
ECE276B: Planning & Learning in Robotics
Lecture 3: The Dynamic Programming Algorithm

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Zhichao Li: zhl355@eng.ucsd.edu
Ehsan Zobeidi: ezobeidi@eng.ucsd.edu
Ibrahim Akbar: iakbar@eng.ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:zhl355@eng.ucsd.edu
mailto:ezobeidi@eng.ucsd.edu
mailto:iakbar@eng.ucsd.edu

Dynamic Programming

I Objective: construct an optimal policy π∗ (independent of x0):

π∗ = arg min
π∈Π

V π
0 (x0), ∀x0 ∈ X

I Dynamic programming (DP): a collection of algorithms that can
compute optimal closed-loop policies given a known MDP model of the
environment.
I Idea: use value functions to structure the search for good policies
I Generality: can handle non-convex and non-linear problems
I Complexity: polynomial in the number of states and actions
I Efficiency: much more efficient than the brute-force approach of

evaluating all possible strategies. May be better suited for large state
spaces than other methods such as direct policy search and linear
programming.

I Value function V π
t (x): estimates how good (in terms of expected

cost/return) it is to be in state x at time t and follow controls from a
given policy π

2

Principle of Optimality

I Let π∗0:T−1 be an optimal closed-loop policy

I Consider a subproblem, where the state is xt at time t and we want to
minimize:

V π
t (xt) = Ext+1:T

[
γT−tq(xT) +

T−1∑
τ=t

γτ−t`τ (xτ , πτ (xτ))

∣∣∣∣ xt
]

I Principle of optimality: the truncated policy π∗t:T−1 is optimal for the
subproblem starting at time t

I Intuition: Suppose π∗t:T−1 were not optimal for the subproblem. Then,
there would exist a policy yielding a lower cost on at least some portion
of the state space.

3

Example: Deterministic Scheduling Problem
I Consider a deterministic scheduling problem where 4 operations A, B, C,

D are used to produce a product

I Rules: Operation A must occur before B, and C before D

I Cost: there is a transition cost between each two operations:

4

Example: Deterministic Scheduling Problem

I The DP algorithm is applied backwards in time. First, construct an
optimal solution at the last stage and then work backwards.

I The optimal cost-to-go at each state of the scheduling problem is
denoted with red text below the state:

5

The Dynamic Programming Algorithm

Algorithm 1 Dynamic Programming

1: Input: MDP (X ,U , pf , `t , q, γ), initial state x0 ∈ X , and horizon T
2:

3: VT (x) = q(x), ∀x ∈ X
4: for t = (T − 1) . . . 0 do
5: Qt(x , u)← `t(x , u) + γEx ′∼pf (·|x ,u) [Vt+1(x ′)] , ∀x ∈ X , u ∈ U(x)
6: Vt(x) = min

u∈U(x)
Qt(x , u), ∀x ∈ X

7: πt(x) = arg min
u∈U(x)

Qt(x , u), ∀x ∈ X

8: return policy π0:T−1 and value function V0

Theorem: Optimality of the DP Algorithm

The policy π0:T−1 and value function V0 returned by the DP algorithm are
optimal for the finite-horizon optimal control problem.

6

The Dynamic Programming Algorithm

I At each recursion step, the optimization needs to be performed over all
possible values of x ∈ X because we do not know a priori which states
will be visited

I This point-wise optimization for each x ∈ X is what gives us a policy
πt , i.e., a function specifying the optimal control for every state x ∈ X

I Consider a discrete-space example with Nx = 10 states, Nu = 10 control
inputs, planning horizon T = 4, and given x0:
I There are NT

u = 104 different open-loop strategies

I There are N
Nx (T−1)+1
u = 1031 different closed-loop strategies

I For each stage t and each state xt , the DP algorithm goes through the Nu

control inputs to determine the optimal input. In total, there are
NuNx(T − 1) + Nu = 310 such operations.

7

Proof of Dynamic Programming Optimality

I Claim: The policy π0:T−1 and value function V0 returned by the DP
algorithm are optimal

I Let J∗t (x) be the optimal cost for the (T − t)-stage problem that starts
at time t in state x .

I Proceed by induction

I Base-case: J∗T (x) = q(x) = VT (x)

I Hypothesis: Assume that for t + 1, J∗t+1(x) = Vt+1(x) for all x ∈ X

I Induction: Show that J∗t (xt) = Vt(xt) for all xt ∈ X

8

Proof of Dynamic Programming Optimality

J∗t (xt) = min
πt:T−1

Ext+1:T |xt

[
`t(xt , πt(xt)) + γT−tq(xT) +

T−1∑
τ=t+1

γτ−t`τ (xτ , πτ (xτ))

]
(1)

=== min
πt:T−1

`t(xt , πt(xt)) + Ext+1:T |xt

[
γT−tq(xT) +

T−1∑
τ=t+1

γτ−t`τ (xτ , πτ (xτ))

]
(2)

=== min
πt:T−1

`t(xt , πt(xt)) + γExt+1|xt

[
Ext+2:T |xt+1

[
γT−t−1q(xT) +

T−1∑
τ=t+1

γτ−t−1`τ (xτ , πτ (xτ))

]]
(3)

=== min
πt

{
`t(xt , πt(xt)) + γExt+1|xt

[
min

πt+1:T−1

Ext+2:T |xt+1

[
γT−t−1q(xT) +

T−1∑
τ=t+1

γτ−t−1`τ (xτ , πτ (xτ))

]]}
(4)

=== min
πt

{
`t(xt , πt(xt)) + γExt+1∼pf (·|xt ,πt(xt))

[
J∗t+1(xt+1)

]}
(5)

=== min
ut∈U(xt)

{
`t(xt , ut) + γExt+1∼pf (·|xt ,ut) [Vt+1(xt+1)]

}
= Vt(xt), ∀xt ∈ X

9

Proof of Dynamic Programming Optimality

(1) Since `t(xt , πt(xt)) is not a function of xt+1:T

(2) Using conditional probability p(xt+1:T |xt) = p(xt+2:T |xt+1, xt)p(xt+1|xt)
and the Markov assumption

(3) The minimization can be split since the term `t(xt , πt(xt)) does not
depend on πt+1:T−1. The expectation Ext+1|xt and minπt+1:T

can be
exchanged since the functions πt+1:T−1 make the cost small for all
initial conditions., i.e., independently of xt+1.

I (1)-(3) is the principle of optimality

(4) By definition of J∗t+1(·) and the motion model xt+1 ∼ pf (· | xt , ut)

(5) By the induction hypothesis

10

Is Expected Value a Good Choice for the Cost?
I The expected value is a useful metric but does not take higher order

statistics (e.g., variance) into account.

I However, if variance is included into the cost function, the problem
becomes much more complicated and we cannot simply apply the DP
algorithm.

I It is easy to generate examples, in which two pdfs/policies have the
same expectation but very different variance.

I Consider the following two pdfs with a = 4(L−1)
(2L−1) and e = 1

(L−1)(2L−1)

11

Is Expected Value a Good Choice for the Cost?

I Both pdfs have the same mean:
∫
xp(x)dx = 1

I The variance of first pdf is:

Var(x) = E
[
x2
]
− [Ex]2 =

∫ 1.5

0.5
x2dx − 1 =

1

12

I The variance of the second pdf is:

Var(x) =

∫ 1.0

0.5
ax2dx +

∫ L

0.5
ex2dx − 1 =

L

6

I Both pdfs have the same mean but, as L→∞, the variance of the
second pdf becomes arbitrarily large. Hence, the first pdf would be
preferable.

12

Example: Chess Strategy Optimization
I State: xt ∈ X := {−2,−1, 0, 1, 2} – the difference between our and the

opponent’s score at the end of game t

I Input: ut ∈ U := {timid , bold}

I Dynamics: with pd > pw :

pf (xt+1 = xt | ut = timid , xt) = pd

pf (xt+1 = xt − 1 | ut = timid , xt) = 1− pd

pf (xt+1 = xt + 1 | ut = bold , xt) = pw

pf (xt+1 = xt − 1 | ut = bold , xt) = 1− pw

I Cost: V ∗t (xt) = E

q(x2) +
∑1

t=τ `τ (xτ , uτ)︸ ︷︷ ︸
=0

 with

q(x) =

−1 if x > 0

−pw if x = 0

0 if x < 0
13

Dynamic Programming Applied to the Chess Problem

I Initialize: V2(x2) =

−1 if x2 > 0

−pw if x2 = 0

0 if x2 < 0

I Recursion: for all xt ∈ X and t = 1, 0:

Vt(xt) = min
ut∈U

{
`t(xt , ut) + Ext+1|xt ,ut [Vt+1(xt+1)]

}
= min

pdVt+1(xt) + (1− pd)Vt+1(xt − 1)︸ ︷︷ ︸
timid

, pwVt+1(xt + 1) + (1− pw)Vt+1(xt − 1)︸ ︷︷ ︸
bold

14

DP Applied to the Chess Problem (t = 1)

I x1 = 1:

V1(1) = −max {pd + (1− pd)pw , pw + (1− pw)pw}
since

=====
pd>pw

= −pd − (1− pd)pw

π∗1(1) = timid

I x1 = 0:

V1(0) = −max {pdpw + (1− pd)0, pw + (1− pw)0} = −pw
π∗1(0) = bold

I x1 = −1:

V1(−1) = −max {pd0 + (1− pd)0, pwpw + (1− pw)0} = −p2
w

π∗1(−1) = bold

15

DP Applied to the Chess Problem (t = 0)

I x0 = 0:

V0(0) = −max {pdV ∗1 (0) + (1− pd)V ∗1 (−1), pwV
∗
1 (1) + (1− pw)V ∗1 (−1)}

= −max
{
pdpw + (1− pd)p2

w , pw (pd + (1− pd)pw) + (1− pw)p2
w

}
= −pdpw − (1− pd)p2

w − (1− pw)p2
w

π∗0(0) = bold

I Thus, as we saw before, the optimal strategy is to play timid iff ahead in
the score

16

Converting Time-lag Problems to the Standard Form

I A system that involves time lag:

xt+1 = ft(xt , xt−1, ut , ut−1,wt)

can be converted to the standard form via state augmentation

I Let yt := xt−1 and st := ut−1 and define the augmented dynamics:

x̃t+1 :=

xt+1

yt+1

st+1

 =

ft(xt , yt , ut , st ,wt)
xt
ut

 =: f̃t(x̃t , ut ,wt)

I Note that this procedure works for an arbitrary number of time lags but
the dimension of the state space grows and increases the computational
burden exponentially (“curse of dimensionality”)

17

Converting Correlated Disturbance Problems to the
Standard Form

I Disturbances wt that are correlated across time (colored noise) can be
modeled as:

wt = Ctyt+1

yt+1 = Atyt + ξt

where At , Ct are known and ξt are independent random variables

I Augmented state: x̃t := (xt , yt) with dynamics:

x̃t+1 =

[
xt+1

yt+1

]
=

[
ft(xt , ut ,Ct(Atyt + ξt))

Atyt + ξt

]
=: f̃t(x̃t , ut , ξt)

I State estimator: note that yt must be observed at time t, which can
be done using a state estimator

18

