you are ready for this course!
I Consult with your classmates who took ECE276A
I Take a look at the material from last year:

https://natanaso.github.io/ece276b2018
I If the first assignment in ECE276B seems hard, the rest will be hard as

well

4

https://natanaso.github.io/ece276b2018

Syllabus (Winter 2018)

5

Markov Chain

I A Markov Chain is a probabilistic model
used to represent the evolution of a robot
system

I The state xt ∈ {1, 2, 3} is fully observed
(unlike HMM and Bayes filtering settings)

I The transitions are random, determined
by a transition kernel but uncontrolled
(just like in the HMM and Bayes filtering
settings, the control input is known)

I A Markov Decision Process (MDP) is
a Markov chain, whose transitions are
controlled

P =

0.6 0.2 0.2
0.3 0.4 0.3
0.0 0.3 0.7


Pij = P(xt+1 = j | xt = i)

6

Motion Planning

7

A* Search

I Invented by Hart, Nilsson and
Raphael of Stanford Research
Institute in 1968 for the Shakey
robot

I Video: https://youtu.be/

qXdn6ynwpiI?t=3m55s

8

https://youtu.be/qXdn6ynwpiI?t=3m55s
https://youtu.be/qXdn6ynwpiI?t=3m55s
https://youtu.be/qXdn6ynwpiI?t=3m55s

Search-based Planning

I CMU’s autonomous car used search-based planning in the DARPA
Urban Challenge in 2007

I Likhachev and Ferguson, “Planning Long Dynamically Feasible
Maneuvers for Autonomous Vehicles,” IJRR’09

I Video: https://www.youtube.com/watch?v=4hFhl0Oi8KI

I Video: https://www.youtube.com/watch?v=qXZt-B7iUyw

I Paper: http://journals.sagepub.com/doi/pdf/10.1177/0278364909340445

9

https://www.youtube.com/watch?v=4hFhl0Oi8KI
https://www.youtube.com/watch?v=4hFhl0Oi8KI
https://www.youtube.com/watch?v=4hFhl0Oi8KI
https://www.youtube.com/watch?v=qXZt-B7iUyw
http://journals.sagepub.com/doi/pdf/10.1177/0278364909340445

Sampling-based Planning

I RRT algorithm on the PR2 – planning with both arms (12 DOF)
I Karaman and Frazzoli, “Sampling-based algorithms for optimal motion

planning,” IJRR’11
I Video: https://www.youtube.com/watch?v=vW74bC-Ygb4
I Paper: http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761

10

https://www.youtube.com/watch?v=vW74bC-Ygb4
https://www.youtube.com/watch?v=vW74bC-Ygb4
http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761

Sampling-based Planning

I RRT* algorithm on a race car – 270 degree turn
I Karaman and Frazzoli, “Sampling-based algorithms for optimal motion

planning,” IJRR’11
I Video: https://www.youtube.com/watch?v=p3nZHnOWhrg
I Video: https://www.youtube.com/watch?v=LKL5qRBiJaM
I Paper: http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761 11

https://www.youtube.com/watch?v=p3nZHnOWhrg
https://www.youtube.com/watch?v=p3nZHnOWhrg
https://www.youtube.com/watch?v=LKL5qRBiJaM
http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761

Dynamic Programming and Optimal Control

I Tassa, Mansard and Todorov, “Control-limited Differential Dynamic
Programming,” ICRA’14

I Video: https://www.youtube.com/watch?v=tCQSSkBH2NI
I Paper: http://ieeexplore.ieee.org/document/6907001/ 12

https://www.youtube.com/watch?v=tCQSSkBH2NI
https://www.youtube.com/watch?v=tCQSSkBH2NI
http://ieeexplore.ieee.org/document/6907001/

Model-free Reinforcement Learning

I Robot learns to flip pancakes

I Kormushev, Calinon and Caldwell, “Robot Motor Skill Coordination with
EM-based Reinforcement Learning,” IROS’10

I Video: https://www.youtube.com/watch?v=W_gxLKSsSIE

I Paper: http://www.dx.doi.org/10.1109/IROS.2010.5649089

13

https://www.youtube.com/watch?v=W_gxLKSsSIE
https://www.youtube.com/watch?v=W_gxLKSsSIE
https://www.youtube.com/watch?v=W_gxLKSsSIE
http://www.dx.doi.org/10.1109/IROS.2010.5649089

Applications of Optimal Control & Reinforcement Learning

(a) Games (b) Character Animation (c) Robotics

(d) Autonomous Driving (e) Marketing (f) Computational Biology
14

Problem Formulation
I Motion model: specifies how a dynamical system evolves

xt+1 = f (xt , ut ,wt) ∼ pf (· | xt , ut), t = 0, . . . ,T − 1

I discrete time t ∈ {0, . . . ,T}
I state xt ∈ X
I control ut ∈ U(xt) and U :=

⋃
x∈X U(x)

I motion noise wt (random vector) with known probability density function
(pdf) and assumed conditionally independent of other disturbances wτ for
τ 6= t for given xt and ut

I the motion model is specified by the nonlinear function f or equivalently
by the pdf pf of xt+1 conditioned on xt and ut

I Observation model: the state xt might not be observable but
perceived through measurements:

zt = h(xt , vt) ∼ ph(· | xt), t = 0, . . . ,T

I measurement noise vt (random vector) with known pdf and conditionally
independent of other disturbances vτ for τ 6= t for given xt and wt for all t

I the observation model is specified by the nonlinear function h or
equivalently by the pdf ph of zt conditioned on xt 15

Problem Formulation
I Markov Assumptions

I The state xt+1 only depends on the
previous time input ut and state xt

I The observation zt only depends
on the state xt

I Joint distribution:

p(x0:T , z0:T , u0:T−1) = p0|0(x0)︸ ︷︷ ︸
prior

T∏
t=0

ph(zt | xt)︸ ︷︷ ︸
observation model

T∏
t=1

pf (xt | xt−1, ut−1)︸ ︷︷ ︸
motion model

I The Problem of Acting Optimally: Given a model pf of the system
evolution and direct observations of its state xt (or prior pdf p0|0 and
observation model ph) determine control inputs u0:T−1 to minimize
(maximize) a scalar-valued additive cost (reward) function:

V
u0:T−1

0 (x0) := Ex1:T

 q(xT)︸ ︷︷ ︸
terminal cost

+
T−1∑
t=0

`(xt , ut)︸ ︷︷ ︸
stage cost

∣∣∣∣ x0, u0:T−1


16

Problem Solution: Control Policy
I The problem of acting optimally is called:

I Optimal Control (OC): when the models pf , ph are known
I Reinforcement Learning (RL): when the models are unknown but

samples can be obtained from them
I Inverse RL/OC: when the cost (reward) functions ` are unknown

I The solution to an OC/RL problem is a policy π
I Let πt(xt) map a state xt ∈ X to a feasible control input ut ∈ U(xt)
I The sequence π := {π0(·), π1(·), . . . , πT−1(·)} = π0:T−1 of functions πt is

called an admissible control policy
I The cost (reward) of a policy π ∈ Π (set of all admissible policies) is:

V π
0 (x0) := Ex1:T

[
q(xT) +

T−1∑
t=0

`(xt , πt(xt))

∣∣∣∣ x0
]

I a policy π∗ ∈ Π is an optimal policy if V π∗

0 (x0) ≤ V π
0 (x0) for all π ∈ Π

and its cost will be denoted V ∗0 (x0) := V π∗

0 (x0)

I Conventions differ in optimal control and reinforcement learning:
I OC: minimization, cost, state x , control u, policy µ
I RL: maximization, reward, state s, action a, policy π
I ECE276B: minimization, cost, state x , control u, policy π

17

Further Observations
I Goal: select controls to minimize long-term cumulative costs

I Controls may have long-term consequences, e.g., delayed reward
I It may be better to sacrifice immediate reward to gain long-term rewards:

I A financial investment may take months to mature
I Refueling a helicopter might prevent a crash in several hours
I Blocking opponent moves might help winning chances many moves from

now

I Information state: a sequence (history) of observations and control
inputs it := z0, u0, . . . , zt−1, ut−1, zt used in the partially observable
setting to estimate the (pdf of the) state xt

I A policy fully defines the behavior of the robot/agent by specifying, at
any given point in time, which controls to apply. Policies can be:
I stationary (π ≡ π0 ≡ π1 ≡ · · ·) ⊆ non-stationary (time-dependent)

I deterministic (ut = πt(xt)) ⊆ stochastic (ut ∼ πt(· | xt))

I open-loop (a sequence u0:T−1 regardless of xt or it) ⊆ closed-loop (πt
depends on xt or it)

18

Problem Variations
I deterministic (no noise vt , wt) vs stochastic
I fully observable (no noise vt and zt = xt) vs partially observable

I fully observable: Markov Decision Process (MDP)
I partially observable: Partially Observable Markov Decision Process (POMDP)

I stationary vs nonstationary (time-dependent pf ,t , ph,t , `t)
I finite vs continuous state space X

I tabular approach vs function approximation (linear, SVM, neural nets,...)
I finite vs continuous control space U :

I tabular approach vs optimization problem to select next-best control
I discrete vs continuous time:

I finite-horizon discrete time: dynamic programming
I infinite-horizon (T →∞) discrete time: Bellman equation (first-exit vs

discounted vs average-reward)
I continuous time: Hamilton-Jacobi-Bellman (HJB) Partial Differential

Equation (PDE)
I reinforcement learning (pf , ph are unknown) variants:

I Model-based RL: explicitly approximate models from experience and use
optimal control algorithms

I Model-free RL: directly learn a control policy without approximating the
motion/observation models 19

Example: Inventory Control
I Consider the problem of keeping an item stocked in a warehouse:

I If there is too little, we will run out of it soon (not preferred).
I If there is too much, the storage cost will be high (not preferred).

I We can model this scenario as a discrete-time system:
I xt ∈ R: stock available in the warehouse at the beginning of the t-th time

period

I ut ∈ R≥0: stock ordered and immediately delivered at the beginning of
the t-th time period (supply)

I wt : (random) demand during the t-th time period with known pdf. Note
that excess demand is back-logged, i.e., corresponds to negative stock xt

I Motion model: xt+1 = xt + ut − wt

I Cost function: E
[
R(xT) +

∑T−1
t=0 (r(xt) + cut − pwt)

]
where

I pwt : revenue
I cut : cost of items
I r(xt): penalizes too much stock or negative stock
I R(xT): remaining items we cannot sell or demand that we cannot meet

20

Example: Rubik’s Cube

I Invented in 1974 by Ernõ Rubik

I Formalization
I State space: ∼ 4.33× 1019

I Actions: 12
I Reward: −1 for each time step
I Deterministic, Fully Observable

I The cube can be solved in 20 or fewer moves

21

Example: Pole Balancing

I Move the cart left and right in order to keep the
pole balanced

I Formalization
I State space: 4-D continuous (x , ẋ , θ, θ̇)
I Actions: {−N,N}
I Reward:

I 0 when in the goal region
I −1 when outside the goal region
I −100 when outside the feasible region

I Deterministic, Fully Observable

22

Example: Chess

I Formalization
I State space: ∼ 1047

I Actions: from 0 to 218
I Reward: 0 each step, {−1, 0, 1} at the end of

the game
I Deterministic, opponent-dependent state

transitions (can be modeled as a game)

I The size of the game tree is 10123

23

Example: Grid World Navigation

I Navigate to a goal without crashing into
obstacles

I Formalization
I State space: robot pose, e.g., 2-D position
I Actions: allowable robot movement, e.g.,
{left, right, up, down}

I Reward: −1 until the goal is reached; −∞ if an
obstacles is hit

I Can be deterministic or stochastic; fully or
partially observable

24

Definition of Markov Chain

I Stochastic process: an indexed collection of random variables
{x0, x1, . . .} on a measurable space (X ,F)
I example: time series of weekly demands for a product

I A temporally homogeneous Markov chain is a stochastic process
{x0, x1, . . .} of (X ,F)-valued random variables such that:
I x0 ∼ p0|0(·) for a prior probability density function on (X ,F)
I P(xt+1 ∈ A | x0:t) = P(xt+1 ∈ A | xt) =

∫
A
pf (x | xt)dx for A ∈ F and a

conditional pdf pf (· | xt) on (X ,F)

I Intuitive definition:
I In a Markov Chain the distribution of xt+1 | x0:t depends only on xt (a

memoryless stochastic process)
I The state captures all information about the history, i.e., once the state is

known, the history may be thrown away
I “The future is independent of the past given the present” (Markov

Assumption)

25

Formal Definition of Markov Chain

I A measurable space (X ,F) is called nice (or standard Borel space) if it
is isomorphic to a compact metric space with the Borel σ-algebra (i.e.,
there exists a one-to-one map φ from X into Rn such that both φ and
φ−1 are measurable)

I A Markov transition kernel is a function Pf : (X ,F)→ [0, 1] on a nice
space (X ,F) such that:
I Pf (x , ·) is a probability measure on (X ,F) for all x ∈ X
I Pf (·,A) is measurable for all A ∈ F

I A temporally homogeneous Markov chain is a sequence {x0, x1, . . .} of
(X ,F)-valued random variables such that:
I x0 ∼ P0|0(·) for a prior probability measure on (X ,F)
I xt+1 | x0:t ∼ Pf (xt , ·) for a Markov transition kernel Pf on (X ,F), i.e., the

distribution of xt+1 | x0:t depends only on xt so that:

“the future is conditionally independent of the past, given the present”

26

Markov Chain

A Markov Chain is a stochastic process defined by a tuple (X , p0|0, pf):

I X is discrete/continuous set of states

I p0|0 is a prior pmf/pdf defined on X

I pf (· | xt) is a conditional pmf/pdf defined on X for given xt ∈ X that
specifies the stochastic process transitions. In the finite-dimensional
case, the transition pmf is summarized by a matrix
Pij := P(xt+1 = j | xt = i) = pf (j | xt = i)

27

Example: Student Markov Chain

28

Example: Student Markov Chain

I Sample paths:
I C1 C2 C3 Pass Sleep
I C1 FB FB C1 C2 Sleep
I C1 C2 C3 Pub C2 C3 Pass Sleep
I C1 FB FB C1 C2 C3 Pub C1 FB

FB FB C1 C2 Sleep

I Transition matrix:

P =

FB
C1
C2
C3
Pub
Pass
Sleep



0.9 0.1 0 0 0 0 0
0.5 0 0.5 0 0 0 0
0 0 0 0.8 0 0 0.2
0 0 0 0 0.4 0.6 0
0 0.2 0.4 0.4 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1


29

Chapman-Kolmogorov Equation
I n-step transition probabilities of a time-homogeneous Markov chain

on X = {1, . . . ,N}

P
(n)
ij := P(Xt+n = j | Xt = i) = P(Xn = j | X0 = i)

I Chapman-Kolmogorov: the n-step transition probabilities can be
obtained recursively from the 1-step transition probabilities:

P
(n)
ij =

N∑
k=1

P
(m)
ik P

(n−m)
kj , ∀i , j , n, 0 ≤ m ≤ n

P(n) = P · · ·P︸ ︷︷ ︸
n times

= Pn

I Given the transition matrix P and a vector p0|0 of prior probabilities, the
vector of probabilities after t steps is:

pTt|t = pT0|0P
t

30

Example: Student Markov Chain

P =

FB
C1
C2
C3
Pub
Pass
Sleep



0.9 0.1 0 0 0 0 0
0.5 0 0.5 0 0 0 0
0 0 0 0.8 0 0 0.2
0 0 0 0 0.4 0.6 0
0 0.2 0.4 0.4 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1



P2 =

FB
C1
C2
C3
Pub
Pass
Sleep



0.86 0.09 0.05 0 0 0 0
0.45 0.05 0 0.4 0 0 0.1

0 0 0 0 0.32 0.48 0.2
0 0.08 0.16 0.16 0 0 0.6

0.1 0 0.1 0.32 0.16 0.24 0.08
0 0 0 0 0 0 1
0 0 0 0 0 0 1



P100 =

FB
C1
C2
C3
Pub
Pass
Sleep



0.01 0 0 0 0 0 0.99
0.01 0 0 0 0 0 0.99

0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1



31

First Passage Time
I First Passage Time: the number of transitions necessary to go from x0

to state j for the first time (random variable τj := inf{t ≥ 1 | xt = j})
I Recurrence Time: the first passage time to go from x0 = i to j = i

I Probability of first passage in n steps: ρ
(n)
ij := P(τj = n | x0 = i)

ρ
(1)
ij = Pij

ρ
(2)
ij = [P2]ij − ρ

(1)
ij Pjj (first time we visit j should not be 1!)

...

ρ
(n)
ij = [Pn]ij − ρ

(1)
ij [Pn−1]jj − ρ

(2)
ij [Pn−2]jj − · · · − ρ

(n−1)
ij Pjj

I Probability of first passage: ρij := P(τj <∞ | x0 = i) =
∑∞

n=1 ρ
(n)
ij

I Number of visits to j up to time n:

v
(n)
j :=

n∑
t=0

1{xt = j} vj := lim
n→∞

v
(n)
j

32

Recurrence and Transience

I Absorbing state: a state j such that Pjj = 1

I Transient state: a state j such that ρjj < 1

I Recurrent state: a state j such that ρjj = 1

I Positive recurrent state: a recurrent state j with E [τj | x0 = j] <∞

I Null recurrent state: a recurrent state j with E [τj | x0 = j] =∞

I Periodic state: can only be visited at integer multiples of t

I Ergodic state: a positive recurrent state that is aperiodic

33

Recurrence and Transience

Total Number of Visits Lemma

P(vj ≥ k + 1 | x0 = j) = ρkjj for all k ≥ 0

Proof : By the (strong) Markov property and induction
(P(vj ≥ k + 1 | x0 = j) = ρjjP(vj ≥ k | x0 = j)).

0− 1 Law for Total Number of Visits

j is recurrent iff E [vj | x0 = j] =∞

Proof : Since vj is discrete, we can write vj =
∑∞

k=0 1{vj > k} and

E [vj | x0 = j] =
∞∑
k=0

P (vj ≥ k + 1 | x0 = j) =
∞∑
k=0

ρkjj =
ρjj

1− ρjj

Theorem: Recurrence is contagious

i is recurrent and ρij > 0 ⇒ j is recurrent and ρji = 1

34

Classification of Markov Chains
I Absorbing Markov Chain: contains at least one absorbing state that

can be reached from every other state (not necessarily in one step)

I Irreducible Markov Chain: it is possible to go from every state to
every state (not necessarily in one step)

I Ergodic Markov Chain: an aperiodic, irreducible and positive recurrent
Markov chain

I Stationary distribution: a vector w ∈ {p ∈ [0, 1]N | 1Tp = 1} such
that wTP = wT

I Absorbing chains have stationary distributions with nonzero elements only
in absorbing states

I Ergodic chains have a unique stationary distribution (Perron-Frobenius
Theorem)

I Some periodic chains only satisfy a weaker condition, where wj > 0 only

for recurrent states and wj is the frequency
v
(n)
j

n+1 of being in state j as
n→∞

35

Absorbing Markov Chains

I Interesting questions:

Q1: On average, how mant times is the process in state j?

Q2: What is the probability that the state will eventually be absorbed?

Q3: What is the expected absorption time?

Q4: What is the probability of being absorbed by j given that we started in i?

36

Absorbing Markov Chains

I Canonical form: reorder the states so that the transient ones come

first: P =

[
Q R
0 I

]

I One can show that Pn =

[
Qn *
0 I

]
and Qn → 0 as n→∞

Proof : If j is transient, then ρij <∞ and from the 0-1 Law:

∞ > E [vj | x0 = i] = E

[
∞∑
n=0

1{xn = j}
∣∣∣∣ x0 = i

]
=
∞∑
n=0

[Pn]ij

I Fundamental matrix: ZA = (I − Q)−1 =
∑∞

n=0Q
n exists for an

absorbing Markov chain
I Expected number of times the chain is in state j : ZA

ij = E [vj | x0 = i]
I Expected absorption time when starting from state i :

∑
j Z

A
ij

I Let B = ZAR. The probability of reaching absorbing state j starting from
state i is Bij

37

Example: Drunkard’s Walk
I Transition matrix:

P =


1 0 0 0 0

0.5 0 0.5 0 0
0 0.5 0 0.5 0
0 0 0.5 0 0.5
0 0 0 0 1


I Canonical form:

P =


0 0.5 0 0.5 0

0.5 0 0.5 0 0
0 0.5 0 0 0.5
0 0 0 1 0
0 0 0 0 1


I Fundamental matrix:

ZA = (I−Q)−1 =

1.5 1 0.5
1 2 1

0.5 1 1.5


38

Perron-Frobenius Theorem

Theorem

Let P be the transition matrix of an irreducible, aperiodic, finite,
time-homogeneous Markov chain with stationary distribution w . Then

I 1 is the eigenvalue of max modulus, i.e., |λ| < 1 for all other eigenvalues

I 1 is a simple eigenvalue, i.e., the associated eigenspace and
left-eigenspace have dimension 1

I The eigenvector is 1T , the unique left eigenvector w is nonnegative and

lim
n→∞

Pn = 1wT

Hence, w is the unique stationary distribution for the Markov chain and any
initial distribution converges to it.

39

Fundamental Matrix for Ergodic Chains
I We can try to get a fundamental matrix as in the absorbing case but

(I − P)−1 does not exist because P1 = 1 (Perron-Frobenius)

I I + Q + Q2 + . . . = (I − Q)−1 converges because Qn → 0

I Try I + (P − 1wT) + (P2 − 1wT) + . . . because Pn → 1wT

(Perron-Frobenius)

I Note that P1wT = 1wT and (1wT)2 = 1wT1wT = 1wT

(P − 1wT)n =
n∑

i=0

(−1)i
(
n

i

)
Pn−i (1wT)i = Pn +

n∑
i=1

(−1)i
(
n

i

)
(1wT)i

= Pn +

[
n∑

i=1

(−1)i
(
n

i

)]
︸ ︷︷ ︸

(1−1)n−1

(1wT) = Pn − 1wT

I Thus, the following inverse exists:

I +
∞∑
n=1

(Pn − 1wT) = I +
∞∑
n=1

(P − 1wT)n = (I − P + 1wT)−1

40

Fundamental Matrix for Ergodic Chains

I Fundamental matrix: ZE := (I − P + 1wT)−1 where P is the
transition matrix and w is the stationary distribution.

I Properties: wTZE = wT , ZE1 = 1, and ZE (I − P) = I − 1wT

I Mean first passage time: mij := E [τj | x0 = i] =
ZE
jj − ZE

ij

wj

41

Example: Land of Oz
I Transition matrix:

P =

 0.5 0.25 0.25
0.5 0 0.5

0.25 0.25 0.5


I Stationary distribution:

wT =
[
0.4 0.2 0.4

]
I Fundamental matrix:

I − P + 1wT =

 0.9 −0.05 0.15
−0.1 1.2 −0.1
0.15 −0.05 0.9


ZE =

 1.147 0.04 −0.187
0.08 0.84 0.08
−0.187 0.04 1.147


I Mean first passage time:

m12 =
ZE
22−ZE

12
w2

= 0.84−0.04
0.2 = 4

42

