ECE276B: Planning \& Learning in Robotics Lecture 2: Markov Decision Processes

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Zhichao Li: zhl355@eng.ucsd.edu
Ehsan Zobeidi: ezobeidi@eng.ucsd.edu
Ibrahim Akbar: iakbar@eng.ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Notation and Terminology

```
x\in\mathcal{X}
u\in\mathcal{U}(x)
pf( (x' | x,u)
```

$\ell(x, u)$
$\mathfrak{q}(x)$
$\pi(x)$
$V^{\pi}(x)$

Markov process state
control/action avilable in state x
motion model, ie., control-dependent transition pdf
stage cost/reward for choosing control u in state x (optional) terminal cost/reward at state x
control policy: mapping from state x to control $u \in \mathcal{U}(x)$ value function: cumulative cost/reward for starting at state x and acting according to π thereafter
$\pi^{*}(x), V^{*}(x)$ optimal control policy and corresponding value function

Problem Formulation

- Motion model: specifies how a dynamical system evolves

$$
x_{t+1}=f\left(x_{t}, u_{t}, w_{t}\right) \sim p_{f}\left(\cdot \mid x_{t}, u_{t}\right), \quad t=0, \ldots, T-1
$$

- discrete time $t \in\{0, \ldots, T\}$
- state $x_{t} \in \mathcal{X}$
- control $u_{t} \in \mathcal{U}\left(x_{t}\right)$ and $\mathcal{U}:=\bigcup_{x \in \mathcal{X}} \mathcal{U}(x)$
- motion noise w_{t} (random vector) with known probability density function (pdf) and assumed conditionally independent of other disturbances w_{τ} for $\tau \neq t$ for given x_{t} and u_{t}
- the motion model is specified by the nonlinear function f or equivalently by the pdf p_{f} of x_{t+1} conditioned on x_{t} and u_{t}
- Observation model: the state x_{t} might not be observable but perceived through measurements:

$$
z_{t}=h\left(x_{t}, v_{t}\right) \sim p_{h}\left(\cdot \mid x_{t}\right), \quad t=0, \ldots, T
$$

- measurement noise v_{t} (random vector) with known pdf and conditionally independent of other disturbances v_{τ} for $\tau \neq t$ for given x_{t} and w_{t} for all t
- the observation model is specified by the nonlinear function h or equivalently by the pdf p_{h} of z_{t} conditioned on x_{t}

Markov Chain

A Markov Chain is a stochastic process defined by a tuple $\left(\mathcal{X}, p_{0 \mid 0}, p_{f}\right)$:

- \mathcal{X} is discrete/continuous set of states
- $p_{0 \mid 0}$ is a prior $\mathrm{pmf} / \mathrm{pdf}$ defined on \mathcal{X}
- $p_{f}\left(\cdot \mid x_{t}\right)$ is a conditional pmf/pdf defined on \mathcal{X} for given $x_{t} \in \mathcal{X}$ that specifies the stochastic process transitions. In the finite-dimensional case, the transition pmf is summarized by a matrix

$$
P_{i j}:=\mathbb{P}\left(x_{t+1}=j \mid x_{t}=i\right)=p_{f}\left(j \mid x_{t}=i\right)
$$

Example: Student Markov Chain

Markov Reward Process

A Markov Reward Process (MRP) is a Markov chain with state costs (rewards) defined by a tuple ($\mathcal{X}, p_{0 \mid 0}, p_{f}, \ell, \gamma$)

- \mathcal{X} is a discrete/continuous set of states
- $p_{0 \mid 0}$ is a prior $\mathrm{pmf} / \mathrm{pdf}$ defined on \mathcal{X}
- $p_{f}\left(\cdot \mid x_{t}\right)$ is a conditional pmf/pdf defined on \mathcal{X} for given $x_{t} \in \mathcal{X}$ and summarized by a matrix $P_{i j}:=p_{f}\left(j \mid x_{t}=i\right)$ in the finite-dimensional case.
- $\ell(x)$ is a function specifying the cost/reward of state $x \in \mathcal{X}$
- $\gamma \in[0,1]$ is a discount factor

Example: Student Markov Reward Process

Cumulative Cost

- Value function: The cumulative cost/reward of an $\operatorname{MRP}\left(\mathcal{X}, p_{f}, \ell, \gamma\right)$ starting from state $x \in \mathcal{X}$ at time 0 :
- Finite-horizon: $V_{0}(x):=\mathbb{E}[\underbrace{\mathfrak{q}\left(x_{T}\right)}_{\text {terminal cost }}+\sum_{t=0}^{T-1} \ell\left(x_{t}\right) \mid x_{0}=x]$
- Discounted Infinite-horizon: $V(x):=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \ell\left(x_{t}\right) \mid x_{0}=x\right]$
- Average-reward: $V(x):=\lim _{T \rightarrow \infty} \frac{1}{T} \mathbb{E}\left[\sum_{t=0}^{T-1} \ell\left(x_{t}\right) \mid x_{0}=x\right]$
- The discount factor γ specifies the present value of future costs:
- γ close to 0 leads to myopic/greedy evaluation
- γ close to 1 leads to nonmyopic/far-sighted evaluation
- Mathematically convenient since it avoids infinite costs as $T \rightarrow \infty$
- The long-term future may be hard to model anyways
- Animal/human behavior shows preference for immediate reward
- It is possible to use an undiscounted MRP if all sequences terminate (first-exit formulation). The finite-horizon formulation is a special case of the first-exit formulation.

Example: Cumulative Reward of the Student MRP

Example: Cumulative Reward of the Student MRP

Example: Cumulative Reward of the Student MRP

Markov Decision Process

A Markov Decision Process (MDP) is a Markov Reward Process with controlled transitions defined by a tuple ($\left.\mathcal{X}, \mathcal{U}, p_{0 \mid 0}, p_{f}, \ell, \gamma\right)$

- \mathcal{X} is a discrete/continuous set of states
- \mathcal{U} is a discrete/continuous set of controls
- $p_{0 \mid 0}$ is a prior $\mathrm{pmf} / \mathrm{pdf}$ defined on \mathcal{X}
- $p_{f}\left(\cdot \mid x_{t}, u_{t}\right)$ is a conditional pmf/pdf defined on \mathcal{X} for given $x_{t} \in \mathcal{X}$ and $u_{t} \in \mathcal{U}$ and summarized by a matrix $P_{i j}^{u}:=p_{f}\left(j \mid x_{t}=i, u_{t}=u\right)$ in the finite-dimensional case.
- $\ell(x, u)$ is a function specifying the cost/reward of applying control $u \in \mathcal{U}$ in state $x \in \mathcal{X}$
- $\gamma \in[0,1]$ is a discount factor

Example: Markov Decision Process

- An action $u_{t} \in \mathcal{U}\left(x_{t}\right)$ applied in state $x_{t} \in \mathcal{X}$ determines the next state x_{t+1} and the obtained cost/reward $\ell\left(x_{t}, u_{t}\right)$

Example: Student Markov Decision Process

Control Policy and Cumulative Cost

- Admissible control policy: a sequence $\pi_{0: T-1}$ of functions π_{t} that map a state $x_{t} \in \mathcal{X}$ to a feasible control input $u_{t} \in \mathcal{U}\left(x_{t}\right)$
- Value function: the cumulative cost/reward of a policy π applied to an MDP $\left(\mathcal{X}, \mathcal{U}, p_{f}, \ell, \gamma\right)$ with initial state $x \in \mathcal{X}$ at time $t=0$:
- Finite-horizon: $V_{0}^{\pi}(x):=\mathbb{E}[\underbrace{\mathfrak{q}\left(x_{T}\right)}_{\text {terminal cost }}+\sum_{t=0}^{T-1} \ell\left(x_{t}, \pi_{t}\left(x_{t}\right)\right) \mid x_{0}=x]$
- Discounted Infinite-horizon: $V^{\pi}(x):=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \ell\left(x_{t}, \pi\left(x_{t}\right)\right) \mid x_{0}=x\right]$
- Average-reward: $V^{\pi}(x):=\lim _{T \rightarrow \infty} \frac{1}{T} \mathbb{E}\left[\sum_{t=0}^{T-1} \ell\left(x_{t}, \pi\left(x_{t}\right)\right) \mid x_{0}=x\right]$
- Note: we will show that as $T \rightarrow \infty$, optimal policies become stationary, i.e., $\pi:=\pi_{0} \equiv \pi_{1} \equiv \cdots$, and independent of x_{0}

Example: Value Function of Student MDP

Alternative Cost Formulations

- Noise-dependent costs: a more general model allows the stage costs ℓ^{\prime} to depend on the motion noise w_{t} :

$$
V_{0}^{\pi}(x):=\mathbb{E}_{w_{0}: T, x_{1: T}}\left[\mathfrak{q}\left(x_{T}\right)+\sum_{t=0}^{T-1} \ell^{\prime}\left(x_{t}, \pi_{t}\left(x_{t}\right), w_{t}\right) \mid x_{0}=x\right]
$$

This is equivalent to our formulation since the pdf $p_{w}\left(\cdot \mid x_{t}, u_{t}\right)$ of w_{t} is known and we can always compute:

$$
\ell\left(x_{t}, u_{t}\right):=\mathbb{E}_{w_{t} \mid x_{t}, u_{t}}\left[\ell^{\prime}\left(x_{t}, u_{t}, w_{t}\right)\right]=\int \ell\left(x_{t}, u_{t}, w_{t}\right) p_{w}\left(w_{t} \mid x_{t}, u_{t}\right) d w_{t}
$$

- Joint cost-state pdf: a more general model allows random costs ℓ^{\prime} by specifying the joint pdf $p\left(x^{\prime}, \ell^{\prime} \mid x, u\right)$. This is equivalent to our formulation as follows:

$$
\begin{aligned}
p_{f}\left(x^{\prime} \mid x, u\right) & :=\int p\left(x^{\prime}, \ell^{\prime} \mid x, u\right) d \ell^{\prime} \\
\ell(x, u) & :=\mathbb{E}\left[\ell^{\prime} \mid x, u\right]=\iint \ell^{\prime} p\left(x^{\prime}, \ell^{\prime} \mid, x, u\right) d x^{\prime} d \ell^{\prime}
\end{aligned}
$$

Comparison of Markov Models

	observed	partially observed
uncontrolled	Markov Chain/MRP	HMM
controlled	MDP	POMDP

- Markov Chain + Partial Observability $=$ HMM
- Markov Chain + Control $=$ MDP
- Markov Chain + Partial Observability + Control $=\mathrm{HMM}+$ Control $=$ MDP + Partial Observability = POMDP

Partially Observable Markov Decision Process

A Partially Observable Markov Decision Process (POMDP) is a Markov Decision Process with partially observable states defined by a tuple $\left(\mathcal{X}, \mathcal{U}, \mathcal{Z}, p_{0 \mid 0}, p_{f}, p_{h}, g, \gamma\right)$

- \mathcal{X} is a discrete/continuous set of states
- \mathcal{U} is a discrete/continuous set of controls
- \mathcal{Z} is a discrete/continuous set of observations
- $p_{0 \mid 0}$ is a prior pmf/pdf defined on \mathcal{X}
- $p_{f}\left(\cdot \mid x_{t}, u_{t}\right)$ is a conditional pmf/pdf defined on \mathcal{X} for given $x_{t} \in \mathcal{X}$ and $u_{t} \in \mathcal{U}$ and summarized by a matrix $P_{i j}^{u}:=p_{f}\left(j \mid x_{t}=i, u_{t}=u\right)$ in the finite-dimensional case.
- $p_{h}\left(\cdot \mid x_{t}\right)$ is a conditional pmf/pdf defined on \mathcal{Z} for given $x_{t} \in \mathcal{X}$ and summarized by a matrix $O_{i j}:=p_{h}\left(j \mid x_{t}=i\right)$ in the finite-dim case.
- $\ell(x, u)$ is a function specifying the cost/reward of applying control $u \in \mathcal{U}$ in state $x \in \mathcal{X}$
- $\gamma \in[0,1]$ is a discount factor

Bayes Filter

- Motion model:

$$
x_{t+1}=f\left(x_{t}, u_{t}, w_{t}\right) \sim p_{f}\left(\cdot \mid x_{t}, u_{t}\right)
$$

- Observation model:

$$
z_{t}=h\left(x_{t}, v_{t}\right) \sim p_{h}\left(\cdot \mid x_{t}\right)
$$

- Filtering: keeps track of

$$
p_{t \mid t}\left(x_{t}\right):=p\left(x_{t} \mid z_{0: t}, u_{0: t-1}\right)
$$

- Bayes filter:

$$
p_{t+1 \mid t}\left(x_{t+1}\right):=p\left(x_{t+1} \mid z_{0: t}, u_{0: t}\right)
$$

- Joint distribution:

$$
p\left(x_{0: T}, z_{0: T}, u_{0: T-1}\right)=\underbrace{p_{0 \mid 0}\left(x_{0}\right)}_{\text {prior }} \prod_{t=0}^{T} \underbrace{p_{h}\left(z_{t} \mid x_{t}\right)}_{\text {observation model }} \prod_{t=0}^{T} \underbrace{p_{f}\left(x_{t} \mid x_{t-1}, u_{t-1}\right)}_{\text {motion model }}
$$

Information Space and Sufficient Statistics

- The information available to the robot at time t to choose the control input u_{t} is $i_{t}:=\left(z_{0: t}, u_{0: t-1}\right) \in \mathcal{I}$
- The information space \mathcal{I} is the space of sequences of observations and controls
- A statistic $y_{t}=s\left(i_{t}\right)$ is a function of the information available at time t to estimate x_{t}
- The statistic $y_{t}=s\left(i_{t}\right)$ is sufficient for x_{t} if the conditional distribution of x_{t} given the statistic y_{t} does not depend on the information i_{t}
- Under the Markov and measurement and motion noise independence (over time, from the state, and from each other) assumptions, the distribution of the state x_{t} conditioned on the information state i_{t} is a sufficient statistic for x_{t}. In other words, $p_{t \mid t}\left(x_{t}\right):=p\left(x_{t} \mid i_{t}\right)$ is a compact representation of i_{t}.

Equivalence of POMDPs and MDPs

- The Bayes filter ψ tracks precisely the needed sufficient statistic:

$$
\begin{aligned}
p\left(x_{t} \mid i_{t}\right) & =p_{t \mid t}\left(x_{t}\right)=\psi\left(p_{t-1 \mid t-1}, u_{t-1}, z_{t}\right) \\
& =\frac{1}{\eta_{t}} p_{h}\left(z_{t} \mid x_{t}\right) \int p_{f}\left(x_{t} \mid x_{t-1}, u_{t-1}\right) p_{t-1 \mid t-1}\left(x_{t-1}\right) d x_{t-1}
\end{aligned}
$$

- Because $p_{t \mid t}$ is a sufficient statistic for x_{t}, we can convert a POMDP $\left(\mathcal{X}, \mathcal{U}, \mathcal{Z}, p_{f}, p_{h}, \ell, \gamma\right)$ into an equivalent $\operatorname{MDP}\left(\mathcal{B}, \mathcal{U}, p_{\psi}, \rho, \gamma\right)$ where:
- The state space $\mathcal{B}:=\mathcal{P}(\mathcal{X})$ is the continuous space of pdfs/pmfs over \mathcal{X}, e.g., if $|\mathcal{X}|=N$, then $\mathcal{B}=\left\{b \in[0,1]^{N} \mid \mathbf{1}^{\top} b=1\right\}$
- The transformed motion model is the Bayes filter $b_{t+1}=\psi\left(b_{t}, u_{t}, z_{t}\right)$, where z_{t} plays the role of noise or in probabilistic terms:

$$
\begin{aligned}
p_{\psi}\left(b_{t+1} \mid b_{t}, u_{t}\right) & :=\int \mathbb{1}\left\{b_{t+1}=\psi\left(b_{t}, u_{t}, z\right)\right\} \eta\left(z \mid b_{t}, u_{t}\right) d z \\
\eta\left(z \mid b_{t}, u_{t}\right) & :=\iint p_{h}\left(z \mid x_{t+1}\right) p_{f}\left(x_{t+1} \mid x_{t}, u_{t}\right) b_{t}\left(x_{t}\right) d x_{t} d x_{t+1}
\end{aligned}
$$

- The transformed stage cost/reward function $\rho(b, u)=\int \ell(x, u) b(x) d x$ is the expected stage cost/reward

The Problem of Acting Optimally in a POMDP

- An infinite-dimensional dynamic optimization problem defined for a POMDP ($\left.\mathcal{X}, \mathcal{U}, \mathcal{Z}, p_{f}, p_{h}, \ell, \gamma\right)$ as follows:

$$
\begin{array}{rl}
\min _{\pi_{0: T-1}} & \mathbb{E}\left[\gamma^{T} \mathfrak{q}\left(x_{T}\right)+\sum_{t=0}^{T-1} \gamma^{t} \ell_{t}\left(x_{t}, u_{t}\right)\right] \\
\text { s.t. } & x_{t+1} \sim p_{f}\left(\cdot \mid x_{t}, u_{t}\right), \quad t=0, \ldots, T-1 \\
& z_{t+1} \sim p_{h}\left(\cdot \mid x_{t}\right), \quad t=0, \ldots, T-1 \\
& u_{t} \sim \pi_{t}\left(\cdot \mid i_{t}\right), \quad t=0, \ldots, T-1 \\
& x_{0} \sim b_{0}(\cdot) \equiv \text { prior pdf over the hidden state } x_{0}
\end{array}
$$

- Equivalently, using the information-space MDP ($\left.\mathcal{B}, \mathcal{U}, p_{\psi}, \rho, \gamma\right)$ with sufficient statistic b_{t} :

$$
\begin{aligned}
\min _{\pi_{0: T-1}} & V_{0}^{\pi}\left(b_{0}\right)=\mathbb{E}\left[\gamma^{T} \rho_{T}\left(b_{T}\right)+\sum_{t=0}^{T-1} \gamma^{t} \rho_{t}\left(b_{t}, u_{t}\right)\right] \\
\text { s.t. } & b_{t+1}=\psi\left(b_{t}, u_{t}, z_{t+1}\right), \quad t=0, \ldots, T-1 \\
& z_{t+1} \sim \eta\left(\cdot \mid b_{t}, u_{t}\right), \quad t=0, \ldots, T-1 \\
& u_{t} \sim \pi_{t}\left(\cdot \mid b_{t}\right), \quad t=0, \ldots, T-1
\end{aligned}
$$

Final Problem Formulation

- Due to the equivalence between POMDPs and (information-space) MDPs, we will focus exclusively on MDPs
- First, we will consider the finite-horizon formulation

$$
\begin{array}{ll}
\min _{\pi} & V_{0}^{\pi}\left(x_{0}\right):=\mathbb{E}_{x_{1: T}}\left[\mathfrak{q}\left(x_{T}\right)+\sum_{t=0}^{T-1} \ell_{t}\left(x_{t}, \pi_{t}\left(x_{t}\right)\right) \mid x_{0}\right] \\
\text { s.t. } & x_{t+1} \sim p_{f}\left(\cdot \mid x_{t}, \pi_{t}\left(x_{t}\right)\right), \quad t=0, \ldots, T-1 \\
& x_{t} \in \mathcal{X}, \pi_{t}\left(x_{t}\right) \in \mathcal{U}\left(x_{t}\right)
\end{array}
$$

- Then, we will consider the discounted infinite-horizon formulation:

$$
\begin{array}{ll}
\min _{\pi} & V^{\pi}\left(x_{0}\right):=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \ell\left(x_{t}, \pi\left(x_{t}\right)\right) \mid x_{0}\right] \\
\text { s.t. } & x_{t+1} \sim p_{f}\left(\cdot \mid x_{t}, \pi_{t}\left(x_{t}\right)\right) \\
& x_{t} \in \mathcal{X}, \quad \pi_{t}\left(x_{t}\right) \in \mathcal{U}\left(x_{t}\right)
\end{array}
$$

Open Loop vs Closed Loop Control

- There are two different control methodologies:
- Open loop: control inputs $u_{0: T-1}$ are determined at once at time 0 as a function of x_{0} (fully observable case) or $p_{0 \mid 0}$ (partially observable case)
- Closed loop: control inputs are determined "just-in-time" as a function of the state x_{t} (fully observable case) or measurement history $z_{0: t}, u_{0: t-1}$ (partially observable case)
- A special case of closed loop control is to simply disregard state/measurement information (open loop control). Thus, open loop control can never give better performance than closed loop control.
- In the absence of disturbances (or in the special linear quadratic Gaussian case), the two give theoretically the same performance.
- When good models are available, open-loop control is a viable strategy for short time horizons

Open Loop vs Closed Loop Control

- Open loop control is typically much less demanding than closed loop control
- Consider a discrete-space example with $N_{x}=10$ states, $N_{u}=10$ control inputs, planning horizon $T=4$, and given x_{0} :
- There are $N_{u}^{T}=10^{4}$ different open-loop strategies
- There are $N_{u}\left(N_{u}^{N_{x}}\right)^{T-1}=N_{u}^{N_{x}(T-1)+1}=10^{31}$ different closed-loop strategies (10 orders of magnitude larger than the number of stars in the observable universe!)

Example: Chess Strategy Optimization

- Objective: come up with a strategy that maximizes the chances of winning a 2 game chess match.
- Possible outcomes:
- Win/Lose: 1 point for the winner, 0 for the loser
- Draw: 0.5 points for each player
- If the score is equal after 2 games, the players continue playing until one wins (sudden death)
- Playing styles:
- Timid: draw with probability p_{d} and lose with probability $\left(1-p_{d}\right)$
- Bold: win with probability p_{w} and lose with probability $\left(1-p_{w}\right)$
- Assumption: $p_{d}>p_{w}$

Finite-state Model of the Chess Match

- The state x_{t} is a 2-D vector with our and the opponent's score after the t-th game
- The control u_{t} is the play style: timid or bold
- The noise w_{t} is the score of the next game
- Since timid play does not make sense during the sudden death stage, the planning horizon is $T=2$
- We can construct a time-dependent motion model $P_{i j t}^{u}$ for $t \in\{0,1\}$ (shown on the next slide)
- Cost: minimize loss probability: $-P_{\text {win }}=\mathbb{E}_{x_{1: 2}}\left[\ell_{2}\left(x_{2}\right)+\sum_{t=0}^{1} \ell_{t}\left(x_{t}, u_{t}\right)\right]$

$$
\text { where } \ell_{t}\left(x_{t}, u_{t}\right)=0 \text { for } t \in\{0,1\} \text { and }
$$

$$
\ell_{2}\left(x_{2}\right)= \begin{cases}-1 & \text { if } x_{2}=\left(\frac{3}{2}, \frac{1}{2}\right) \text { or }(2,0) \\ -p_{w} & \text { if } x_{2}=(1,1) \\ 0 & \text { if } x_{2}=\left(\frac{1}{2}, \frac{3}{2}\right) \text { or }(0,2)\end{cases}
$$

Chess Transition Probabilities

Timid Play

Game 1:

Game 2:

Bold Play

Open Loop Chess Strategy

- There are 4 admissible open-loop policies:

1. timid-timid: $P_{\text {win }}=p_{d}^{2} p_{w}$
2. bold-bold: $P_{\text {win }}=p_{w}^{2}+p_{w}\left(1-p_{w}\right) p_{w}+\left(1-p_{w}\right) p_{w} p_{w}=p_{w}^{2}\left(3-2 p_{w}\right)$
3. bold-timid: $P_{\text {win }}=p_{w} p_{d}+p_{w}\left(1-p_{d}\right) p_{w}$
4. timid-bold: $P_{\text {win }}=p_{d} p_{w}+\left(1-p_{d}\right) p_{w}^{2}$

- Since $p_{d}^{2} p_{w} \leq p_{d} p_{w} \leq p_{d} p_{w}+\left(1-p_{d}\right) p_{w}^{2}$, timid-timid is not optimal
- The best achievable winning probability is:

$$
\begin{aligned}
& P_{w i n}^{*}=\max \{\overbrace{p_{w}^{2}\left(3-2 p_{w}\right)}^{\text {bold-bold }}, \overbrace{p_{d} p_{w}+\left(1-p_{d}\right) p_{w}^{2}}^{3 . \text { or 4. }}\} \\
&=p_{w}^{2}+p_{w}\left(1-p_{w}\right) \\
& \max \left\{2 p_{w}, p_{d}\right\}
\end{aligned}
$$

- In the open-loop case, if $p_{w} \leq 0.5$, then $P_{w i n}^{*} \leq 0.5$
- For $p_{w}=0.45$ and $p_{d}=0.9, P_{w i n}^{*}=0.43$
- For $p_{w}=0.5$ and $p_{d}=1.0, P_{w i n}^{*}=0.5$
- If $p_{d}>2 p_{w}$, bold-timid and timid-bold are optimal open-loop policies; otherwise bold-bold is optimal

Closed Loop Chess Strategy

- There are 16 admissible policies
- Consider one option: play timid if and only if ahead (it will turn out that this is optimal)

- The probability of winning is:
$P_{\text {win }}=p_{d} p_{w}+p_{w}\left(\left(1-p_{d}\right) p_{w}+p_{w}\left(1-p_{w}\right)\right)=p_{w}^{2}\left(2-p_{w}\right)+p_{w}\left(1-p_{w}\right) p_{d}$
- Note that in the closed-loop case we can achieve $P_{\text {win }}$ larger than 0.5 even when p_{w} is less than 0.5:
- For $p_{w}=0.45$ and $p_{d}=0.9, P_{\text {win }}=0.5$
- For $p_{w}=0.5$ and $p_{d}=1.0, P_{\text {win }}=0.625$

