ECE276B: Planning & Learning in Robotics Lecture 1: Markov Chains

Instructor:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants: Zhichao Li: zhl355@eng.ucsd.edu Ehsan Zobeidi: ezobeidi@eng.ucsd.edu Ibrahim Akbar: iakbar@eng.ucsd.edu

UC San Diego

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

What is this class about?

ECE276A: sensing and state estimation:

- how to model a robot's motion and observations
- how to estimate (a distribution of) the robot state x_t from the history of observations z_{0:t} and control inputs u_{0:t-1}

ECE276B: planning and decision making:

how to select control u_{0:t-1} to achieve safe navigation or maximize rewards

References (not required):

- Dynamic Programming and Optimal Control: Bertsekas
- Planning Algorithms: LaValle (http://planning.cs.uiuc.edu)
- Reinforcement Learning: Sutton & Barto (http://incompleteideas.net/book/the-book.html)
- Calculus of Variations and Optimal Control Theory: Liberzon (http://liberzon.csl.illinois.edu/teaching/cvoc.pdf)

Logistics

Course website: https://natanaso.github.io/ece276b

- Includes links to (sign up!):
 - Piazza: discussion it is your responsibility to check Piazza regularly because class announcements, updates, etc., will be posted there
 - GradeScope: homework submissions and grades

Four assignments:

- Project 1: Dynamic Programming (20% of final grade)
- Project 2: Motion Planning (25% of final grade)
- Project 3: Control & Reinforcement Learning (25% of final grade)
- Final Exam (30% of final grade)

Each project includes:

- theoretical homework
- programming assignment(s) in python
- project report
- Grades:
 - assigned based on the class performance, i.e., there will be a "curve"
 - no late policy: Work submitted past the deadline will receive 0 credit

Prerequisites

- Probability theory: random vectors, probability density functions, expectation, covariance, total probability, conditioning, Bayes rule
- Linear algebra/systems: eigenvalues, positive definiteness, linear systems of ODEs, matrix exponential
- **Optimization**: gradient descent, linear constraints, convex functions
- Programming: experience with at least one language (python/C++/Matlab), classes/objects, data structures (e.g., queue, list), data input/output, plotting
- It is up to you to judge if you are ready for this course!
 - Consult with your classmates who took ECE276A
 - Take a look at the material from last year: https://natanaso.github.io/ece276b2018
 - If the first assignment in ECE276B seems hard, the rest will be hard as well

Syllabus (Winter 2018)

Date	Lecture	Materials	Assignments
Jan 09	Introduction		
Jan 11	Markov Chains	Grinstead-Snell-Ch11	
Jan 16	Markov Decision Processes	Bertsekas 1.1-1.2	HW1
Jan 18	Dynamic Programming	Bertsekas 1.3-1.4	
Jan 23	Deterministic Shortest Path	Bertsekas 2.1-2.3	
Jan 25	Catch-up		
Jan 30	Configuration Space	LaValle 4.3, 6.2-6.3	HW2
Feb 01	Search-based Planning	LaValle 2.1-2.3, JPS	
Feb 06	Anytime Incremental Search	RTAA*, ARA*, AD*, Journal Paper	
Feb o8	Catch-up		
Feb 13	Sampling-based Planning	LaValle 5.5-5.6	
Feb 15	Stochastic Shortest Path	Bertsekas 7.1-7.3	
Feb 20	Bellman Equations I	Sutton-Barto 4.1-4.4	HW3
Feb 22	Bellman Equations II	Sutton-Barto 4.5-4.8	
Feb 27	Continuous-time Optimal Control	Bertsekas 3.1-3.2	
Mar 01	Pontryagin's Minimum Principle	Bertsekas 3.3-3.4, Liberzon Ch. 2.4 and Ch. 4	
Mar o6	Catch-up		
Mar o8	Linear Quadratic Control	Bertsekas 4.1	HW4
Mar 13	Model-free Prediction	Sutton-Barto 6.1-6.3	
Mar 15	Model-free Control	Sutton-Barto 6.4-6.7	

Markov Chain

- A Markov Chain is a probabilistic model used to represent the evolution of a robot system
- ► The state x_t ∈ {1, 2, 3} is fully observed (unlike HMM and Bayes filtering settings)
- The transitions are random, determined by a transition kernel but uncontrolled (just like in the HMM and Bayes filtering settings, the control input is known)
- A Markov Decision Process (MDP) is a Markov chain, whose transitions are controlled

Motion Planning

R.O.B.O.T. Comics

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

A* Search

- Invented by Hart, Nilsson and Raphael of Stanford Research Institute in 1968 for the Shakey robot
- Video: https://youtu.be/ qXdn6ynwpiI?t=3m55s

Search-based Planning

- CMU's autonomous car used search-based planning in the DARPA Urban Challenge in 2007
- Likhachev and Ferguson, "Planning Long Dynamically Feasible Maneuvers for Autonomous Vehicles," IJRR'09
- Video: https://www.youtube.com/watch?v=4hFh100i8KI
- Video: https://www.youtube.com/watch?v=qXZt-B7iUyw
- Paper: http://journals.sagepub.com/doi/pdf/10.1177/0278364909340445

Sampling-based Planning

- RRT algorithm on the PR2 planning with both arms (12 DOF)
- Karaman and Frazzoli, "Sampling-based algorithms for optimal motion planning," IJRR'11
- Video: https://www.youtube.com/watch?v=vW74bC-Ygb4
- Paper: http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761 _

Sampling-based Planning

- RRT* algorithm on a race car 270 degree turn
- Karaman and Frazzoli, "Sampling-based algorithms for optimal motion planning," IJRR'11
- Video: https://www.youtube.com/watch?v=p3nZHnOWhrg
- Video: https://www.youtube.com/watch?v=LKL5qRBiJaM
- Paper: http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761 1

Dynamic Programming and Optimal Control

- Tassa, Mansard and Todorov, "Control-limited Differential Dynamic Programming," ICRA'14
- Video: https://www.youtube.com/watch?v=tCQSSkBH2NI
- Paper: http://ieeexplore.ieee.org/document/6907001/

Model-free Reinforcement Learning

- Robot learns to flip pancakes
- Kormushev, Calinon and Caldwell, "Robot Motor Skill Coordination with EM-based Reinforcement Learning," IROS'10
- Video: https://www.youtube.com/watch?v=W_gxLKSsSIE
- Paper: http://www.dx.doi.org/10.1109/IROS.2010.5649089

Applications of Optimal Control & Reinforcement Learning

(a) Games

(b) Character Animation

(c) Robotics

(d) Autonomous Driving

(e) Marketing

(f) Computational Biology 14

Problem Formulation

Motion model: specifies how a dynamical system evolves

$$x_{t+1} = f(x_t, u_t, w_t) \sim p_f(\cdot \mid x_t, u_t), \quad t = 0, \dots, T-1$$

- discrete time $t \in \{0, \ldots, T\}$
- state $x_t \in \mathcal{X}$

• control $u_t \in \mathcal{U}(x_t)$ and $\mathcal{U} := \bigcup_{x \in \mathcal{X}} \mathcal{U}(x)$

- motion noise w_t (random vector) with known probability density function (pdf) and assumed conditionally independent of other disturbances w_{τ} for $\tau \neq t$ for given x_t and u_t
- the motion model is specified by the nonlinear function f or equivalently by the pdf p_f of x_{t+1} conditioned on x_t and u_t

Observation model: the state x_t might not be observable but perceived through measurements:

$$z_t = h(x_t, v_t) \sim p_h(\cdot \mid x_t), \quad t = 0, \dots, T$$

- ▶ measurement noise v_t (random vector) with known pdf and conditionally independent of other disturbances v_τ for $\tau \neq t$ for given x_t and w_t for all t
- the observation model is specified by the nonlinear function h or equivalently by the pdf p_h of z_t conditioned on x_t
 15

Problem Formulation

The Problem of Acting Optimally: Given a model p_f of the system evolution and direct observations of its state x_t (or prior pdf p_{0|0} and observation model p_h) determine control inputs u_{0:T-1} to minimize (maximize) a scalar-valued additive cost (reward) function:

$$V_0^{u_0:\tau-1}(x_0) := \mathbb{E}_{x_1:\tau} \left[\underbrace{\mathfrak{q}(x_T)}_{\text{terminal cost}} + \sum_{t=0}^{T-1} \underbrace{\ell(x_t, u_t)}_{\text{stage cost}} \middle| x_0, u_{0:T-1} \right]$$

Problem Solution: Control Policy

- The problem of acting optimally is called:
 - **Optimal Control** (OC): when the models p_f , p_h are known
 - Reinforcement Learning (RL): when the models are unknown but samples can be obtained from them
 - ▶ Inverse RL/OC: when the cost (reward) functions ℓ are unknown
- The solution to an OC/RL problem is a **policy** π
 - Let $\pi_t(x_t)$ map a state $x_t \in \mathcal{X}$ to a feasible control input $u_t \in \mathcal{U}(x_t)$
 - The sequence $\pi := \{\pi_0(\cdot), \pi_1(\cdot), \dots, \pi_{T-1}(\cdot)\} = \pi_{0:T-1}$ of functions π_t is called an **admissible control policy**
 - The cost (reward) of a policy $\pi \in \Pi$ (set of all admissible policies) is:

$$V_0^{\pi}(x_0) := \mathbb{E}_{x_1:\tau} \left[\mathfrak{q}(x_T) + \sum_{t=0}^{T-1} \ell(x_t, \pi_t(x_t)) \mid x_0 \right]$$

▶ a policy $\pi^* \in \Pi$ is an **optimal policy** if $V_0^{\pi^*}(x_0) \leq V_0^{\pi}(x_0)$ for all $\pi \in \Pi$ and its cost will be denoted $V_0^*(x_0) := V_0^{\pi^*}(x_0)$

- Conventions differ in optimal control and reinforcement learning:
 - **• OC**: minimization, cost, state x, control u, policy μ
 - **RL**: maximization, reward, state *s*, action *a*, policy π
 - **ECE276B**: minimization, cost, state x, control u, policy π

Further Observations

- Goal: select controls to minimize long-term cumulative costs
 - Controls may have long-term consequences, e.g., delayed reward
 - It may be better to sacrifice immediate reward to gain long-term rewards:
 - A financial investment may take months to mature
 - Refueling a helicopter might prevent a crash in several hours
 - Blocking opponent moves might help winning chances many moves from now
- ► Information state: a sequence (history) of observations and control inputs i_t := z₀, u₀, ..., z_{t-1}, u_{t-1}, z_t used in the partially observable setting to estimate the (pdf of the) state x_t
- A policy fully defines the behavior of the robot/agent by specifying, at any given point in time, which controls to apply. Policies can be:
 - ▶ stationary $(\pi \equiv \pi_0 \equiv \pi_1 \equiv \cdots) \subseteq$ non-stationary (time-dependent)
 - ► deterministic $(u_t = \pi_t(x_t)) \subseteq$ stochastic $(u_t \sim \pi_t(\cdot \mid x_t))$
 - open-loop (a sequence u_{0:T−1} regardless of x_t or i_t) ⊆ closed-loop (π_t depends on x_t or i_t)

Problem Variations

- deterministic (no noise v_t, w_t) vs stochastic
- fully observable (no noise v_t and $z_t = x_t$) vs partially observable
 - fully observable: Markov Decision Process (MDP)
 - partially observable: Partially Observable Markov Decision Process (POMDP)
- **•** stationary vs nonstationary (time-dependent $p_{f,t}$, $p_{h,t}$, ℓ_t)
- finite vs continuous state space X
 - tabular approach vs function approximation (linear, SVM, neural nets,...)

► finite vs continuous control space U:

- tabular approach vs optimization problem to select next-best control
- discrete vs continuous time:
 - finite-horizon discrete time: dynamic programming
 - ▶ infinite-horizon $(T \rightarrow \infty)$ discrete time: Bellman equation (first-exit vs discounted vs average-reward)
 - continuous time: Hamilton-Jacobi-Bellman (HJB) Partial Differential Equation (PDE)
- reinforcement learning (p_f, p_h are unknown) variants:
 - Model-based RL: explicitly approximate models from experience and use optimal control algorithms
 - Model-free RL: directly learn a control policy without approximating the motion/observation models
 19

Example: Inventory Control

- Consider the problem of keeping an item stocked in a warehouse:
 - If there is too little, we will run out of it soon (not preferred).
 - If there is too much, the storage cost will be high (not preferred).
- We can model this scenario as a discrete-time system:
 - *x_t* ∈ ℝ: stock available in the warehouse at the beginning of the *t*-th time period
 - *u_t* ∈ ℝ_{≥0}: stock ordered and immediately delivered at the beginning of the *t*-th time period (supply)
 - w_t: (random) demand during the t-th time period with known pdf. Note that excess demand is back-logged, i.e., corresponds to negative stock x_t
 - Motion model: $x_{t+1} = x_t + u_t w_t$
 - **Cost function**: $\mathbb{E}\left[R(x_T) + \sum_{t=0}^{T-1} (r(x_t) + cu_t pw_t)\right]$ where
 - pwt: revenue
 - cu_t: cost of items
 - r(x_t): penalizes too much stock or negative stock
 - R(x_T): remaining items we cannot sell or demand that we cannot meet

Example: Rubik's Cube

Invented in 1974 by Ernő Rubik

- Formalization
 - State space: $\sim 4.33 \times 10^{19}$
 - Actions: 12
 - ▶ Reward: −1 for each time step
 - Deterministic, Fully Observable
- The cube can be solved in 20 or fewer moves

Example: Pole Balancing

Move the cart left and right in order to keep the pole balanced

- Formalization
 - State space: 4-D continuous $(x, \dot{x}, \theta, \dot{\theta})$
 - ► Actions: {−*N*, *N*}
 - Reward:
 - 0 when in the goal region
 - \blacktriangleright -1 when outside the goal region
 - -100 when outside the feasible region
 - Deterministic, Fully Observable

Example: Chess

Formalization

- State space: $\sim 10^{47}$
- Actions: from 0 to 218
- Reward: 0 each step, {-1,0,1} at the end of the game
- Deterministic, opponent-dependent state transitions (can be modeled as a game)

▶ The size of the game tree is 10¹²³

Example: Grid World Navigation

- Navigate to a goal without crashing into obstacles
- Formalization
 - State space: robot pose, e.g., 2-D position
 - Actions: allowable robot movement, e.g., {left, right, up, down}
 - ▶ Reward: -1 until the goal is reached; -∞ if an obstacles is hit
 - Can be deterministic or stochastic; fully or partially observable

Definition of Markov Chain

Stochastic process: an indexed collection of random variables {x₀, x₁,...} on a measurable space (X, F)

example: time series of weekly demands for a product

► A temporally homogeneous Markov chain is a stochastic process {x₀, x₁,...} of (X, F)-valued random variables such that:

- $x_0 \sim p_{0|0}(\cdot)$ for a prior probability density function on $(\mathcal{X}, \mathcal{F})$
- ▶ $\mathbb{P}(x_{t+1} \in A \mid x_{0:t}) = \mathbb{P}(x_{t+1} \in A \mid x_t) = \int_A p_f(x \mid x_t) dx$ for $A \in \mathcal{F}$ and a conditional pdf $p_f(\cdot \mid x_t)$ on $(\mathcal{X}, \mathcal{F})$

Intuitive definition:

- In a Markov Chain the distribution of x_{t+1} | x_{0:t} depends only on x_t (a memoryless stochastic process)
- The state captures all information about the history, i.e., once the state is known, the history may be thrown away
- "The future is independent of the past given the present" (Markov Assumption)

Formal Definition of Markov Chain

- A measurable space (X, F) is called **nice** (or standard Borel space) if it is **isomorphic** to a compact metric space with the Borel σ-algebra (i.e., there exists a one-to-one map φ from X into Rⁿ such that both φ and φ⁻¹ are measurable)
- A Markov transition kernel is a function P_f : (X, F) → [0, 1] on a nice space (X, F) such that:
 - ▶ $\mathbb{P}_f(x, \cdot)$ is a probability measure on $(\mathcal{X}, \mathcal{F})$ for all $x \in \mathcal{X}$
 - ▶ $\mathbb{P}_f(\cdot, A)$ is measurable for all $A \in \mathcal{F}$
- A temporally homogeneous Markov chain is a sequence {x₀, x₁,...} of (X, F)-valued random variables such that:
 - $x_0 \sim \mathbb{P}_{0|0}(\cdot)$ for a prior probability measure on $(\mathcal{X}, \mathcal{F})$
 - ▶ $x_{t+1} | x_{0:t} \sim \mathbb{P}_f(x_t, \cdot)$ for a Markov transition kernel \mathbb{P}_f on $(\mathcal{X}, \mathcal{F})$, i.e., the distribution of $x_{t+1} | x_{0:t}$ depends only on x_t so that:

"the future is conditionally independent of the past, given the present"

Markov Chain

A **Markov Chain** is a stochastic process defined by a tuple $(\mathcal{X}, p_{0|0}, p_f)$:

- X is discrete/continuous set of states
- ▶ p_{0|0} is a prior pmf/pdf defined on X
- *p_f*(· | *x_t*) is a conditional pmf/pdf defined on X for given *x_t* ∈ X that specifies the stochastic process transitions. In the finite-dimensional case, the transition pmf is summarized by a matrix
 P_{ij} := ℙ(*x_{t+1}* = *j* | *x_t* = *i*) = *p_f*(*j* | *x_t* = *i*)

Example: Student Markov Chain

Example: Student Markov Chain

Sample paths:

- C1 C2 C3 Pass Sleep
- C1 FB FB C1 C2 Sleep
- C1 C2 C3 Pub C2 C3 Pass Sleep
- C1 FB FB C1 C2 C3 Pub C1 FB FB FB C1 C2 Sleep

Transition matrix:

FB	[0.9	0.1	0	0	0	0	0]
<i>C</i> 1	0.5	0	0.5	0	0	0	0
C2	0	0	0	0.8	0	0	0.2
<i>P</i> = <i>C</i> 3	0	0	0	0	0.4	0.6	0
Pub	0	0.2	0.4	0.4	0	0	0
Pass	0	0	0	0	0	0	1
Sleep	[0	0	0	0	0	0	1

Chapman-Kolmogorov Equation

n-step transition probabilities of a time-homogeneous Markov chain on X = {1,..., N}

$$P_{ij}^{(n)} := \mathbb{P}(X_{t+n} = j \mid X_t = i) = \mathbb{P}(X_n = j \mid X_0 = i)$$

Chapman-Kolmogorov: the *n*-step transition probabilities can be obtained recursively from the 1-step transition probabilities:

$$P_{ij}^{(n)} = \sum_{k=1}^{N} P_{ik}^{(m)} P_{kj}^{(n-m)}, \qquad \forall i, j, n, 0 \le m \le n$$
$$P^{(n)} = \underbrace{P \cdots P}_{n \text{ times}} = P^{n}$$

Given the transition matrix P and a vector p_{0|0} of prior probabilities, the vector of probabilities after t steps is:

$$p_{t|t}^T = p_{0|0}^T P^t$$

Example: Student Markov Chain

	FB	[0.9	0.1	C)	0	C) 0	0	1	
	C1	0.5	0	0.	5	0	C) 0	0		
	С2	0	0	C)	0.8	C) ()	0.2		
P =	С3	0	0	C)	0	0.	4 0.6	50		
	Pub	0	0.2	0.	4	0.4	C) ()	0		
	Pass	0	0	C)	0	C) ()	1		
	Sleep	Γo	0	C)	0	C) 0	1		
	FB	[0.86	0.0)9	0.0	05	0	0	0)	0 .
	C1	0.45	0.05		()	0.4	0	0)	0.1
	C2	0	0		()	0	0.3	2 0.4	18	0.2
$P^2 =$	С3	0	0.08		0.3	16	0.1	60	0)	0.6
	Pub	0.1	0		0.	.1	0.3	2 0.1	6 0.2	24	0.08
	Pass	0	0		0		0	0	0)	1
	Sleep	Lο	0		0		0	0	0)	1
	FB	[0.01	0	0	0	0	0	0.997			
	C1	0.01	0	0	0	0	0	0.99			
	С2	0	0	0	0	0	0	1			
$P^{100} =$	С3	0	0	0	0	0	0	1			
	Pub	0	0	0	0	0	0	1			
	Pass	0	0	0	0	0	0	1			
	Sleep	0	0	0	0	0	0	1			

First Passage Time

•

- ► First Passage Time: the number of transitions necessary to go from x₀ to state j for the first time (random variable τ_j := inf{t ≥ 1 | x_t = j})
- **Recurrence Time**: the first passage time to go from $x_0 = i$ to j = i
- ▶ Probability of first passage in *n* steps: $\rho_{ij}^{(n)} := \mathbb{P}(\tau_j = n \mid x_0 = i)$

$$\begin{aligned} \rho_{ij}^{(1)} &= P_{ij} \\ \rho_{ij}^{(2)} &= [P^2]_{ij} - \rho_{ij}^{(1)} P_{jj} \end{aligned} (first time we visit j should not be 1!)$$

$$\rho_{ij}^{(n)} = [P^n]_{ij} - \rho_{ij}^{(1)} [P^{n-1}]_{jj} - \rho_{ij}^{(2)} [P^{n-2}]_{jj} - \dots - \rho_{ij}^{(n-1)} P_{jj}$$

Probability of first passage: ρ_{ij} := P(τ_j < ∞ | x₀ = i) = Σ[∞]_{n=1} ρ⁽ⁿ⁾_{ij}
 Number of visits to j up to time n:

$$v_j^{(n)} := \sum_{t=0}^n \mathbb{1}\{x_t = j\}$$
 $v_j := \lim_{n \to \infty} v_j^{(n)}$

Recurrence and Transience

- Absorbing state: a state j such that P_{jj} = 1
- Transient state: a state j such that ρ_{jj} < 1</p>
- Recurrent state: a state j such that ρ_{jj} = 1
- ▶ **Positive recurrent state**: a recurrent state *j* with $\mathbb{E}[\tau_j | x_0 = j] < \infty$
- ▶ Null recurrent state: a recurrent state *j* with $\mathbb{E}[\tau_j | x_0 = j] = \infty$
- Periodic state: can only be visited at integer multiples of t
- **Ergodic state**: a positive recurrent state that is aperiodic

Recurrence and Transience

Total Number of Visits Lemma

$$\mathbb{P}(v_j \geq k+1 \mid x_0 = j) =
ho_{jj}^k$$
 for all $k \geq 0$

Proof: By the (strong) Markov property and induction $(\mathbb{P}(v_j \ge k+1 \mid x_0 = j) = \rho_{jj}\mathbb{P}(v_j \ge k \mid x_0 = j)).$

0 – 1 Law for Total Number of Visits

$$j$$
 is recurrent iff $\mathbb{E}\left[v_{j} \mid x_{0}=j
ight]=\infty$

Proof: Since v_j is discrete, we can write $v_j = \sum_{k=0}^{\infty} \mathbb{1}\{v_j > k\}$ and

$$\mathbb{E}[v_j \mid x_0 = j] = \sum_{k=0}^{\infty} \mathbb{P}(v_j \ge k+1 \mid x_0 = j) = \sum_{k=0}^{\infty} \rho_{jj}^k = \frac{\rho_{jj}}{1 - \rho_{jj}}$$

Theorem: Recurrence is contagious

i is recurrent and $ho_{ij} > 0 \quad \Rightarrow \quad j$ is recurrent and $ho_{ji} = 1$

Classification of Markov Chains

- Absorbing Markov Chain: contains at least one absorbing state that can be reached from every other state (not necessarily in one step)
- Irreducible Markov Chain: it is possible to go from every state to every state (not necessarily in one step)
- Ergodic Markov Chain: an aperiodic, irreducible and positive recurrent Markov chain

▶ Stationary distribution: a vector $w \in \{p \in [0,1]^N \mid \mathbf{1}^T p = 1\}$ such that $w^T P = w^T$

- Absorbing chains have stationary distributions with nonzero elements only in absorbing states
- Ergodic chains have a unique stationary distribution (Perron-Frobenius Theorem)
- Some periodic chains only satisfy a weaker condition, where w_j > 0 only for recurrent states and w_j is the frequency v_j⁽ⁿ⁾/n+1 of being in state j as n → ∞

Absorbing Markov Chains

- Interesting questions:
 - Q1: On average, how mant times is the process in state j?
 - Q2: What is the probability that the state will eventually be absorbed?
 - Q3: What is the expected absorption time?
 - Q4: What is the probability of being absorbed by j given that we started in i?

Absorbing Markov Chains

- Canonical form: reorder the states so that the transient ones come first: $P = \begin{bmatrix} Q & R \\ 0 & I \end{bmatrix}$
- One can show that $P^n = \begin{bmatrix} Q^n & * \\ 0 & I \end{bmatrix}$ and $Q^n \to 0$ as $n \to \infty$ *Proof*: If *j* is transient, then $\rho_{ij} < \infty$ and from the 0-1 Law:

$$\infty > \mathbb{E}[v_j \mid x_0 = i] = \mathbb{E}\left[\sum_{n=0}^{\infty} \mathbb{1}\{x_n = j\} \mid x_0 = i\right] = \sum_{n=0}^{\infty} [P^n]_{ij}$$

- Fundamental matrix: $Z^A = (I Q)^{-1} = \sum_{n=0}^{\infty} Q^n$ exists for an absorbing Markov chain
 - ▶ Expected number of times the chain is in state j: $Z_{ij}^A = \mathbb{E}[v_j | x_0 = i]$
 - Expected absorption time when starting from state *i*: $\sum_i Z_{ij}^A$
 - Let $B = Z^A R$. The probability of reaching absorbing state *j* starting from state *i* is B_{ij}

Example: Drunkard's Walk

Transition matrix:

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0.5 & 0 & 0.5 & 0 & 0 \\ 0 & 0.5 & 0 & 0.5 & 0 \\ 0 & 0 & 0.5 & 0 & 0.5 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Canonical form:

$$P = \begin{bmatrix} 0 & 0.5 & 0 & 0.5 & 0 \\ 0.5 & 0 & 0.5 & 0 & 0 \\ 0 & 0.5 & 0 & 0 & 0.5 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Fundamental matrix:

$$Z^{A} = (I - Q)^{-1} = \begin{bmatrix} 1.5 & 1 & 0.5 \\ 1 & 2 & 1 \\ 0.5 & 1 & 1.5 \end{bmatrix}$$

Perron-Frobenius Theorem

Theorem

Let P be the transition matrix of an irreducible, aperiodic, finite, time-homogeneous Markov chain with stationary distribution w. Then

- ▶ 1 is the eigenvalue of max modulus, i.e., $|\lambda| < 1$ for all other eigenvalues
- 1 is a simple eigenvalue, i.e., the associated eigenspace and left-eigenspace have dimension 1
- The eigenvector is $\mathbf{1}^{T}$, the unique left eigenvector w is nonnegative and

$$\lim_{n\to\infty}P^n=\mathbf{1}w^T$$

Hence, w is the unique stationary distribution for the Markov chain and any initial distribution converges to it.

Fundamental Matrix for Ergodic Chains

- We can try to get a fundamental matrix as in the absorbing case but $(I P)^{-1}$ does not exist because $P\mathbf{1} = \mathbf{1}$ (Perron-Frobenius)
- ▶ $I + Q + Q^2 + \ldots = (I Q)^{-1}$ converges because $Q^n \to 0$
- ► Try $I + (P \mathbf{1}w^T) + (P^2 \mathbf{1}w^T) + \dots$ because $P^n \to \mathbf{1}w^T$ (Perron-Frobenius)
- Note that $P\mathbf{1}w^{T} = \mathbf{1}w^{T}$ and $(\mathbf{1}w^{T})^{2} = \mathbf{1}w^{T}\mathbf{1}w^{T} = \mathbf{1}w^{T}$

$$(P - \mathbf{1}w^{T})^{n} = \sum_{i=0}^{n} (-1)^{i} {n \choose i} P^{n-i} (\mathbf{1}w^{T})^{i} = P^{n} + \sum_{i=1}^{n} (-1)^{i} {n \choose i} (\mathbf{1}w^{T})^{i}$$
$$= P^{n} + \underbrace{\left[\sum_{i=1}^{n} (-1)^{i} {n \choose i}\right]}_{(1-1)^{n}-1} (\mathbf{1}w^{T}) = P^{n} - \mathbf{1}w^{T}$$

Thus, the following inverse exists:

$$I + \sum_{n=1}^{\infty} (P^n - \mathbf{1}w^T) = I + \sum_{n=1}^{\infty} (P - \mathbf{1}w^T)^n = (I - P + \mathbf{1}w^T)^{-1}$$

Fundamental Matrix for Ergodic Chains

- Fundamental matrix: $Z^E := (I P + \mathbf{1}w^T)^{-1}$ where P is the transition matrix and w is the stationary distribution.
- Properties: $w^T Z^E = w^T$, $Z^E \mathbf{1} = \mathbf{1}$, and $Z^E (I P) = I \mathbf{1} w^T$

• Mean first passage time: $m_{ij} := \mathbb{E}[\tau_j \mid x_0 = i] = \frac{Z_{jj}^E - Z_{ij}^E}{w_i}$

Stationary distribution: $w^T = \begin{bmatrix} 0.4 & 0.2 & 0.4 \end{bmatrix}$

Fundamental matrix:

$$I - P + \mathbf{1}w^{T} = \begin{bmatrix} 0.9 & -0.05 & 0.15 \\ -0.1 & 1.2 & -0.1 \\ 0.15 & -0.05 & 0.9 \end{bmatrix} \xrightarrow{0.5} \xrightarrow{\text{Rain}} \xrightarrow{0.5} \xrightarrow{\text{Nice}} \xrightarrow{0.5} \xrightarrow{0.5}$$

0.25

• Mean first passage time: $m_{12} = \frac{Z_{22}^E - Z_{12}^E}{w_2} = \frac{0.84 - 0.04}{0.2} = 4$