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Notation and Terminology

xXEX
u € U(x)
pr(x’ | x, u)

*(x), V*(x)

Markov process state
control /action avilable in state x
motion model, i.e., control-dependent transition pdf

stage cost/reward for choosing control v in state x
(optional) terminal cost/reward at state x

control policy: mapping from state x to control u € U(x)
value function: cumulative cost/reward for starting at

state x and acting according to 7 thereafter

optimal control policy and corresponding value function



Problem Formulation

» Motion model: specifies how a dynamical system evolves

Xt41 = f(Xt, ug, Wt) ~ Pf(' | Xty ut)7 t=0,...,7T -1
discrete time t € {0,..., T}
state x; € X

control uy € U(x;) and U 1= U, cr U(X)

motion noise w; (random vector) with known probability density function
(pdf) and assumed conditionally independent of other disturbances w;, for
T # t for given x; and u;

» the motion model is specified by the nonlinear function f or equivalently
by the pdf pr of x;y1 conditioned on x; and u;

vVVvyVvyyYy

» Observation model: the state x; might not be observable but
perceived through measurements:

Zt-:h(Xt,Vt)’\-’ph('’Xt)7 tZO,,T

> measurement noise v; (random vector) with known pdf and conditionally
independent of other disturbances v, for 7 # t for given x; and w; for all ¢

» the observation model is specified by the nonlinear function h or
equivalently by the pdf p, of z; conditioned on x; 3



A Markov Chain is a stochastic process defined by a tuple (X', pojo, pf):

> X is discrete/continuous set of states
> pojo is a prior pmf/pdf defined on X’

» pr(- | xt) is a conditional pmf/pdf defined on X" for given x; € X that
specifies the stochastic process transitions. In the finite-dimensional
case, the transition pmf is summarized by a matrix

Pij:=P(xer1 =J [ xe = 1) = pr( | xe = 1)




Example: Student Markov Chain




Markov Reward Process

A Markov Reward Process (MRP) is a Markov chain with state costs
(rewards) defined by a tuple (X, po|o, pr,¢,7)

» X is a discrete/continuous set of states
> pojo is a prior pmf/pdf defined on X

» pr(- | x¢) is a conditional pmf/pdf defined on X for given x; € X and
summarized by a matrix Pjj := pr(j | X = i) in the finite-dimensional
case.

» /((x) is a function specifying the cost/reward of state x € X

» ~ € [0,1] is a discount factor




Example: Student Markov Reward Process




Cumulative Cost

» Value function: The cumulative cost/reward of an MRP (X, pr, ¢, )
starting from state x € X at time O:

\'
N

> Finite-horizon: Vo(x) :=E | q(x7) + Ux:) | xo = x
——

t

Il
o

terminal cost
o0

Z’ytﬁ(xt) | xo = x}

T-1
> Average-reward: V(x) := I|m —E [Z Ux:) | xo = x}
t=0

> Discounted Infinite-horizon: V(x) :=E

» The discount factor  specifies the present value of future costs:

> close to 0 leads to myopic/greedy evaluation

> ~ close to 1 leads to nonmyopic/far-sighted evaluation

» Mathematically convenient since it avoids infinite costs as T — oo

» The long-term future may be hard to model anyways

> Animal/human behavior shows preference for immediate reward

» It is possible to use an undiscounted MRP if all sequences terminate
(first-exit formulation). The finite-horizon formulation is a special case of
the first-exit formulation. 8



Example: Cumulative Reward of the Student MRP

V(s) for y =0




Example: Cumulative Reward of the Student

Vis) fory =1

MRP
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Example: Cumulative Reward of the Student

V(s) fory =0.9

MRP

11



Markov Decision Process

A Markov Decision Process (MDP) is a Markov Reward Process with
controlled transitions defined by a tuple (X,U, pojo, pr, £, )

>

| 2

| 2

X is a discrete/continuous set of states
U is a discrete/continuous set of controls
Pojo is a prior pmf/pdf defined on X’

pr(- | x¢, ut) is a conditional pmf/pdf defined on X for given x; € X and
ue € U and summarized by a matrix Pjj := pf(j | xe = i, ue = u) in the
finite-dimensional case.

{(x, u) is a function specifying the cost/reward of applying control
u €U in state x e X

~v € [0,1] is a discount factor

12



Example: Markov Decision Process

» An action u; € U(x¢) applied in state x; € X’ determines the next state
X¢+1 and the obtained cost/reward ¢(x;, ut)
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Example: Student Markov Decision Process

Facebook
r=-1

Facebook
r=-1

Quit
r=0

Study
r=+10

Study
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Control Policy and Cumulative Cost

» Admissible control policy: a sequence my.7_1 of functions 7, that
map a state x; € X to a feasible control input u; € U(x)

» Value function: the cumulative cost/reward of a policy 7 applied to an
MDP (X,U, pr, £, ~y) with initial state x € X’ at time t = 0:

T-1
» Finite-horizon: V{ (x) :=E | q(xr) + Z Uxe, me(Xe)) | %0 = x
T~ t=0

terminal cost

> Discounted Infinite-horizon: V™ (x) :=E [Zv Uxe,m(xt)) | %0 = x}
t=0
T-1

> Average-reward: V7 (x) := I|m —]E Z Uxe, m(xt)) | %0 = x]

T—oo T

t=0

» Note: we will show that as T — oo, optimal policies become stationary,
i.e., m:=my =m = ---, and independent of xg
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Example: Value Function of Student MDP

Facebook

r=-1

V(s) for m(s,a)=0.5, y =1

Facebook

r=-1

Quit
r=0
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Alternative Cost Formulations
> Noise-dependent costs: a more general model allows the stage costs ¢/
to depend on the motion noise w;:
T-1

V(;T(X) = IE‘W():T,XLT [q(XT) + Z el(Xt')ﬂ-t(Xt); Wt) ‘ Xo = X
t=0

This is equivalent to our formulation since the pdf py, (- | xt, ut) of wy is
known and we can always compute:

K(Xta Ut) = IE':wt\xt,ut [EI(Xt; Uz, Wt)] = /e(xt, ut, Wt)pW(Wt | Xt, Ut)th

> Joint cost-state pdf: a more general model allows random costs ¢ by
specifying the joint pdf p(x’, ¢’ | x, u). This is equivalent to our
formulation as follows:

pr(x )= [ pld, | x )t

Ux,u) :=E[l'| x,u] = //EIP(X/J/ |, x, u)dx'dl’ 17



Comparison of Markov Models

observed partially observed
uncontrolled | Markov Chain/MRP HMM
controlled MDP POMDP

» Markov Chain + Partial Observability = HMM

» Markov Chain + Control = MDP

» Markov Chain + Partial Observability + Control = HMM + Control =
MDP + Partial Observability = POMDP
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Partially Observable Markov Decision Process
A Partially Observable Markov Decision Process (POMDP) is a Markov
Decision Process with partially observable states defined by a tuple

(X7u7 Z) PO\O, Pfs Ph, 8, ’Y)

> X is a discrete/continuous set of states

» U is a discrete/continuous set of controls

» Z is a discrete/continuous set of observations

> pojo is a prior pmf/pdf defined on X’

» pr(- | x¢, ut) is a conditional pmf/pdf defined on X for given x; € X and
ue € U and summarized by a matrix P} := pf(j | x¢ = i, ue = u) in the
finite-dimensional case.

» pu(- | xt) is a conditional pmf/pdf defined on Z for given x; € X and
summarized by a matrix O := pu(j | X = i) in the finite-dim case.

» /((x, u) is a function specifying the cost/reward of applying control
u €U in state x € X

» ~ € [0,1] is a discount factor

—
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Bayes Filter

. L 6 @)
» Motion model:
Xt+1:f(Xt7 Uz, Wt) ~ pf(. ‘ Xt, ut) @ Q @

» Observation model:
Zy = h(Xt7 Vt) ~ ph( ‘ Xt) @ 6 @

Xt) = P\ Xt | 20:t, U0:t—
» Filtering: keeps track of Prie(xt) := p(xe | z0:t; o:t-1)
Pt+1|t(Xt+1) = p(Xt+1 | Zo:t, to:t)
> Bayes filter:

L .
Mt+1 Predict: p, y|¢(xt11)

—_—

: /
—————— Ph(Ze+1 | Xe1 F(Xe1 | Xe, u Xt ) dx
P(zer1|20: toe) - (ze01 [xes1) [ pr(xea | e ue)pee(xe)de

Pt+1|t+1(Xt+1) =

Update
» Joint distribution:
T T
p(xo.7, 20.7, to:7-1) = pojo(x0) [ [ pulze [ xe) [ pr(xe | xe-1, ue-1)
=0 Y t=0 .
prior observation model motion model
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Information Space and Sufficient Statistics

» The information available to the robot at time t to choose the control
input uy is iy := (z0:¢, Ug:t—1) € T

» The information space 7 is the space of sequences of observations and
controls

> A statistic y; = s(i¢) is a function of the information available at time t
to estimate x;

» The statistic y; = s(i;) is sufficient for x; if the conditional distribution
of x; given the statistic y; does not depend on the information i;

» Under the Markov and measurement and motion noise independence
(over time, from the state, and from each other) assumptions, the
distribution of the state x; conditioned on the information state /; is a
sufficient statistic for x;. In other words, pyj+(xt) := p(x¢ | it) is a
compact representation of i;.
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Equivalence of POMDPs and MDPs

» The Bayes filter v tracks precisely the needed sufficient statistic:

p(xt | ir) = Pt\t(Xt) = w(Pt—l|t—1) Ut—1,2t)

1
= ;ph(Zt | Xt)/Pf(Xt | xt—1, Ut—l)Pt—l\t—l(thl)dXt—l
t

> Because py; is a sufficient statistic for x¢, we can convert a POMDP

(X,U, Z, pr, pp, ¢, 7y) into an equivalent MDP (B,U, py, p,7) where:
> The state space B := P(X) is the continuous space of pdfs/pmfs over X,
eg. if |X| =N, then B={bec[0,1]V|17b=1}

» The transformed motion model is the Bayes filter by 1 = ¥(by, uy, 2¢),
where z; plays the role of noise or in probabilistic terms:

polbess | be, ue) = / 1{besr = (e, v 2)}1(z | by, ur)dz

n(z | b, ut) == //Ph(z | Xe11)Pr(Xer1 | Xe, ue) be(xe ) dxedxe 1

> The transformed stage cost/reward function p(b, u) = [ (x, u)b(x)dx is

the expected stage cost/reward
22



The Problem of Acting Optimally in a POMDP

» An infinite-dimensional dynamic optimization problem defined for a
POMDP (X,U, Z, pf, ph, ¢,) as follows:

T-1
in, & [5Ta0r) 4 3t 0)

t=0
s.t. Xt+1pr(‘ |Xt,Ut)7 tZO,,T—l
Zt+1NPh("Xt), t:0,7T—1
UtNTI't("it), tZO,,T—l

xo ~ bo(+) = prior pdf over the hidden state xp

» Equivalently, using the information-space MDP (B,U, py, p,7) with
sufficient statistic b;:

min Vg (by) =E

T-1
¥ pr(br) + ) v'pe(br, Ut)]

T0:T—1 —0
s.t. bt+1 :w(bt,ut,zt_,_l), tZO,..., T-1
Zt+1N77("bt,Ut), t:07,T—1
UtN7Tt(‘|bt), tZO,,T—].
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Final Problem Formulation

» Due to the equivalence between POMDPs and (information-space)
MDPs, we will focus exclusively on MDPs

» First, we will consider the finite-horizon formulation

T-1
mﬂin Vi (x0) == Ex.r )+ g Ce(xe, me(xt))
t=0

st Xeqp1 ~ pf( ’ vaTrt(Xt))7 t= 07 R T-1
Xt € X, ’ﬂ't(Xt) S Z/{(Xt)

» Then, we will consider the discounted infinite-horizon formulation:

Z’YEXU Xt

s.t. xep1 ~ pr(- | Xt,Wt(Xt))v
Xt I~ .)(, ’ﬂ't(Xt) S Z/{(Xt)

m|n V7™ (x0)

g
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Open Loop vs Closed Loop Control

» There are two different control methodologies:

» Open loop: control inputs ug.7—1 are determined at once at time 0 as a
function of xo (fully observable case) or pgjo (partially observable case)

» Closed loop: control inputs are determined “just-in-time” as a function
of the state x; (fully observable case) or measurement history zo.¢, Uo:t—1
(partially observable case)

» A special case of closed loop control is to simply disregard
state/measurement information (open loop control). Thus, open loop
control can never give better performance than closed loop control.

» In the absence of disturbances (or in the special linear quadratic
Gaussian case), the two give theoretically the same performance.

» When good models are available, open-loop control is a viable strategy
for short time horizons

25



Open Loop vs Closed Loop Control

» Open loop control is typically much less demanding than closed loop
control

» Consider a discrete-space example with N, = 10 states, N, = 10 control
inputs, planning horizon T =4, and given xg:
» There are N = 10* different open-loop strategies

> There are N,(NN)T-1 = NYT=DFL — 1031 different closed-loop
strategies (10 orders of magnitude larger than the number of stars in the
observable universe!)
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Example: Chess Strategy Optimization

» Objective: come up with a strategy that maximizes the chances of
winning a 2 game chess match.

» Possible outcomes:
» Win/Lose: 1 point for the winner, 0 for the loser
» Draw: 0.5 points for each player
» If the score is equal after 2 games, the players continue playing until one
wins (sudden death)

» Playing styles:

> Timid: draw with probability pys and lose with probability (1 — pg)
> Bold: win with probability p, and lose with probability (1 — pw)
> Assumption: py; > p,,
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Finite-state Model of the Chess Match

» The state x; is a 2-D vector with our and the opponent’s score after the
t-th game

» The control u; is the play style: timid or bold
» The noise w; is the score of the next game

» Since timid play does not make sense during the sudden death stage, the
planning horizon is T =2

> We can construct a time-dependent motion model Py, for t € {0,1}

(shown on the next slide) .

» Cost: minimize loss probability: —Pyin, = Ey,, |l2(x2) + Zét(xt, ut)
t=0

where (¢(x¢, ur) = 0 for t € {0,1} and

-1 ifxo=(3,3) or(2,0)
gQ(XQ) = —Pw if X = (1, l)
0 if o = (3,3) or (0,2) 08



Chess Transition Probabilities

Timid Play

Game 1:

Timid Play

Game 2:

1—pg
0,2)

Bold Play

Bold Play
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Open Loop Chess Strategy
» There are 4 admissible open-loop policies:
1. timid-timid: P, = p(%pW
2. bold-bold: Puin = p2 + puw(1l = pw)pw + (1 = pw)PwPw = PE(3 — 2pu)
3. bold-timid: Pyin = pwpd + Pw(l — Pa)Pw
4. timid-bold: Py, = papw + (1 — pa)p2

> Since p2pw < paPw < papw + (1 — pa)p3, timid-timid is not optimal

» The best achievable winning probability is:
bold-bold 3. or 4.

*

win — maX{Psv(3 - 2pW)7 PdPw + (1 - Pd)Pa/}
= p + pw(l — pw) max{2pw, pa}
» In the open-loop case, if p, < 0.5, then P*. < 0.5

win
» For p, =0.45 and pg = 0.9, P, = 0.43
» For p, = 0.5 and py = 1.0, P, = 0.5
» If pgy > 2p,, bold-timid and timid-bold are optimal open-loop policies;
otherwise bold-bold is optimal
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Closed Loop Chess Strategy

» There are 16 admissible policies

» Consider one option: play timid if
and only if ahead (it will turn out
that this is optimal)

» The probability of winning is:
Puin = PdPw+Pw((1—pd)Pw+pw(l—pPw)) = P5(2—pw)+pPu(l—pw)pd
» Note that in the closed-loop case we can achieve P, larger than 0.5
even when p,, is less than 0.5:

» For p, =0.45 and py = 0.9, P,;, = 0.5
» For p, = 0.5 and py = 1.0, P,;, = 0.625
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