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Dynamic Programming

I Objective: construct an optimal policy π∗ (independent of x0):

π∗ = arg min
π∈Π

V π
0 (x0), ∀x0 ∈ X

I Dynamic programming (DP): a collection of algorithms that can
compute optimal closed-loop policies given a known MDP model of the
environment.
I Idea: use value functions to structure the search for good policies
I Generality: can handle non-convex and non-linear problems
I Complexity: polynomial in the number of states and actions
I Efficiency: much more efficient than the brute-force approach of

evaluating all possible strategies. May be better suited for large state
spaces than other methods such as direct policy search and linear
programming.

I Value function V π
t (x): estimates how good (in terms of expected

cost/return) it is to be in state x at time t and follow controls from a
given policy π
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Principle of Optimality

I Let π∗0:T−1 be an optimal closed-loop policy

I Consider a subproblem, where the state is xt at time t and we want to
minimize:

V π
t (xt) = Ext+1:T

[
γT−tq(xT ) +

T−1∑
τ=t

γτ−t`τ (xτ , πτ (xτ ))

∣∣∣∣ xt
]

I Principle of optimality: the truncated policy π∗t:T−1 is optimal for the
subproblem starting at time t

I Intuition: Suppose π∗t:T−1 were not optimal for the subproblem. Then,
there would exist a policy yielding a lower cost on at least some portion
of the state space.
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Example: Deterministic Scheduling Problem
I Consider a deterministic scheduling problem where 4 operations A, B, C,

D are used to produce a product

I Rules: Operation A must occur before B, and C before D

I Cost: there is a transition cost between each two operations:
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Example: Deterministic Scheduling Problem

I The DP algorithm is applied backwards in time. First, construct an
optimal solution at the last stage and then work backwards.

I The optimal cost-to-go at each state of the scheduling problem is
denoted with red text below the state:
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The Dynamic Programming Algorithm

Algorithm 1 Dynamic Programming

1: Input: MDP (X ,U , pf , `t , q, γ), initial state x0 ∈ X , and horizon T
2:

3: VT (x) = q(x), ∀x ∈ X
4: for t = (T − 1) . . . 0 do
5: Qt(x , u)← `t(x , u) + γEx ′∼pf (·|x ,u) [Vt+1(x ′)] , ∀x ∈ X , u ∈ U(x)
6: Vt(x) = min

u∈U(x)
Qt(x , u), ∀x ∈ X

7: πt(x) = arg min
u∈U(x)

Qt(x , u), ∀x ∈ X

8: return policy π0:T−1 and value function V0

Theorem: Optimality of the DP Algorithm

The policy π0:T−1 and value function V0 returned by the DP algorithm are
optimal for the finite-horizon optimal control problem.
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The Dynamic Programming Algorithm

I At each recursion step, the optimization needs to be performed over all
possible values of x ∈ X because we do not know a priori which states
will be visited

I This point-wise optimization for each x ∈ X is what gives us a policy
πt , i.e., a function specifying the optimal control for every state x ∈ X

I Consider a discrete-space example with Nx = 10 states, Nu = 10 control
inputs, planning horizon T = 4, and given x0:
I There are NT

u = 104 different open-loop strategies

I There are N
Nx (T−1)+1
u = 1031 different closed-loop strategies

I For each stage t and each state xt , the DP algorithm goes through the Nu

control inputs to determine the optimal input. In total, there are
NuNx(T − 1) + Nu = 310 such operations.
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Proof of Dynamic Programming Optimality

I Claim: The policy π0:T−1 and value function V0 returned by the DP
algorithm are optimal

I Let J∗t (x) be the optimal cost for the (T − t)-stage problem that starts
at time t in state x .

I Proceed by induction

I Base-case: J∗T (x) = q(x) = VT (x)

I Hypothesis: Assume that for t + 1, J∗t+1(x) = Vt+1(x) for all x ∈ X

I Induction: Show that J∗t (xt) = Vt(xt) for all xt ∈ X
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Proof of Dynamic Programming Optimality

J∗t (xt) = min
πt:T−1

Ext+1:T |xt

[
`t(xt , πt(xt)) + γT−tq(xT ) +

T−1∑
τ=t+1

γτ−t`τ (xτ , πτ (xτ ))

]
(1)

=== min
πt:T−1

`t(xt , πt(xt)) + Ext+1:T |xt

[
γT−tq(xT ) +

T−1∑
τ=t+1

γτ−t`τ (xτ , πτ (xτ ))

]
(2)

=== min
πt:T−1

`t(xt , πt(xt)) + γExt+1|xt

[
Ext+2:T |xt+1

[
γT−t−1q(xT ) +

T−1∑
τ=t+1

γτ−t−1`τ (xτ , πτ (xτ ))

]]
(3)

=== min
πt

{
`t(xt , πt(xt)) + γExt+1|xt

[
min

πt+1:T−1

Ext+2:T |xt+1

[
γT−t−1q(xT ) +

T−1∑
τ=t+1

γτ−t−1`τ (xτ , πτ (xτ ))

]]}
(4)

=== min
πt

{
`t(xt , πt(xt)) + γExt+1∼pf (·|xt ,πt(xt))

[
J∗t+1(xt+1)

]}
(5)

=== min
ut∈U(xt)

{
`t(xt , ut) + γExt+1∼pf (·|xt ,ut) [Vt+1(xt+1)]

}
= Vt(xt), ∀xt ∈ X
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Proof of Dynamic Programming Optimality

(1) Since `t(xt , πt(xt)) is not a function of xt+1:T

(2) Using conditional probability p(xt+1:T |xt) = p(xt+2:T |xt+1, xt)p(xt+1|xt)
and the Markov assumption

(3) The minimization can be split since the term `t(xt , πt(xt)) does not
depend on πt+1:T−1. The expectation Ext+1|xt and minπt+1:T

can be
exchanged since the functions πt+1:T−1 make the cost small for all
initial conditions., i.e., independently of xt+1.

I (1)-(3) is the principle of optimality

(4) By definition of J∗t+1(·) and the motion model xt+1 ∼ pf (· | xt , ut)

(5) By the induction hypothesis
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Is Expected Value a Good Choice for the Cost?
I The expected value is a useful metric but does not take higher order

statistics (e.g., variance) into account.

I However, if variance is included into the cost function, the problem
becomes much more complicated and we cannot simply apply the DP
algorithm.

I It is easy to generate examples, in which two pdfs/policies have the
same expectation but very different variance.

I Consider the following two pdfs with a = 4(L−1)
(2L−1) and e = 1

(L−1)(2L−1)
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Is Expected Value a Good Choice for the Cost?

I Both pdfs have the same mean:
∫
xp(x)dx = 1

I The variance of first pdf is:

Var(x) = E
[
x2
]
− [Ex ]2 =

∫ 1.5

0.5
x2dx − 1 =

1

12

I The variance of the second pdf is:

Var(x) =

∫ 1.0

0.5
ax2dx +

∫ L

0.5
ex2dx − 1 =

L

6

I Both pdfs have the same mean but, as L→∞, the variance of the
second pdf becomes arbitrarily large. Hence, the first pdf would be
preferable.
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Example: Chess Strategy Optimization
I State: xt ∈ X := {−2,−1, 0, 1, 2} – the difference between our and the

opponent’s score at the end of game t

I Input: ut ∈ U := {timid , bold}

I Dynamics: with pd > pw :

pf (xt+1 = xt | ut = timid , xt) = pd

pf (xt+1 = xt − 1 | ut = timid , xt) = 1− pd

pf (xt+1 = xt + 1 | ut = bold , xt) = pw

pf (xt+1 = xt − 1 | ut = bold , xt) = 1− pw

I Cost: V ∗t (xt) = E

q(x2) +
∑1

t=τ `τ (xτ , uτ )︸ ︷︷ ︸
=0

 with

q(x) =


−1 if x > 0

−pw if x = 0

0 if x < 0
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Dynamic Programming Applied to the Chess Problem

I Initialize: V2(x2) =


−1 if x2 > 0

−pw if x2 = 0

0 if x2 < 0

I Recursion: for all xt ∈ X and t = 1, 0:

Vt(xt) = min
ut∈U

{
`t(xt , ut) + Ext+1|xt ,ut [Vt+1(xt+1)]

}
= min

pdVt+1(xt) + (1− pd)Vt+1(xt − 1)︸ ︷︷ ︸
timid

, pwVt+1(xt + 1) + (1− pw )Vt+1(xt − 1)︸ ︷︷ ︸
bold


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DP Applied to the Chess Problem (t = 1)

I x1 = 1:

V1(1) = −max {pd + (1− pd)pw , pw + (1− pw )pw}
since

=====
pd>pw

= −pd − (1− pd)pw

π∗1(1) = timid

I x1 = 0:

V1(0) = −max {pdpw + (1− pd)0, pw + (1− pw )0} = −pw
π∗1(0) = bold

I x1 = −1:

V1(−1) = −max {pd0 + (1− pd)0, pwpw + (1− pw )0} = −p2
w

π∗1(−1) = bold
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DP Applied to the Chess Problem (t = 0)

I x0 = 0:

V0(0) = −max {pdV ∗1 (0) + (1− pd)V ∗1 (−1), pwV
∗
1 (1) + (1− pw )V ∗1 (−1)}

= −max
{
pdpw + (1− pd)p2

w , pw (pd + (1− pd)pw ) + (1− pw )p2
w

}
= −pdpw − (1− pd)p2

w − (1− pw )p2
w

π∗0(0) = bold

I Thus, as we saw before, the optimal strategy is to play timid iff ahead in
the score
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Converting Time-lag Problems to the Standard Form

I A system that involves time lag:

xt+1 = ft(xt , xt−1, ut , ut−1,wt)

can be converted to the standard form via state augmentation

I Let yt := xt−1 and st := ut−1 and define the augmented dynamics:

x̃t+1 :=

xt+1

yt+1

st+1

 =

ft(xt , yt , ut , st ,wt)
xt
ut

 =: f̃t(x̃t , ut ,wt)

I Note that this procedure works for an arbitrary number of time lags but
the dimension of the state space grows and increases the computational
burden exponentially (“curse of dimensionality”)
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Converting Correlated Disturbance Problems to the
Standard Form

I Disturbances wt that are correlated across time (colored noise) can be
modeled as:

wt = Ctyt+1

yt+1 = Atyt + ξt

where At , Ct are known and ξt are independent random variables

I Augmented state: x̃t := (xt , yt) with dynamics:

x̃t+1 =

[
xt+1

yt+1

]
=

[
ft(xt , ut ,Ct(Atyt + ξt))

Atyt + ξt

]
=: f̃t(x̃t , ut , ξt)

I State estimator: note that yt must be observed at time t, which can
be done using a state estimator
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