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What is this class about?

» ECE276A: sensing and state estimation:

> how to model a robot’s motion and observations
> how to estimate (a distribution of) the robot state x; from the history of
observations zy.; and control inputs ug.;_1

» ECE276B: planning and decision making:

P> how to select control ug.;—1 to achieve safe navigation or maximize
rewards

> References (not required):
» Dynamic Programming and Optimal Control: Bertsekas
» Planning Algorithms: LaValle (http://planning.cs.uiuc.edu)

» Reinforcement Learning: Sutton & Barto
(http://incompleteideas.net/book/the-book.html)

» Calculus of Variations and Optimal Control Theory: Liberzon
(http://liberzon.csl.illinois.edu/teaching/cvoc.pdf)


http://planning.cs.uiuc.edu
http://incompleteideas.net/book/the-book.html
http://liberzon.csl.illinois.edu/teaching/cvoc.pdf

Logistics
» Course website: https://natanaso.github.io/ece276b

» Includes links to (sign up!):
» Piazza: discussion — it is your responsibility to check Piazza regularly
because class announcements, updates, etc., will be posted there

» GradeScope: homework submissions and grades

» Four assignments:
> Project 1: Dynamic Programming (20% of final grade)
» Project 2: Motion Planning (25% of final grade)
> Project 3: Control & Reinforcement Learning (25% of final grade)
> Final Exam (30% of final grade)

» Each project includes:
> theoretical homework
> programming assignment(s) in python
» project report

» Grades:

» assigned based on the class performance, i.e., there will be a “curve”
»> no late policy: Work submitted past the deadline will receive 0 credit


https://natanaso.github.io/ece276b

Prerequisites

» Probability theory: random vectors, probability density functions,
expectation, covariance, total probability, conditioning, Bayes rule

> Linear algebra/systems: eigenvalues, positive definiteness, linear
systems of ODEs, matrix exponential

» Optimization: gradient descent, linear constraints, convex functions

» Programming: experience with at least one language
(python/C++/Matlab), classes/objects, data structures (e.g., queue,
list), data input/output, plotting

» It is up to you to judge if you are ready for this course!
» Consult with your classmates who took ECE276A
> Take a look at the material from last year:
https://natanaso.github.io/ece276b2018
» If the first assignment in ECE276B seems hard, the rest will be hard as
well



https://natanaso.github.io/ece276b2018

Syllabus (Winter 2018)

Date Lecture Materials Assignments
Jan 09 | Introduction

Jan 11 | Markov Chains Grinstead-Snell-Ch11

Jan 16 | Markov Decision Processes Bertsekas 1.1-1.2 HW1
Jan 18 | Dynamic Programming Bertsekas 1.3-1.4

Jan 23 | Deterministic Shortest Path Bertsekas 2.1-2.3

Jan 25 | Catch-up

Jan 30 | Configuration Space LaValle 4.3, 6.2-6.3 HW2
Feb 01 | Search-based Planning LaValle 2.1-2.3, JPS

Feb 06 | Anytime Incremental Search RTAA*, ARA*, AD*, Journal Paper

Feb 08 | Catch-up

Feb 13 | Sampling-based Planning LaValle 5.5-5.6

Feb 15 | Stochastic Shortest Path Bertsekas 7.1-7.3

Feb 20 | Bellman Equations I Sutton-Barto 4.1-4.4 HW3
Feb 22 | Bellman Equations IT Sutton-Barto 4.5-4.8

Feb 27 | Continuous-time Optimal Control | Bertsekas 3.1-3.2

Mar o1 | Pontryagin's Minimum Principle | Bertsekas 3.3-3.4, Liberzon Ch. 2.4 and Ch. 4

Mar 06 | Catch-up

Mar 08 | Linear Quadratic Control Bertsekas 4.1 HW4
Mar 13 | Model-free Prediction Sutton-Barto 6.1-6.3

Mar 15 | Model-free Control Sutton-Barto 6.4-6.7




Markov Chain

» A Markov Chain is a probabilistic model 0.2
used to represent the evolution of a robot e Cheerf“l/i\ @]'4

system CM So-so
0.2

» The state x; € {1,2,3} is fully observed ﬁ
\

(unlike HMM and Bayes filtering settings) 03
Sad
» The transitions are random, determined
. 0.7
by a transition kernel but uncontrolled
(jusjc like in the HMM and.Bayes filtering 06 02 02
settings, the control input is known)
P=103 04 03
» A Markov Decision Process (MDP) is 0.0 0.3 0.7
a Markov chain, whose transitions are p.— P . .
controlled i (Xe1 = | xe = 1)



Motion Planning

R.0.B.0.T. Comics

"H15 PATH-PLANNING MAY BE
SUB-OPTIMAL, BUT IT'S GOT FLAIR."



A* Search

» Invented by Hart, Nilsson and
Raphael of Stanford Research
Institute in 1968 for the Shakey [
robot e

» Video: https://youtu.be/
qXdn6ynwpiI?t=3mb55s

CASTER
WHEEL



https://youtu.be/qXdn6ynwpiI?t=3m55s
https://youtu.be/qXdn6ynwpiI?t=3m55s
https://youtu.be/qXdn6ynwpiI?t=3m55s

Search-

based Planning

» CMU's autonomous car used search-based planning in the DARPA
Urban Challenge in 2007

» Likhachev and Ferguson, “Planning Long Dynamically Feasible
Maneuvers for Autonomous Vehicles,” 1JRR'09

» Video: https://www.youtube.com/watch?v=4hFh100i8KI
» Video: https://www.youtube.com/watch?v=qXZt-B7iUyw
» Paper: http://journals.sagepub.com/doi/pdf/10.1177/0278364909340445


https://www.youtube.com/watch?v=4hFhl0Oi8KI
https://www.youtube.com/watch?v=4hFhl0Oi8KI
https://www.youtube.com/watch?v=4hFhl0Oi8KI
https://www.youtube.com/watch?v=qXZt-B7iUyw
http://journals.sagepub.com/doi/pdf/10.1177/0278364909340445

» RRT algorithm on the PR2 — planning with both arms (12 DOF)

» Karaman and Frazzoli, “Sampling-based algorithms for optimal motion
planning,” [JRR'11

» Video: https://www.youtube.com/watch?v=vW74bC-Ygb4

» Paper: http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761 10


https://www.youtube.com/watch?v=vW74bC-Ygb4
https://www.youtube.com/watch?v=vW74bC-Ygb4
http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761

Sampling-based Planning

» RRT* algorithm on a race car — 270 degree turn

» Karaman and Frazzoli, “Sampling-based algorithms for optimal motion
planning,” 1JRR'11

» Video: https://www.youtube.com/watch?v=p3nZHnOWhrg

» Video: https://www.youtube.com/watch?v=LKL5qRBiJaM

» Paper: http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761 11


https://www.youtube.com/watch?v=p3nZHnOWhrg
https://www.youtube.com/watch?v=p3nZHnOWhrg
https://www.youtube.com/watch?v=LKL5qRBiJaM
http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761

Dynamic Programming and Optimal Control

» Tassa, Mansard and Todorov, “Control-limited Differential Dynamic
Programming,” ICRA'14

» Video: https://www.youtube.com/watch?v=tCQSSkBH2NI

» Paper: http://ieeexplore.ieee.org/document/6907001/


https://www.youtube.com/watch?v=tCQSSkBH2NI
https://www.youtube.com/watch?v=tCQSSkBH2NI
http://ieeexplore.ieee.org/document/6907001/

Model-free Reinforcement Learning

» Robot learns to flip pancakes

» Kormushev, Calinon and Caldwell, “Robot Motor Skill Coordination with
EM-based Reinforcement Learning,” IROS'10

» Video: https://www.youtube.com/watch?v=W_gxLKSsSIE
» Paper: http://www.dx.doi.org/10.1109/IR0S.2010.5649089

13


https://www.youtube.com/watch?v=W_gxLKSsSIE
https://www.youtube.com/watch?v=W_gxLKSsSIE
https://www.youtube.com/watch?v=W_gxLKSsSIE
http://www.dx.doi.org/10.1109/IROS.2010.5649089

Applications of Optimal Control & Reinforcement Learning

(b) Character Animation

(liCK Infiatable Fun For R
|
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Sl -
o - s rl -~
K liseum  Fisa—

(d) Autonomous Driving (e) Marketing (f) Computational Biology
14



Problem Formulation

» Motion model: specifies how a dynamical system evolves

vVVvyVvyyYy

Xt41 = f(Xt, ug, Wt) ~ Pf(' | Xty ut)7 t=0,...,7T -1
discrete time t € {0,..., T}
state x; € X

control uy € U(x;) and U 1= U, cr U(X)

motion noise w; (random vector) with known probability density function
(pdf) and assumed conditionally independent of other disturbances w;, for
T # t for given x; and u;

the motion model is specified by the nonlinear function f or equivalently
by the pdf pr of x;y1 conditioned on x; and u;

» Observation model: the state x; might not be observable but
perceived through measurements:

Zt-:h(Xt,Vt)’\-’ph('’Xt)7 tZO,,T

measurement noise v; (random vector) with known pdf and conditionally
independent of other disturbances v, for 7 # t for given x; and w; for all ¢
the observation model is specified by the nonlinear function h or
equivalently by the pdf p, of z; conditioned on x; 15



Problem Formulation

» Markov Assumptions @ @ G

> The state x;11 only depends on the @ e @
previous time input u, and state x;

» The observation z; only depends

on the state x; @ Q @

» Joint distribution:

T T
p(xo.7, 20.7, to:T-1) = pojo(x0) [ [ pulze [ xe) [ pe(xe | xe-1, ue-1)
v t=0 Y t=1 .
prior observation model motion model

» The Problem of Acting Optimally: Given a model pr of the system
evolution and direct observations of its state x; (or prior pdf pyg and
observation model pp,) determine control inputs up.7—1 to minimize
(maximize) a scalar-valued additive cost (reward) function:

T-1
Up:7—1 L
VO (XO) S IE’XLT q(XT) + E E(Xta Ut) X0, Up: T—1
SN—~— —o ——
terminal cost — " stage cost

16



Problem Solution: Control Policy

» The

problem of acting optimally is called:

Optimal Control (OC): when the models pf, p, are known
Reinforcement Learning (RL): when the models are unknown but
samples can be obtained from them

Inverse RL/OC: when the cost (reward) functions ¢ are unknown

solution to an OC/RL problem is a policy =

Let m¢(x;) map a state x; € X to a feasible control input u; € U(x¢)

The sequence 7 := {mo(*), m1(*), ..., 77-1(+)} = mo.7—1 of functions 7; is
called an admissible control policy

The cost (reward) of a policy 7 € T (set of all admissible policies) is:

T-1
VG (x0) = Exr |a0x7) + D €lxesme(xe)) Xo]
t=0
a policy 7* € M is an optimal policy if VJ (xo) < VT (xo) for all w € T
and its cost will be denoted V' (x) := V' (x0)

» Conventions differ in optimal control and reinforcement learning:

>
>
>

OC: minimization, cost, state x, control u, policy u
RL: maximization, reward, state s, action a, policy ™
ECE276B: minimization, cost, state x, control u, policy 7 17



Further Observations

» Goal: select controls to minimize long-term cumulative costs

» Controls may have long-term consequences, e.g., delayed reward
> It may be better to sacrifice immediate reward to gain long-term rewards:
> A financial investment may take months to mature
» Refueling a helicopter might prevent a crash in several hours
» Blocking opponent moves might help winning chances many moves from
now

» Information state: a sequence (history) of observations and control
inputs i; := zg, Ug, - .., Zt—1, Ur—1, Z¢ used in the partially observable
setting to estimate the (pdf of the) state x;

» A policy fully defines the behavior of the robot/agent by specifying, at
any given point in time, which controls to apply. Policies can be:

> stationary (m = mo = m; = ---) C non-stationary (time-dependent)
> deterministic (u; = m(x;)) C stochastic (u; ~ m(- | x¢))

> open-loop (a sequence ug. 71 regardless of x; or iy) C closed-loop (7,
depends on x; or i)
18



Problem Variations

deterministic (no noise v;, w;) vs stochastic
fully observable (no noise v; and z; = x;) vs partially observable
» fully observable: Markov Decision Process (MDP)
> partially observable: Partially Observable Markov Decision Process (POMDP)
> stationary vs nonstationary (time-dependent pr ¢, ph ¢, ¢+)
» finite vs continuous state space X’
> tabular approach vs function approximation (linear, SVM, neural nets,...)
» finite vs continuous control space U:
» tabular approach vs optimization problem to select next-best control
» discrete vs continuous time:
» finite-horizon discrete time: dynamic programming
» infinite-horizon (T — oo) discrete time: Bellman equation (first-exit vs
discounted vs average-reward)
> continuous time: Hamilton-Jacobi-Bellman (HJB) Partial Differential
Equation (PDE)
» reinforcement learning (pr, pp are unknown) variants:
» Model-based RL: explicitly approximate models from experience and use
optimal control algorithms
> Model-free RL: directly learn a control policy without approximating the
motion/observation models 19

>
>



Example: Inventory Control

» Consider the problem of keeping an item stocked in a warehouse:
> If there is too little, we will run out of it soon (not preferred).
> If there is too much, the storage cost will be high (not preferred).

» We can model this scenario as a discrete-time system:
> x; € R: stock available in the warehouse at the beginning of the t-th time
period

> u; € R>q: stock ordered and immediately delivered at the beginning of
the t-th time period (supply)

> w;: (random) demand during the t-th time period with known pdf. Note
that excess demand is back-logged, i.e., corresponds to negative stock x;

> Motion model: x;11 = x; + uy — wy

» Cost function: E |:R(XT) + ZtT:_ol (r(xe) + cur — th)} where

> pw;: revenue

» cu;: cost of items

> r(x:): penalizes too much stock or negative stock

» R(xt): remaining items we cannot sell or demand that we cannot meet

20



Example: Rubik's Cube

» Invented in 1974 by Ernd Rubik

» Formalization
> State space: ~ 4.33 x 10%°
> Actions: 12
» Reward: —1 for each time step
» Deterministic, Fully Observable

» The cube can be solved in 20 or fewer moves

21



Example: Pole Balancing

» Move the cart left and right in order to keep the
pole balanced

» Formalization
> State space: 4-D continuous (x, X, 0, 9)
> Actions: {—N, N}
» Reward:

» 0 when in the goal region
» —1 when outside the goal region
» —100 when outside the feasible region

» Deterministic, Fully Observable

22



Example: Chess

» Formalization

>
>
>

>

» The

State space: ~ 10%"

Actions: from 0 to 218

Reward: 0 each step, {—1,0,1} at the end of
the game

Deterministic, opponent-dependent state
transitions (can be modeled as a game)

size of the game tree is 1023

23



Example: Grid World Navigation

» Navigate to a goal without crashing into
obstacles

» Formalization

P State space: robot pose, e.g., 2-D position

> Actions: allowable robot movement, e.g.,
{left, right, up, down}

» Reward: —1 until the goal is reached; —oc if an
obstacles is hit

» Can be deterministic or stochastic; fully or
partially observable

24



Definition of Markov Chain

» Stochastic process: an indexed collection of random variables
{x0,x1,...} on a measurable space (X, F)
» example: time series of weekly demands for a product

» A temporally homogeneous Markov chain is a stochastic process
{x0,x1,...} of (X, F)-valued random variables such that:
> Xo ~ pojo(-) for a prior probability density function on (X', )
» P(xey1 € Al xoit) = P(xeq1 € A xe) = [, pr(x | x¢)dx for Ae F and a
conditional pdf ps(- | x¢) on (X, F)

» Intuitive definition:
> In a Markov Chain the distribution of x;+1 | xo.r depends only on x; (a

memoryless stochastic process)
P> The state captures all information about the history, i.e., once the state is

known, the history may be thrown away
> “The future is independent of the past given the present” (Markov

Assumption)

25



Formal Definition of Markov Chain

» A measurable space (X, F) is called nice (or standard Borel space) if it
is isomorphic to a compact metric space with the Borel o-algebra (i.e.,
there exists a one-to-one map ¢ from X into R” such that both ¢ and
¢! are measurable)

» A Markov transition kernel is a function Pr : (X, F) — [0, 1] on a nice
space (X, F) such that:

> Pf(x,-) is a probability measure on (X, F) for all x € X
> Pr(-, A) is measurable for all A € F

» A temporally homogeneous Markov chain is a sequence {xp, x1, ...} of
(X, F)-valued random variables such that:
> xo ~ IPgjo(+) for a prior probability measure on (&X', F)
» Xi11 | x0:¢ ~ Pr(xe, ) for a Markov transition kernel Pr on (X, F), i.e., the
distribution of x;11 | xo.+ depends only on x; so that:

“the future is conditionally independent of the past, given the present”

26



A Markov Chain is a stochastic process defined by a tuple (X', pojo, pf):

> X is discrete/continuous set of states
> pojo is a prior pmf/pdf defined on X’

» pr(- | xt) is a conditional pmf/pdf defined on X" for given x; € X that
specifies the stochastic process transitions. In the finite-dimensional
case, the transition pmf is summarized by a matrix

Pij:=P(xer1 =J [ xe = 1) = pr( | xe = 1)

27



Example: Student Markov Chain

28



Example: Student Markov Chain

» Sample paths:
> C1 C2 C3 Pass Sleep

C1 FB FB C1 C2 Sleep

| 2
» C1 C2 C3 Pub C2 C3 Pass Sleep
» CI1FBFBC1C2C3PubCl1FB

FB FB C1 C2 Sleep

» Transition matrix:

FB

C1

C2

P= (3
Pub
Pass
Sleep

01 0 O
0 05 0
0 0 038
0 0 O

02 04 04
0 0 O
0 0 O

0 O
0 O
0 O
04 0.6
0 O
0 O
0 O

0.2

0
0
1
1_

29



Chapman-Kolmogorov Equation

> n-step transition probabilities of a time-homogeneous Markov chain
on X ={1,...,N}

PO = B(Xon = | Xe = i) = B(Xo = | Xo = i)

» Chapman-Kolmogorov: the n-step transition probabilities can be
obtained recursively from the 1-step transition probabilities:

ZP('")P(” ™ 0<m<n

n times

> Given the transition matrix P and a vector pg|g of prior probabilities, the
vector of probabilities after t steps is:

T T
Pyt = pO|O'Dt

30



Example: Student Markov Chain

FB 09 01 0 O O 0 O
C1 05 0 05 0 0 0 O

0 0 0 04 06

FB [0.86 0.09 0.05 0 0 0 0
C1 045 005 0 04 O 0 01
c2 0 0 0 0 032 048 0.2
P2= (3 0 0.08 016 0.16 O 0 06
Pub 01 0 01 032 016 0.24 0.08
Pass 0 0 0 0 0 0 1
Sleep 0 0 0 0 0 0 1

FB 001 0 0 0 0 0 0.99
Cl1 (001 0 00 0 0 0.99
C2 0 00000 1
PO — (3 0 0000O0O0 1
Pub 0 0000O0 1
Pass 0 00O0O0OO 1
Sleep | 0 0 0 0 0 0 1

31



First Passage Time

» First Passage Time: the number of transitions necessary to go from xg
to state j for the first time (random variable 7j := inf{t > 1 | x; = j})

» Recurrence Time: the first passage time to go from xg =/ toj =1

» Probability of first passage in n steps: p( n . =P(rj=n|x =)

Pfjl) = Pj

pff) [P?; — pU P (first time we visit j should not be 1!)
n 1)rpn— 2)rpn— n—1

R Gl VR s VR e Ve s’

oo (n)

> Probability of first passage: pjj :=P(7j < oo | x = 1) =237, pj;
» Number of visits to j up to time n:

:Z]l{xt:j} vj == lim VJ()
t=0

n—oo

32



Recurrence and Transience

» Absorbing state: a state j such that P;; =1

> Transient state: a state j such that p;; <1

> Recurrent state: a state j such that p;; =1

> Positive recurrent state: a recurrent state j with E[7; | xo = j] < 00
» Null recurrent state: a recurrent state j with E[7j | xg = j] = o0

» Periodic state: can only be visited at integer multiples of t

» Ergodic state: a positive recurrent state that is aperiodic

33



Recurrence and Transience

Total Number of Visits Lemma

IP’(vjzk—i—l\xo:j):pj-‘jforallkZO

Proof: By the (strong) Markov property and induction
(B(y > k+1|x0=) = pB(y; > k| 30 = J)).

0 — 1 Law for Total Number of Visits

J is recurrent iff E[v; | xo = j] = 00

Proof: Since v; is discrete, we can write v; = Y, 1{v; > k} and

o
Elvi|xo=j1=) P(y>k+1|x=j)= ZPJJ
k=0

1 - pJJ

Theorem: Recurrence is contagious

i is recurrent and p;; >0 = jisrecurrent and p;; =1

34



Classification of Markov Chains

» Absorbing Markov Chain: contains at least one absorbing state that
can be reached from every other state (not necessarily in one step)

» Irreducible Markov Chain: it is possible to go from every state to
every state (not necessarily in one step)

» Ergodic Markov Chain: an aperiodic, irreducible and positive recurrent
Markov chain

» Stationary distribution: a vector w € {p € [0,1]V | 17p =1} such
that w'P=w'
» Absorbing chains have stationary distributions with nonzero elements only
in absorbing states

> Ergodic chains have a unique stationary distribution (Perron-Frobenius
Theorem)

> Some periodic chains only satisfy a weaker condition, where w; > 0 only
v
n+1

for recurrent states and w; is the frequency of being in state j as
n— oo

35



Absorbing Markov Chains

» Interesting questions:
Q1: On average, how mant times is the process in state j7

Q2: What is the probability that the state will eventually be absorbed?
Q3: What is the expected absorption time?

Q4: What is the probability of being absorbed by j given that we started in j?

36



Absorbing Markov Chains

» Canonical form: reorder the states so that the transient ones come

.5 1@ R
f|rst.P—[0 /

Q" *
0o |/
Proof: If j is transient, then p; < oo and from the 0-1 Law:

S 1= ) | 0= :} SR

n=0
» Fundamental matrix: 74 = (1 — Q)_l = Eiozo Q" exists for an
absorbing Markov chain
> Expected number of times the chain is in state j: Z/j‘ =E[v | xo =1]
» Expected absorption time when starting from state /: Zj Z,-j-‘

» One can show that P" = and Q" — 0as n— oo

co>E[v|x=i=E

> Let B = Z”R. The probability of reaching absorbing state j starting from
state i is Bj;

37



Example: Drunkard’s Walk

> Transition matrix:

P =

» Canonical form:

p =

1 0
05 O
0 05
0 O
0 O
0 05
05 O
0 05
0 O
0 O

0
0.5
0
0.5
0

0
0

» Fundamental matrix:

ZA=(1-Q)t=

0 0
0 0
05 0
0 05
0 1|
05 0]
0 0
0 05
1 0
0 1|
15 1 05
1 2 1
05 1 15

38



Perron-Frobenius Theorem

Let P be the transition matrix of an irreducible, aperiodic, finite,
time-homogeneous Markov chain with stationary distribution w. Then

> 1 is the eigenvalue of max modulus, i.e., || < 1 for all other eigenvalues

» 1 is a simple eigenvalue, i.e., the associated eigenspace and
left-eigenspace have dimension 1

> The eigenvector is 17, the unique left eigenvector w is nonnegative and

lim P" =1w’
n—o0

Hence, w is the unique stationary distribution for the Markov chain and any
initial distribution converges to it.

39



Fundamental Matrix for Ergodic Chains

» We can try to get a fundamental matrix as in the absorbing case but
(I — P)~1 does not exist because P1 = 1 (Perron-Frobenius)

> [+ Q+ Q%+ ...= (I — @) converges because Q" — 0

> Try I+ (P—1w')+ (P2 —1w') +... because P" — 1w’
(Perron-Frobenius)

» Note that Plw’ = 1w’ and (Aw' )2 = 1w 1lw’ = 1w’

(P—1wT)" = znj(—l)" <7> PriAwT) = P+ iz_n;(—l)"(',.’) AwT)

i=0

= P" 4+

(1-1)—1

» Thus, the following inverse exists:

T+ (P =1wT) =14 (P=1wT)" =(-P+1w’)™"
n=1 n=1 40



Fundamental Matrix for Ergodic Chains

» Fundamental matrix: ZF := (/ — P+ 1w ')~ where P is the
transition matrix and w is the stationary distribution.

> Properties: w'ZE =wT', ZE1 =1, and ZE(1 - P) =1 —1wT

E—ZE

] ij

» Mean first passage time: m;; :=E[r; | xo =i] =
Wi
j

41



Example: Land of Oz

» Transition matrix:

05 0.25 0.25
P=1|05 0 05
025 025 05
» Stationary distribution:
wl =104 02 04] 0.25
» Fundamental matrix: 05 0.25
09 —005 0.5 os @@ 05
|—P+1w’ = |-01 12 —0.1 025 05
(015 —0.05 0.9
[ 1.147 0.04 —0.187 025
ZE =1 008 084 0.08
| —0.187 0.04 1.147

» Mean first passage time:

_ ZE-ZE _ 0.84-0.04 _
myp = 2 = =5 =4

42



