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Notation and Terminology

x ∈ X Markov process state
u ∈ U(x) control/action avilable in state x
pf (x ′ | x , u) motion model, i.e., control-dependent transition pdf

`(x , u) stage cost/reward for choosing control u in state x
q(x) (optional) terminal cost/reward at state x

π(x) control policy: mapping from state x to control u ∈ U(x)
V π(x) value function: cumulative cost/reward for starting at

state x and acting according to π thereafter

π∗(x), V ∗(x) optimal control policy and corresponding value function
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Problem Formulation
I Motion model: specifies how a dynamical system evolves

xt+1 = f (xt , ut ,wt) ∼ pf (· | xt , ut), t = 0, . . . ,T − 1

I discrete time t ∈ {0, . . . ,T}
I state xt ∈ X
I control ut ∈ U(xt) and U :=

⋃
x∈X U(x)

I motion noise wt (random vector) with known probability density function
(pdf) and assumed conditionally independent of other disturbances wτ for
τ 6= t for given xt and ut

I the motion model is specified by the nonlinear function f or equivalently
by the pdf pf of xt+1 conditioned on xt and ut

I Observation model: the state xt might not be observable but
perceived through measurements:

zt = h(xt , vt) ∼ ph(· | xt), t = 0, . . . ,T

I measurement noise vt (random vector) with known pdf and conditionally
independent of other disturbances vτ for τ 6= t for given xt and wt for all t

I the observation model is specified by the nonlinear function h or
equivalently by the pdf ph of zt conditioned on xt 3



Markov Chain

A Markov Chain is a stochastic process defined by a tuple (X , p0|0, pf ):

I X is discrete/continuous set of states

I p0|0 is a prior pmf/pdf defined on X

I pf (· | xt) is a conditional pmf/pdf defined on X for given xt ∈ X that
specifies the stochastic process transitions. In the finite-dimensional
case, the transition pmf is summarized by a matrix
Pij := P(xt+1 = j | xt = i) = pf (j | xt = i)
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Example: Student Markov Chain
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Markov Reward Process

A Markov Reward Process (MRP) is a Markov chain with state costs
(rewards) defined by a tuple (X , p0|0, pf , `, γ)

I X is a discrete/continuous set of states

I p0|0 is a prior pmf/pdf defined on X

I pf (· | xt) is a conditional pmf/pdf defined on X for given xt ∈ X and
summarized by a matrix Pij := pf (j | xt = i) in the finite-dimensional
case.

I `(x) is a function specifying the cost/reward of state x ∈ X

I γ ∈ [0, 1] is a discount factor
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Example: Student Markov Reward Process
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Cumulative Cost
I Value function: The cumulative cost/reward of an MRP (X , pf , `, γ)

starting from state x ∈ X at time 0:

I Finite-horizon: V0(x) := E

 q(xT )︸ ︷︷ ︸
terminal cost

+
T−1∑
t=0

`(xt) | x0 = x


I Discounted Infinite-horizon: V (x) := E

[ ∞∑
t=0

γt`(xt) | x0 = x

]

I Average-reward: V (x) := lim
T→∞

1

T
E

[
T−1∑
t=0

`(xt) | x0 = x

]
I The discount factor γ specifies the present value of future costs:

I γ close to 0 leads to myopic/greedy evaluation
I γ close to 1 leads to nonmyopic/far-sighted evaluation
I Mathematically convenient since it avoids infinite costs as T →∞
I The long-term future may be hard to model anyways
I Animal/human behavior shows preference for immediate reward
I It is possible to use an undiscounted MRP if all sequences terminate

(first-exit formulation). The finite-horizon formulation is a special case of
the first-exit formulation. 8



Example: Cumulative Reward of the Student MRP
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Example: Cumulative Reward of the Student MRP
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Example: Cumulative Reward of the Student MRP
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Markov Decision Process

A Markov Decision Process (MDP) is a Markov Reward Process with
controlled transitions defined by a tuple (X ,U , p0|0, pf , `, γ)

I X is a discrete/continuous set of states

I U is a discrete/continuous set of controls

I p0|0 is a prior pmf/pdf defined on X

I pf (· | xt , ut) is a conditional pmf/pdf defined on X for given xt ∈ X and
ut ∈ U and summarized by a matrix Pu

ij := pf (j | xt = i , ut = u) in the
finite-dimensional case.

I `(x , u) is a function specifying the cost/reward of applying control
u ∈ U in state x ∈ X

I γ ∈ [0, 1] is a discount factor
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Example: Markov Decision Process

I An action ut ∈ U(xt) applied in state xt ∈ X determines the next state
xt+1 and the obtained cost/reward `(xt , ut)

13



Example: Student Markov Decision Process
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Control Policy and Cumulative Cost

I Admissible control policy: a sequence π0:T−1 of functions πt that
map a state xt ∈ X to a feasible control input ut ∈ U(xt)

I Value function: the cumulative cost/reward of a policy π applied to an
MDP (X ,U , pf , `, γ) with initial state x ∈ X at time t = 0:

I Finite-horizon: V π
0 (x) := E

 q(xT )︸ ︷︷ ︸
terminal cost

+
T−1∑
t=0

`(xt , πt(xt)) | x0 = x


I Discounted Infinite-horizon: V π(x) := E

[ ∞∑
t=0

γt`(xt , π(xt)) | x0 = x

]

I Average-reward: V π(x) := lim
T→∞

1

T
E

[
T−1∑
t=0

`(xt , π(xt)) | x0 = x

]

I Note: we will show that as T →∞, optimal policies become stationary,
i.e., π := π0 ≡ π1 ≡ · · · , and independent of x0
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Example: Value Function of Student MDP
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Alternative Cost Formulations
I Noise-dependent costs: a more general model allows the stage costs `′

to depend on the motion noise wt :

V π
0 (x) := Ew0:T ,x1:T

[
q(xT ) +

T−1∑
t=0

`′(xt , πt(xt),wt) | x0 = x

]
This is equivalent to our formulation since the pdf pw (· | xt , ut) of wt is
known and we can always compute:

`(xt , ut) := Ewt |xt ,ut
[
`′(xt , ut ,wt)

]
=

∫
`(xt , ut ,wt)pw (wt | xt , ut)dwt

I Joint cost-state pdf: a more general model allows random costs `′ by
specifying the joint pdf p(x ′, `′ | x , u). This is equivalent to our
formulation as follows:

pf (x ′ | x , u) :=

∫
p(x ′, `′ | x , u)d`′

`(x , u) := E
[
`′ | x , u

]
=

∫ ∫
`′p(x ′, `′ |, x , u)dx ′d`′
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Comparison of Markov Models

observed partially observed

uncontrolled Markov Chain/MRP HMM
controlled MDP POMDP

I Markov Chain + Partial Observability = HMM

I Markov Chain + Control = MDP

I Markov Chain + Partial Observability + Control = HMM + Control =
MDP + Partial Observability = POMDP
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Partially Observable Markov Decision Process

A Partially Observable Markov Decision Process (POMDP) is a Markov
Decision Process with partially observable states defined by a tuple
(X ,U ,Z, p0|0, pf , ph, g , γ)

I X is a discrete/continuous set of states

I U is a discrete/continuous set of controls

I Z is a discrete/continuous set of observations

I p0|0 is a prior pmf/pdf defined on X
I pf (· | xt , ut) is a conditional pmf/pdf defined on X for given xt ∈ X and

ut ∈ U and summarized by a matrix Pu
ij := pf (j | xt = i , ut = u) in the

finite-dimensional case.

I ph(· | xt) is a conditional pmf/pdf defined on Z for given xt ∈ X and
summarized by a matrix Oij := ph(j | xt = i) in the finite-dim case.

I `(x , u) is a function specifying the cost/reward of applying control
u ∈ U in state x ∈ X

I γ ∈ [0, 1] is a discount factor
19



Bayes Filter

I Motion model:
xt+1 = f (xt , ut ,wt) ∼ pf (· | xt , ut)

I Observation model:
zt = h(xt , vt) ∼ ph(· | xt)

I Filtering: keeps track of
pt|t(xt) := p(xt | z0:t , u0:t−1)

pt+1|t(xt+1) := p(xt+1 | z0:t , u0:t)
I Bayes filter:

pt+1|t+1(xt+1) =

1
ηt+1︷ ︸︸ ︷
1

p(zt+1|z0:t , u0:t)
ph(zt+1 | xt+1)

Predict: pt+1|t(xt+1)︷ ︸︸ ︷∫
pf (xt+1 | xt , ut)pt|t(xt)dxt︸ ︷︷ ︸

Update

I Joint distribution:

p(x0:T , z0:T , u0:T−1) = p0|0(x0)︸ ︷︷ ︸
prior

T∏
t=0

ph(zt | xt)︸ ︷︷ ︸
observation model

T∏
t=0

pf (xt | xt−1, ut−1)︸ ︷︷ ︸
motion model
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Information Space and Sufficient Statistics

I The information available to the robot at time t to choose the control
input ut is it := (z0:t , u0:t−1) ∈ I

I The information space I is the space of sequences of observations and
controls

I A statistic yt = s(it) is a function of the information available at time t
to estimate xt

I The statistic yt = s(it) is sufficient for xt if the conditional distribution
of xt given the statistic yt does not depend on the information it

I Under the Markov and measurement and motion noise independence
(over time, from the state, and from each other) assumptions, the
distribution of the state xt conditioned on the information state it is a
sufficient statistic for xt . In other words, pt|t(xt) := p(xt | it) is a
compact representation of it .
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Equivalence of POMDPs and MDPs
I The Bayes filter ψ tracks precisely the needed sufficient statistic:

p(xt | it) = pt|t(xt) = ψ(pt−1|t−1, ut−1, zt)

=
1

ηt
ph(zt | xt)

∫
pf (xt | xt−1, ut−1)pt−1|t−1(xt−1)dxt−1

I Because pt|t is a sufficient statistic for xt , we can convert a POMDP
(X ,U ,Z, pf , ph, `, γ) into an equivalent MDP (B,U , pψ, ρ, γ) where:
I The state space B := P(X ) is the continuous space of pdfs/pmfs over X ,

e.g., if |X | = N, then B = {b ∈ [0, 1]N | 1Tb = 1}
I The transformed motion model is the Bayes filter bt+1 = ψ(bt , ut , zt),

where zt plays the role of noise or in probabilistic terms:

pψ(bt+1 | bt , ut) :=

∫
1{bt+1 = ψ(bt , ut , z)}η(z | bt , ut)dz

η(z | bt , ut) :=

∫ ∫
ph(z | xt+1)pf (xt+1 | xt , ut)bt(xt)dxtdxt+1

I The transformed stage cost/reward function ρ(b, u) =
∫
`(x , u)b(x)dx is

the expected stage cost/reward
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The Problem of Acting Optimally in a POMDP
I An infinite-dimensional dynamic optimization problem defined for a

POMDP (X ,U ,Z, pf , ph, `, γ) as follows:

min
π0:T−1

E

[
γTq(xT ) +

T−1∑
t=0

γt`t(xt , ut)

]
s.t. xt+1 ∼ pf (· | xt , ut), t = 0, . . . ,T − 1

zt+1 ∼ ph(· | xt), t = 0, . . . ,T − 1

ut ∼ πt(· | it), t = 0, . . . ,T − 1

x0 ∼ b0(·) ≡ prior pdf over the hidden state x0

I Equivalently, using the information-space MDP (B,U , pψ, ρ, γ) with
sufficient statistic bt :

min
π0:T−1

V π
0 (b0) = E

[
γTρT (bT ) +

T−1∑
t=0

γtρt(bt , ut)

]
s.t. bt+1 = ψ(bt , ut , zt+1), t = 0, . . . ,T − 1

zt+1 ∼ η(· | bt , ut), t = 0, . . . ,T − 1

ut ∼ πt(· | bt), t = 0, . . . ,T − 1 23



Final Problem Formulation

I Due to the equivalence between POMDPs and (information-space)
MDPs, we will focus exclusively on MDPs

I First, we will consider the finite-horizon formulation

min
π

V π
0 (x0) := Ex1:T

[
q(xT ) +

T−1∑
t=0

`t(xt , πt(xt))

∣∣∣∣ x0
]

s.t. xt+1 ∼ pf (· | xt , πt(xt)), t = 0, . . . ,T − 1

xt ∈ X , πt(xt) ∈ U(xt)

I Then, we will consider the discounted infinite-horizon formulation:

min
π

V π(x0) := E

[ ∞∑
t=0

γt`(xt , π(xt))

∣∣∣∣ x0
]

s.t. xt+1 ∼ pf (· | xt , πt(xt)),

xt ∈ X , πt(xt) ∈ U(xt)
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Open Loop vs Closed Loop Control

I There are two different control methodologies:
I Open loop: control inputs u0:T−1 are determined at once at time 0 as a

function of x0 (fully observable case) or p0|0 (partially observable case)

I Closed loop: control inputs are determined “just-in-time” as a function
of the state xt (fully observable case) or measurement history z0:t , u0:t−1
(partially observable case)

I A special case of closed loop control is to simply disregard
state/measurement information (open loop control). Thus, open loop
control can never give better performance than closed loop control.

I In the absence of disturbances (or in the special linear quadratic
Gaussian case), the two give theoretically the same performance.

I When good models are available, open-loop control is a viable strategy
for short time horizons
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Open Loop vs Closed Loop Control

I Open loop control is typically much less demanding than closed loop
control

I Consider a discrete-space example with Nx = 10 states, Nu = 10 control
inputs, planning horizon T = 4, and given x0:
I There are NT

u = 104 different open-loop strategies

I There are Nu(NNx
u )T−1 = N

Nx (T−1)+1
u = 1031 different closed-loop

strategies (10 orders of magnitude larger than the number of stars in the
observable universe!)

26



Example: Chess Strategy Optimization

I Objective: come up with a strategy that maximizes the chances of
winning a 2 game chess match.

I Possible outcomes:
I Win/Lose: 1 point for the winner, 0 for the loser
I Draw: 0.5 points for each player
I If the score is equal after 2 games, the players continue playing until one

wins (sudden death)

I Playing styles:
I Timid: draw with probability pd and lose with probability (1− pd)
I Bold: win with probability pw and lose with probability (1− pw )
I Assumption: pd > pw
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Finite-state Model of the Chess Match
I The state xt is a 2-D vector with our and the opponent’s score after the

t-th game

I The control ut is the play style: timid or bold

I The noise wt is the score of the next game

I Since timid play does not make sense during the sudden death stage, the
planning horizon is T = 2

I We can construct a time-dependent motion model Pu
ijt for t ∈ {0, 1}

(shown on the next slide)

I Cost: minimize loss probability: −Pwin = Ex1:2

[
`2(x2) +

1∑
t=0

`t(xt , ut)

]
where `t(xt , ut) = 0 for t ∈ {0, 1} and

`2(x2) =


−1 if x2 =

(
3
2 ,

1
2

)
or (2, 0)

−pw if x2 = (1, 1)

0 if x2 =
(
1
2 ,

3
2

)
or (0, 2) 28



Chess Transition Probabilities

Game 1:

Game 2:
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Open Loop Chess Strategy
I There are 4 admissible open-loop policies:

1. timid-timid: Pwin = p2dpw
2. bold-bold: Pwin = p2w + pw (1− pw )pw + (1− pw )pwpw = p2w (3− 2pw )
3. bold-timid: Pwin = pwpd + pw (1− pd)pw
4. timid-bold: Pwin = pdpw + (1− pd)p2w

I Since p2dpw ≤ pdpw ≤ pdpw + (1− pd)p2w , timid-timid is not optimal

I The best achievable winning probability is:

P∗win = max{

bold-bold︷ ︸︸ ︷
p2w (3− 2pw ),

3. or 4.︷ ︸︸ ︷
pdpw + (1− pd)p2w}

= p2w + pw (1− pw ) max{2pw , pd}
I In the open-loop case, if pw ≤ 0.5, then P∗win ≤ 0.5

I For pw = 0.45 and pd = 0.9, P∗win = 0.43
I For pw = 0.5 and pd = 1.0, P∗win = 0.5

I If pd > 2pw , bold-timid and timid-bold are optimal open-loop policies;
otherwise bold-bold is optimal
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Closed Loop Chess Strategy

I There are 16 admissible policies

I Consider one option: play timid if
and only if ahead (it will turn out
that this is optimal)

I The probability of winning is:
Pwin = pdpw +pw ((1−pd)pw +pw (1−pw )) = p2w (2−pw )+pw (1−pw )pd

I Note that in the closed-loop case we can achieve Pwin larger than 0.5
even when pw is less than 0.5:
I For pw = 0.45 and pd = 0.9, Pwin = 0.5
I For pw = 0.5 and pd = 1.0, Pwin = 0.625
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