ECE276B: Planning & Learning in Robotics Lecture 2: Markov Decision Processes

Instructor:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants: Zhichao Li: zhl355@eng.ucsd.edu Ehsan Zobeidi: ezobeidi@eng.ucsd.edu Ibrahim Akbar: iakbar@eng.ucsd.edu

UC San Diego

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Notation and Terminology

$ \begin{aligned} & x \in \mathcal{X} \\ & u \in \mathcal{U}(x) \\ & p_f(x' \mid x, u) \end{aligned} $	Markov process state control/action avilable in state <i>x</i> motion model, i.e., control-dependent transition pdf
$\ell(x, u)$ $\mathfrak{q}(x)$	stage cost/reward for choosing control u in state x (optional) terminal cost/reward at state x
$\pi(x)$ $V^{\pi}(x)$	control policy: mapping from state x to control $u \in \mathcal{U}(x)$ value function: cumulative cost/reward for starting at state x and acting according to π thereafter

 $\pi^*(x)$, $V^*(x)$ optimal control policy and corresponding value function

Problem Formulation

Motion model: specifies how a dynamical system evolves

$$x_{t+1} = f(x_t, u_t, w_t) \sim p_f(\cdot \mid x_t, u_t), \quad t = 0, \dots, T-1$$

- discrete time $t \in \{0, \ldots, T\}$
- state $x_t \in \mathcal{X}$
- control $u_t \in \mathcal{U}(x_t)$ and $\mathcal{U} := \bigcup_{x \in \mathcal{X}} \mathcal{U}(x)$
- motion noise w_t (random vector) with known probability density function (pdf) and assumed conditionally independent of other disturbances w_{τ} for $\tau \neq t$ for given x_t and u_t
- the motion model is specified by the nonlinear function f or equivalently by the pdf p_f of x_{t+1} conditioned on x_t and u_t
- Observation model: the state x_t might not be observable but perceived through measurements:

$$z_t = h(x_t, v_t) \sim p_h(\cdot \mid x_t), \quad t = 0, \dots, T$$

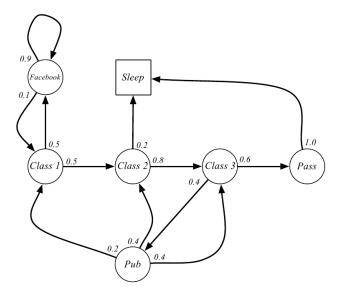
- ▶ measurement noise v_t (random vector) with known pdf and conditionally independent of other disturbances v_τ for $\tau \neq t$ for given x_t and w_t for all t
- the observation model is specified by the nonlinear function h or equivalently by the pdf p_h of z_t conditioned on x_t

Markov Chain

A Markov Chain is a stochastic process defined by a tuple $(\mathcal{X}, p_{0|0}, p_f)$:

- X is discrete/continuous set of states
- ▶ p_{0|0} is a prior pmf/pdf defined on X
- *p_f*(· | *x_t*) is a conditional pmf/pdf defined on X for given *x_t* ∈ X that specifies the stochastic process transitions. In the finite-dimensional case, the transition pmf is summarized by a matrix
 P_{ij} := ℙ(*x_{t+1}* = *j* | *x_t* = *i*) = *p_f*(*j* | *x_t* = *i*)

Example: Student Markov Chain

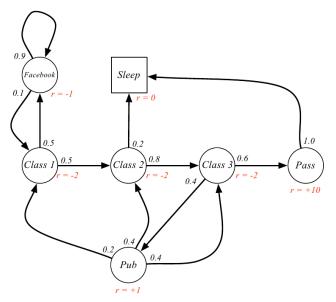


Markov Reward Process

A Markov Reward Process (MRP) is a Markov chain with state costs (rewards) defined by a tuple $(\mathcal{X}, p_{0|0}, p_f, \ell, \gamma)$

- \mathcal{X} is a discrete/continuous set of states
- ▶ p_{0|0} is a prior pmf/pdf defined on X
- *p_f*(· | *x_t*) is a conditional pmf/pdf defined on *X* for given *x_t* ∈ *X* and summarized by a matrix *P_{ij}* := *p_f*(*j* | *x_t* = *i*) in the finite-dimensional case.
- ▶ $\ell(x)$ is a function specifying the cost/reward of state $x \in \mathcal{X}$
- ▶ $\gamma \in [0,1]$ is a discount factor

Example: Student Markov Reward Process



Cumulative Cost

Value function: The cumulative cost/reward of an MRP $(\mathcal{X}, p_f, \ell, \gamma)$ starting from state $x \in \mathcal{X}$ at time 0:

Finite-horizon:
$$V_0(x) := \mathbb{E} \left[\underbrace{\mathfrak{q}(x_T)}_{\text{terminal cost}} + \sum_{t=0}^{T-1} \ell(x_t) \mid x_0 = x \right]$$

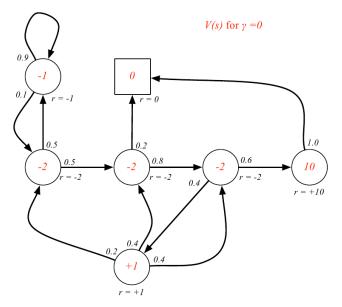
Discounted Infinite-horizon: $V(x) := \mathbb{E} \left| \sum_{t=0}^{\infty} \gamma^t \ell(x_t) \mid x_0 = x \right|$

• Average-reward:
$$V(x) := \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} \ell(x_t) \mid x_0 = x \right]$$

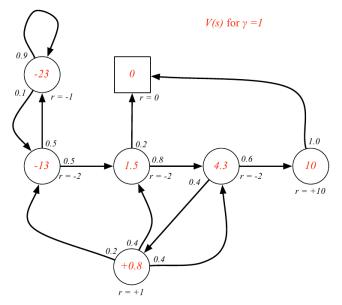
• The **discount factor** γ specifies the present value of future costs:

- \triangleright γ close to 0 leads to myopic/greedy evaluation
- \triangleright γ close to 1 leads to nonmyopic/far-sighted evaluation
- Mathematically convenient since it avoids infinite costs as $T \to \infty$
- The long-term future may be hard to model anyways
- Animal/human behavior shows preference for immediate reward
- It is possible to use an undiscounted MRP if all sequences terminate (first-exit formulation). The finite-horizon formulation is a special case of the first-exit formulation. 8

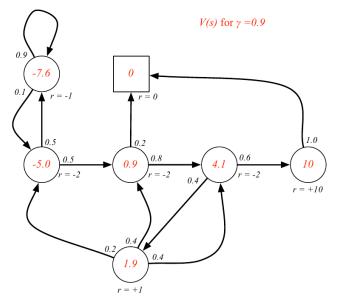
Example: Cumulative Reward of the Student MRP



Example: Cumulative Reward of the Student MRP



Example: Cumulative Reward of the Student MRP



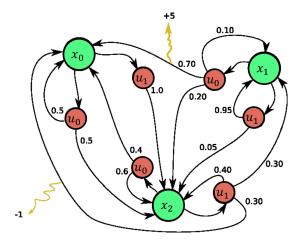
Markov Decision Process

A Markov Decision Process (MDP) is a Markov Reward Process with controlled transitions defined by a tuple $(\mathcal{X}, \mathcal{U}, p_{0|0}, p_f, \ell, \gamma)$

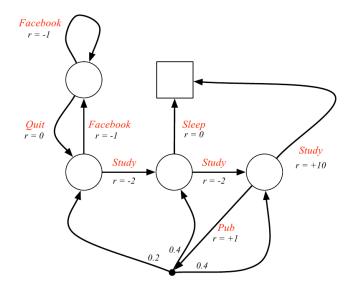
- \mathcal{X} is a discrete/continuous set of states
- \mathcal{U} is a discrete/continuous set of controls
- $p_{0|0}$ is a prior pmf/pdf defined on \mathcal{X}
- *p_f*(· | *x_t*, *u_t*) is a conditional pmf/pdf defined on *X* for given *x_t* ∈ *X* and *u_t* ∈ *U* and summarized by a matrix *P^u_{ij}* := *p_f*(*j* | *x_t* = *i*, *u_t* = *u*) in the finite-dimensional case.
- ℓ(x, u) is a function specifying the cost/reward of applying control u ∈ U in state x ∈ X
- ▶ $\gamma \in [0, 1]$ is a discount factor

Example: Markov Decision Process

An action u_t ∈ U(x_t) applied in state x_t ∈ X determines the next state x_{t+1} and the obtained cost/reward ℓ(x_t, u_t)



Example: Student Markov Decision Process



Control Policy and Cumulative Cost

- Admissible control policy: a sequence π_{0:T−1} of functions π_t that map a state x_t ∈ X to a feasible control input u_t ∈ U(x_t)
- Value function: the cumulative cost/reward of a policy π applied to an MDP (X, U, p_f, ℓ, γ) with initial state x ∈ X at time t = 0:

Finite-horizon:
$$V_0^{\pi}(x) := \mathbb{E} \left[\underbrace{\mathfrak{q}(x_T)}_{\text{terminal cost}} + \sum_{t=0}^{T-1} \ell(x_t, \pi_t(x_t)) \mid x_0 = x \right]$$

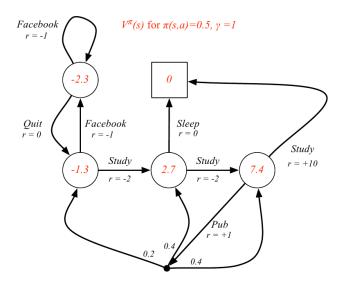
b Discounted Infinite-horizon: $V^{\pi}(x) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \ell(x_{t}, \pi(x_{t})) \mid x_{0} = x\right]$

• Average-reward:
$$V^{\pi}(x) := \lim_{T \to \infty} \frac{1}{T} \mathbb{E}\left[\sum_{t=0}^{T-1} \ell(x_t, \pi(x_t)) \mid x_0 = x\right]$$

Note: we will show that as $T \to \infty$, optimal policies become stationary, i.e., $\pi := \pi_0 \equiv \pi_1 \equiv \cdots$, and independent of x_0

-

Example: Value Function of Student MDP



Alternative Cost Formulations

Noise-dependent costs: a more general model allows the stage costs l' to depend on the motion noise w_t:

$$V_0^{\pi}(x) := \mathbb{E}_{w_{0:T}, x_{1:T}} \left[\mathfrak{q}(x_T) + \sum_{t=0}^{T-1} \ell'(x_t, \pi_t(x_t), w_t) \mid x_0 = x \right]$$

This is equivalent to our formulation since the pdf $p_w(\cdot | x_t, u_t)$ of w_t is known and we can always compute:

$$\ell(x_t, u_t) := \mathbb{E}_{w_t \mid x_t, u_t} \left[\ell'(x_t, u_t, w_t) \right] = \int \ell(x_t, u_t, w_t) p_w(w_t \mid x_t, u_t) dw_t$$

▶ Joint cost-state pdf: a more general model allows random costs l' by specifying the joint pdf p(x', l' | x, u). This is equivalent to our formulation as follows:

$$p_f(x' \mid x, u) := \int p(x', \ell' \mid x, u) d\ell'$$
$$\ell(x, u) := \mathbb{E} \left[\ell' \mid x, u \right] = \int \int \ell' p(x', \ell' \mid, x, u) dx' d\ell'$$
17

Comparison of Markov Models

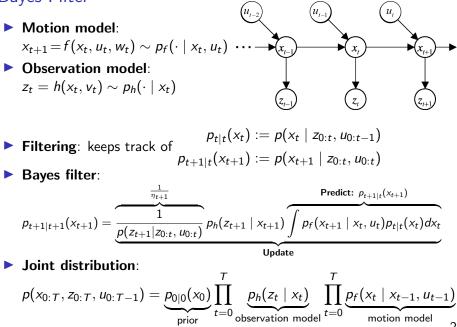
	observed	partially observed
uncontrolled	Markov Chain/MRP	HMM
controlled	MDP	POMDP

- Markov Chain + Partial Observability = HMM
- Markov Chain + Control = MDP
- Markov Chain + Partial Observability + Control = HMM + Control = MDP + Partial Observability = POMDP

Partially Observable Markov Decision Process

- A Partially Observable Markov Decision Process (POMDP) is a Markov Decision Process with partially observable states defined by a tuple $(\mathcal{X}, \mathcal{U}, \mathcal{Z}, p_{0|0}, p_f, p_h, g, \gamma)$
 - \mathcal{X} is a discrete/continuous set of states
 - U is a discrete/continuous set of controls
 - \mathcal{Z} is a discrete/continuous set of observations
 - $p_{0|0}$ is a prior pmf/pdf defined on \mathcal{X}
 - *p_f*(· | *x_t*, *u_t*) is a conditional pmf/pdf defined on X for given *x_t* ∈ X and *u_t* ∈ U and summarized by a matrix *P^u_{ij}* := *p_f*(*j* | *x_t* = *i*, *u_t* = *u*) in the finite-dimensional case.
 - ▶ $p_h(\cdot | x_t)$ is a conditional pmf/pdf defined on \mathcal{Z} for given $x_t \in \mathcal{X}$ and summarized by a matrix $O_{ij} := p_h(j | x_t = i)$ in the finite-dim case.
 - ℓ(x, u) is a function specifying the cost/reward of applying control u ∈ U in state x ∈ X
 - $\gamma \in [0,1]$ is a discount factor

Bayes Filter



Information Space and Sufficient Statistics

- The information available to the robot at time t to choose the control input ut is it := (z_{0:t}, u_{0:t−1}) ∈ I
- The information space I is the space of sequences of observations and controls
- A statistic y_t = s(i_t) is a function of the information available at time t to estimate x_t
- ► The statistic $y_t = s(i_t)$ is **sufficient** for x_t if the conditional distribution of x_t given the statistic y_t does not depend on the information i_t
- Under the Markov and measurement and motion noise independence (over time, from the state, and from each other) assumptions, the distribution of the state x_t conditioned on the information state i_t is a sufficient statistic for x_t . In other words, $p_{t|t}(x_t) := p(x_t | i_t)$ is a compact representation of i_t .

Equivalence of POMDPs and MDPs

The **Bayes filter** ψ tracks precisely the needed sufficient statistic:

$$p(x_t \mid i_t) = \boxed{p_{t|t}(x_t) = \psi(p_{t-1|t-1}, u_{t-1}, z_t)} \\ = \frac{1}{\eta_t} p_h(z_t \mid x_t) \int p_f(x_t \mid x_{t-1}, u_{t-1}) p_{t-1|t-1}(x_{t-1}) dx_{t-1}$$

Because p_{t|t} is a sufficient statistic for x_t, we can convert a POMDP (X, U, Z, p_f, p_h, ℓ, γ) into an equivalent MDP (B, U, p_ψ, ρ, γ) where:
 The state space B := P(X) is the continuous space of pdfs/pmfs over X, e.g., if |X| = N, then B = {b ∈ [0,1]^N | 1^Tb = 1}

The transformed motion model is the Bayes filter $b_{t+1} = \psi(b_t, u_t, z_t)$, where z_t plays the role of noise or in probabilistic terms:

$$p_{\psi}(b_{t+1} \mid b_t, u_t) := \int \mathbb{1}\{b_{t+1} = \psi(b_t, u_t, z)\}\eta(z \mid b_t, u_t)dz$$
$$\eta(z \mid b_t, u_t) := \int \int p_h(z \mid x_{t+1})p_f(x_{t+1} \mid x_t, u_t)b_t(x_t)dx_tdx_{t+1}$$

The transformed stage cost/reward function ρ(b, u) = ∫ ℓ(x, u)b(x)dx is the expected stage cost/reward

The Problem of Acting Optimally in a POMDP

An infinite-dimensional dynamic optimization problem defined for a POMDP (X, U, Z, p_f, p_h, ℓ, γ) as follows:

$$\min_{\pi_0: \tau - 1} \mathbb{E} \left[\gamma^T \mathfrak{q}(x_T) + \sum_{t=0}^{T-1} \gamma^t \ell_t(x_t, u_t) \right]$$
s.t. $x_{t+1} \sim p_f(\cdot \mid x_t, u_t), \quad t = 0, \dots, T-1$
 $z_{t+1} \sim p_h(\cdot \mid x_t), \quad t = 0, \dots, T-1$
 $u_t \sim \pi_t(\cdot \mid i_t), \quad t = 0, \dots, T-1$
 $x_0 \sim b_0(\cdot) \equiv \text{prior pdf over the hidden state } x_0$

Equivalently, using the information-space MDP $(\mathcal{B}, \mathcal{U}, p_{\psi}, \rho, \gamma)$ with sufficient statistic b_t :

$$\min_{\pi_{0:T-1}} V_0^{\pi}(b_0) = \mathbb{E} \left[\gamma^T \rho_T(b_T) + \sum_{t=0}^{T-1} \gamma^t \rho_t(b_t, u_t) \right]$$

s.t. $b_{t+1} = \psi(b_t, u_t, z_{t+1}), \quad t = 0, \dots, T-1$
 $z_{t+1} \sim \eta(\cdot \mid b_t, u_t), \quad t = 0, \dots, T-1$
 $u_t \sim \pi_t(\cdot \mid b_t), \quad t = 0, \dots, T-1$

Final Problem Formulation

- Due to the equivalence between POMDPs and (information-space) MDPs, we will focus exclusively on MDPs
- First, we will consider the finite-horizon formulation

$$\min_{\pi} V_0^{\pi}(x_0) := \mathbb{E}_{x_{1:T}} \left[\mathfrak{q}(x_T) + \sum_{t=0}^{T-1} \ell_t(x_t, \pi_t(x_t)) \ \middle| \ x_0 \right]$$

s.t. $x_{t+1} \sim p_f(\cdot \mid x_t, \pi_t(x_t)), \quad t = 0, \dots, T-1$
 $x_t \in \mathcal{X}, \ \pi_t(x_t) \in \mathcal{U}(x_t)$

▶ Then, we will consider the discounted **infinite-horizon** formulation:

$$\begin{split} \min_{\pi} V^{\pi}(x_0) &:= \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \ell(x_t, \pi(x_t)) \mid x_0\right] \\ \text{s.t.} \ x_{t+1} &\sim p_f(\cdot \mid x_t, \pi_t(x_t)), \\ x_t \in \mathcal{X}, \ \pi_t(x_t) \in \mathcal{U}(x_t) \end{split}$$

Open Loop vs Closed Loop Control

- There are two different control methodologies:
 - Open loop: control inputs u_{0:T−1} are determined at once at time 0 as a function of x₀ (fully observable case) or p_{0|0} (partially observable case)
 - Closed loop: control inputs are determined "just-in-time" as a function of the state x_t (fully observable case) or measurement history z_{0:t}, u_{0:t-1} (partially observable case)
- A special case of closed loop control is to simply disregard state/measurement information (open loop control). Thus, open loop control can never give better performance than closed loop control.
- In the absence of disturbances (or in the special linear quadratic Gaussian case), the two give theoretically the same performance.
- When good models are available, open-loop control is a viable strategy for short time horizons

Open Loop vs Closed Loop Control

- Open loop control is typically much less demanding than closed loop control
- Consider a discrete-space example with N_x = 10 states, N_u = 10 control inputs, planning horizon T = 4, and given x₀:
 - There are $N_{\mu}^{T} = 10^{4}$ different open-loop strategies
 - ▶ There are $N_u(N_u^{N_x})^{T-1} = N_u^{N_x(T-1)+1} = 10^{31}$ different closed-loop strategies (10 orders of magnitude larger than the number of stars in the observable universe!)

Example: Chess Strategy Optimization

 Objective: come up with a strategy that maximizes the chances of winning a 2 game chess match.

Possible outcomes:

- Win/Lose: 1 point for the winner, 0 for the loser
- Draw: 0.5 points for each player
- If the score is equal after 2 games, the players continue playing until one wins (sudden death)

Playing styles:

- **Timid**: draw with probability p_d and lose with probability $(1 p_d)$
- **Bold**: win with probability p_w and lose with probability $(1 p_w)$
- Assumption: $p_d > p_w$

Finite-state Model of the Chess Match

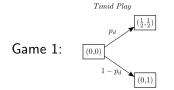
- The state x_t is a 2-D vector with our and the opponent's score after the t-th game
- The control u_t is the play style: timid or bold
- The **noise** w_t is the score of the next game
- Since timid play does not make sense during the sudden death stage, the planning horizon is T = 2
- We can construct a time-dependent motion model P^u_{ijt} for t ∈ {0,1} (shown on the next slide)

• **Cost**: minimize loss probability: $-P_{win} = \mathbb{E}_{x_{1:2}} \left[\ell_2(x_2) + \sum_{t=0}^{1} \ell_t(x_t, u_t) \right]$

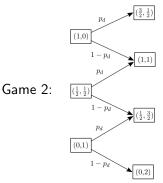
where $\ell_t(x_t, u_t) = 0$ for $t \in \{0, 1\}$ and $\ell_2(x_2) = \begin{cases} -1 & \text{if } x_2 = \left(\frac{3}{2}, \frac{1}{2}\right) \text{ or } (2, 0) \\ -p_w & \text{if } x_2 = (1, 1) \\ 0 & \text{if } x_2 = \left(\frac{1}{2}, \frac{3}{2}\right) \text{ or } (0, 2) \end{cases}$

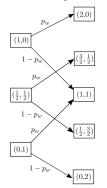
28

Chess Transition Probabilities



Bold Play





Open Loop Chess Strategy

There are 4 admissible open-loop policies:

- 1. timid-timid: $P_{win} = p_d^2 p_w$ 2. bold-bold: $P_{win} = p_w^2 + p_w(1 - p_w)p_w + (1 - p_w)p_w p_w = p_w^2(3 - 2p_w)$ 3. bold-timid: $P_{win} = p_w p_d + p_w(1 - p_d)p_w$
 - 4. timid-bold: $P_{win} = p_d p_w + (1 p_d) p_w^2$

▶ Since $p_d^2 p_w \le p_d p_w \le p_d p_w + (1 - p_d) p_w^2$, timid-timid is not optimal

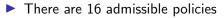
The best achievable winning probability is:

$$P_{win}^{*} = \max\{ p_{w}^{2}(3-2p_{w}), p_{d}p_{w} + (1-p_{d})p_{w}^{2} \} \\ = p_{w}^{2} + p_{w}(1-p_{w}) \max\{2p_{w}, p_{d}\} \\ \blacktriangleright \text{ In the open-loop case, if } p_{w} \leq 0.5, \text{ then } P_{win}^{*} \leq 0.5 \\ \blacktriangleright \text{ For } p_{w} = 0.45 \text{ and } p_{d} = 0.9, P_{win}^{*} = 0.43 \\ \blacksquare \text{ (In the open-loop case, if } p_{w} \leq 0.5, \text{ then } P_{win}^{*} \leq 0.5 \\ \blacksquare \text{ For } p_{w} = 0.45 \text{ and } p_{d} = 0.9, P_{win}^{*} = 0.43 \\ \blacksquare \text{ (In the open-loop case, if } p_{w} \leq 0.5, \text{ then } P_{win}^{*} \leq 0.5 \\ \blacksquare \text{ (In the open-loop case, if } p_{w} \leq 0.5, \text{ then } P_{win}^{*} \leq 0.5 \\ \blacksquare \text{ (In the open-loop case, if } p_{w} \leq 0.5, \text{ then } P_{win}^{*} \leq 0.5 \\ \blacksquare \text{ (In the open-loop case, if } p_{w} \leq 0.5, \text{ then } P_{win}^{*} \leq 0.5 \\ \blacksquare \text{ (In the open-loop case, if } p_{w} \leq 0.5, \text{ then } P_{win}^{*} \leq 0.5 \\ \blacksquare \text{ (In the open-loop case, if } p_{w} \leq 0.5, \text{ then } P_{win}^{*} \leq 0.5 \\ \blacksquare \text{ (In the open-loop case, if } p_{w} \leq 0.5, \text{ then } P_{win}^{*} \leq 0.5 \\ \blacksquare \text{ (In the open-loop case, if } p_{w} \leq 0.5, \text{ then } P_{win}^{*} \leq 0.5 \\ \blacksquare \text{ (In the open-loop case, if } p_{w} \leq 0.5, \text{ then } P_{win}^{*} \leq 0.5 \\ \blacksquare \text{ (In the open-loop case, if } p_{w} \leq 0.5, \text{ then } P_{win}^{*} \leq 0.5 \\ \blacksquare \text{ (In the open-loop case, if } p_{w} \leq 0.5, \text{ then } P_{win}^{*} \leq 0.5 \\ \blacksquare \text{ (In the open-loop case, if } p_{w} \leq 0.5, \text{ then } P_{win}^{*} \leq 0.5 \\ \blacksquare \text{ (In the open-loop case, if } p_{w} \leq 0.5, \text{ then } P_{win}^{*} \leq 0.5 \\ \blacksquare \text{ (In the open-loop case, if } p_{w} \leq 0.5, \text{ then } P_{w} \leq 0.5 \\ \blacksquare \text{ (In the open-loop case, if } p_{w} \leq 0.5, \text{ the open-loop case, if } p_{w} \leq 0.5, \text{ the open-loop case, if } p_{w} \leq 0.5, \text{ the open-loop case, if } p_{w} \leq 0.5, \text{ the open-loop case, if } p_{w} \leq 0.5, \text{ the open-loop case, if } p_{w} \leq 0.5, \text{ the open-loop case, if } p_{w} \leq 0.5, \text{ the open-loop case, if } p_{w} \leq 0.5, \text{ the open-loop case, if } p_{w} \leq 0.5, \text{ the open-loop case, if } p_{w} \leq 0.5, \text{ the open-loop case, if } p_{w} \leq 0.5, \text{ the open-loop case, if } p_{w} \leq 0.5, \text{ the open-loop case, if } p_{w} \leq 0.5, \text{ the open-loop case, i$$

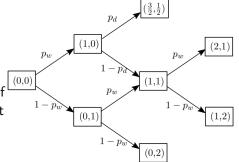
For $p_w = 0.5$ and $p_d = 1.0$, $P_{win}^* = 0.5$

 If p_d > 2p_w, bold-timid and timid-bold are optimal open-loop policies; otherwise bold-bold is optimal

Closed Loop Chess Strategy



 Consider one option: play timid if and only if ahead (it will turn out that this is optimal)



- The probability of winning is: $P_{win} = p_d p_w + p_w ((1-p_d)p_w + p_w (1-p_w)) = p_w^2 (2-p_w) + p_w (1-p_w)p_d$
- Note that in the closed-loop case we can achieve P_{win} larger than 0.5 even when p_w is less than 0.5:

For
$$p_w = 0.45$$
 and $p_d = 0.9$, $P_{win} = 0.5$

For $p_w = 0.5$ and $p_d = 1.0$, $P_{win} = 0.625$