ECE276B: Planning \& Learning in Robotics
 Lecture 4: Deterministic Shortest Path

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Zhichao Li: zhl355@eng.ucsd.edu
Ehsan Zobeidi: ezobeidi@eng.ucsd.edu
Ibrahim Akbar: iakbar@eng.ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

The Deterministic Shortest Path (DSP) Problem

- Consider a graph with a finite vertex space \mathcal{V} and a weighted edge space $\mathcal{C}:=\left\{\left(i, j, c_{i j}\right) \in \mathcal{V} \times \mathcal{V} \times \mathbb{R} \cup\{\infty\}\right\}$ where $c_{i j}$ denotes the arc length or cost from vertex i to vertex j.

- Objective: find the shortest path from a start node s to an end node τ
- It turns out that the DSP problem is equivalent to the standard finite-horizon finite-space deterministic optimal control problem

The Deterministic Shortest Path (DSP) Problem

- Path: an ordered list $Q:=\left(i_{1}, i_{2}, \ldots, i_{q}\right)$ of nodes $i_{k} \in \mathcal{V}$.
- Set of all paths from $s \in \mathcal{V}$ to $\tau \in \mathcal{V}: \mathbb{Q}_{s, \tau}$.
- Path Length: sum of the arc lengths over the path: $J^{Q}=\sum_{t=1}^{q-1} c_{t, t+1}$.
- Objective: find a path $Q^{*}=\underset{Q}{\arg \min } J^{Q}$ that has the smallest length from node $s \in \mathcal{V}$ to node $\tau \in \mathcal{V}$
- Assumption: For all $i \in \mathcal{V}$ and for all $Q \in \mathbb{Q}_{i, i}, J^{Q} \geq 0$, i.e., there are no negative cycles in the graph and $c_{i, i}=0$ for all $i \in \mathcal{X}$.
- Solving DSP problems:
- map to a deterministic finite-state system and apply (backward) DP
- label correcting methods (variants of a "forward" DP algorithm)

Deterministic Finite State (DFS) Optimal Control Problem

- Deterministic problem: closed-loop control does not offer any advantage over open-loop control
- Consider the standard problem with no disturbances w_{t} and finite state space \mathcal{X}. Given $x_{0} \in \mathcal{X}$ the goal is to construct an optimal control sequence $u_{0: T-1}$ such that:

$$
\begin{array}{rl}
\min _{u_{0: T-1}} & \mathfrak{q}\left(x_{T}\right)+\sum_{t=0}^{T-1} \ell_{t}\left(x_{t}, u_{t}\right) \\
\text { s.t. } & x_{t+1}=f\left(x_{t}, u_{t}\right), t=0, \ldots, T-1 \\
& x_{t} \in \mathcal{X}, u_{t} \in \mathcal{U}\left(x_{t}\right)
\end{array}
$$

- This problem can be solved via the Dynamic Programming algorithm

Equivalence of DFS and DSP Problems (DFS to DSP)

- We can construct a graph representation of the DFS problem.
- Every state $x_{t} \in \mathcal{X}$ at time t is represented by a node in the graph:

$$
\mathcal{V}:=\left(\bigcup_{t=0}^{T}\left\{\left(t, x_{t}\right) \mid x_{t} \in \mathcal{X}\right\}\right) \cup\{\tau\}
$$

- The given x_{0} is the starting node $s:=\left(0, x_{0}\right)$.
- An artificial terminal node τ is added with arc lengths to τ equal to the terminal costs of the DFS.
- The arc length between any two nodes is the (smallest) stage cost between them and is ∞ if there is no control that links them:
$\mathcal{C}:=\left\{\left(\left(t, x_{t}\right),\left(t+1, x_{t+1}\right), c\right) \mid c=\min _{\substack{u \in \mathcal{U}\left(x_{t}\right) \\ \text { s.t. } x_{t+1}=f\left(x_{t}, u\right)}} \ell_{t}\left(x_{t}, u\right)\right\} \bigcup\left\{\left(\left(T, x_{T}\right), \tau, \mathfrak{q}\left(x_{T}\right)\right)\right\}$

Equivalence of DFS and DSP Problems (DFS to DSP)

Equivalence of DFS and DSP Problems (DSP to DFS)

- Consider an DSP problem with vertex space \mathcal{V}, weighted edge space \mathcal{C}, start node $s \in \mathcal{V}$ and terminal node $\tau \in \mathcal{V}$.
- Due to the assumption of no cycles with negative cost, the optimal path need not have more than $|\mathcal{V}|$ elements
- We can formulate the DSP problem as a DFS with $T:=|\mathcal{V}|-1$ stages:
- State space: $\mathcal{X}_{0}:=\{s\}, \mathcal{X}_{T}:=\{\tau\}, \mathcal{X}_{t}:=\mathcal{V} \backslash\{\tau\}$ for $t=1, \ldots, T-1$
- Control space: $\mathcal{U}_{T-1}:=\{\tau\}$ and $\mathcal{U}_{t}:=\mathcal{V} \backslash\{\tau\}$ for $t=0, \ldots, T-2$
- Dynamics: $x_{t+1}=u_{t}$ for $u_{t} \in \mathcal{U}_{t}, t=0, \ldots, T-1$
- Costs: $\mathfrak{q}(\tau):=0$ and $\ell_{t}\left(x_{t}, u_{t}\right)=c_{x_{t}, u_{t}}$ for $t=0, \ldots, T-1$

Dynamic Programming Applied to DSP

- Due to the equivalence, the DSP can be solved via the DP algorithm
- $V_{t}(i)$ is the optimal cost of getting from node i to node τ in $T-t$ steps
- Upon termination, $V_{0}(s)=J^{Q^{*}}$
- The algorithm can be terminated early if $V_{t}(i)=V_{t+1}(i), \forall i \in \mathcal{V} \backslash\{\tau\}$

```
    2: \(T=|\mathcal{V}|-1\)
    3: \(\quad V_{T}(\tau)=0\)
    4: \(V_{T-1}(i)=c_{i, \tau}, \quad \forall i \in \mathcal{V} \backslash\{\tau\}\)
    5: \(\pi_{T-1}(i)=\tau, \quad \forall i \in \mathcal{V} \backslash\{\tau\}\)
    6: for \(t=(T-2), \ldots, 0\) do
    7: \(\quad Q_{t}(i, j)=c_{i, j}+V_{t+1}(j), \quad \forall i, j \in \mathcal{V} \backslash\{\tau\}\)
    8: \(\quad V_{t}(i)=\min _{j \in \mathcal{V} \backslash\{\tau\}} Q_{t}(i, j), \quad \forall i \in \mathcal{V} \backslash\{\tau\}\)
    9: \(\quad \pi_{t}(i)=\underset{j \in \mathcal{V} \backslash\{\tau\}}{\arg \min } Q_{t}(i, j), \quad \forall i \in \mathcal{V} \backslash\{\tau\}\)
10: if \(V_{t}(i)=V_{t+1}(i), \forall i \in \mathcal{V} \backslash\{\tau\}\) then
11: break
```

Algorithm 1 Deterministic Shortest Path via Dynamic Programming
1: Input: node set \mathcal{V}, start $s \in \mathcal{V}$, goal $\tau \in \mathcal{V}$, and costs $c_{i j}$ for $i, j \in \mathcal{V}$

Forward DP Algorithm

- The DSP problem is symmetric: an optimal path from s to τ is also a shortest path from τ to s, where all arc directions are flipped.
- This view leads to a "forward Dynamic Programming" algorithm.
- $V_{t}^{F}(j)$ is the optimal cost-to-arrive to node j from node s in t moves

```
Algorithm 2 Deterministic Shortest Path via Forward Dynamic Programming
    1: Input: node set \(\mathcal{V}\), start \(s \in \mathcal{V}\), goal \(\tau \in \mathcal{V}\), and costs \(c_{i j}\) for \(i, j \in \mathcal{V}\)
    2: \(T=|\mathcal{V}|-1\)
    3: \(V_{0}^{F}(s)=0\)
    4: \(V_{1}^{F}(j)=c_{s, j}, \quad \forall j \in \mathcal{V} \backslash\{s\}\)
    5: for \(t=2, \ldots, T\) do
    6: \(\quad V_{t}^{F}(j)=\min _{i \in \mathcal{V} \backslash\{s\}}\left(c_{i, j}+V_{t-1}^{F}(i)\right), \quad \forall j \in \mathcal{V} \backslash\{s\}\)
    7: if \(V_{t}^{F}(i)=V_{t-1}^{F}(i), \forall i \in \mathcal{V} \backslash\{s\}\) then
        break
```


Forward DP Algorithm (Example)

- $s=1$ and $\tau=5$
- $T=|\mathcal{V}|-1=6$

	1	2	3	4	5	6	7
V_{0}^{F}	0	∞	∞	∞	∞	∞	∞
V_{1}^{F}	0	5	3	∞	∞	5	∞
V_{2}^{F}	0	5	3	15	13	5	4
V_{3}^{F}	0	5	3	15	12	5	4
V_{4}^{F}	0	5	3	15	12	5	4

- Since $V_{t}^{F}(i)=V_{t-1}^{F}(i), \forall i \in \mathcal{V}$ at time $t=4$, the algorithm can terminate early, i.e., without computing $V_{5}^{F}(i)$ and $V_{6}^{F}(i)$

Hidden Markov Model

- States: $x_{t} \in \mathcal{X}:=\{1, \ldots, N\}$
- Observations: $z_{t} \in \mathcal{Z}:=\{1, \ldots, M\}$
- Markov Assumptions:
- Given x_{t}, x_{t+1} is independent of everything else, e.g., $x_{0: t-2}$ and $z_{1: t}$

- Given x_{t}, z_{t} is independent of everything else, e.g., $x_{0: t-2}$ and $z_{1: t-1}$
- Model Parameters:
- Prior: probability mass function $p_{0 \mid 0} \in[0,1]^{N}$ with $p_{0 \mid 0}(i):=\mathbb{P}\left(x_{0}=i\right)$
- Motion model: matrix $A \in \mathbb{R}^{N \times N}$ with $A(i, j)=\mathbb{P}\left(x_{t+1}=j \mid x_{t}=i\right)$
- Observation model matrix $B \in \mathbb{R}^{N \times M}$ with $B(i, j)=\mathbb{P}\left(z_{t}=j \mid x_{t}=i\right)$
- Predicted pmf: $p_{t+1 \mid t}(i):=\mathbb{P}\left(x_{t+1}=i \mid z_{1: t}=\bar{z}_{1: t}\right)$
- Updated pmf: $p_{t+1 \mid t+1}(i):=\mathbb{P}\left(x_{t+1}=i \mid z_{1: t+1}=\bar{z}_{1: t+1}\right)$

Bayes Filter Applied to HMM

- Prediction step: given $p_{t \mid t}$ compute $p_{t+1 \mid t}$:

$$
\begin{aligned}
& \quad p_{t+1 \mid t}(j)=\mathbb{P}\left(x_{t+1}=j \mid z_{1: t}=\bar{z}_{1: t}\right) \\
& \xlongequal{\text { Total prob. }} \sum_{i=1}^{N} \mathbb{P}\left(x_{t+1}=j, x_{t}=i \mid z_{1: t}=\bar{z}_{1: t}\right) \\
& \xlongequal{\text { Cond. prob. }} \sum_{i=1}^{N} \mathbb{P}\left(x_{t+1}=j \mid x_{t}=i, z_{1: t}=\bar{z}_{1: t}\right) \mathbb{P}\left(x_{t}=i \mid z_{1: t}=\bar{z}_{1: t}\right) \\
& \xlongequal{\text { Markov }} \sum_{i=1}^{N} A(i, j) p_{t \mid t}(i)
\end{aligned}
$$

- Concise prediction step: $p_{t+1 \mid t}=A^{T} p_{t \mid t}$

Bayes Filter Applied to HMM

- Update step: given $p_{t+1 \mid t}$ compute $p_{t+1 \mid t+1}$:

$$
\begin{aligned}
& p_{t+1 \mid t+1}(j)=\mathbb{P}\left(x_{t+1}=j \mid z_{1: t+1}=\bar{z}_{1: t+1}\right) \\
& \xlongequal[\text { Rule }]{\text { Bayes }} \frac{\mathbb{P}\left(z_{t+1}=\bar{z}_{t+1} \mid x_{t+1}=j, z_{1: t}=\bar{z}_{1: t}\right) \mathbb{P}\left(x_{t+1}=j \mid z_{1: t}=\bar{z}_{1: t}\right)}{\mathbb{P}\left(z_{t+1}=\bar{z}_{t+1} \mid z_{1: t}=\bar{z}_{1: t}\right)} \\
&=\frac{B\left(j, \bar{z}_{t+1}\right) p_{t+1 \mid t}(j)}{\sum_{i=1}^{N} B\left(i, \bar{z}_{t+1}\right) p_{t+1 \mid t}(i)}
\end{aligned}
$$

- Concise update step: let $b_{t+1}:=\left[\begin{array}{lll}B\left(1, \bar{z}_{t+1}\right) & \cdots & B\left(N, \bar{z}_{t+1}\right)\end{array}\right]^{T}$:

$$
p_{t+1 \mid t+1}=\frac{\operatorname{diag}\left(b_{t+1}\right) p_{t+1 \mid t}}{b_{t+1}^{T} p_{t+1 \mid t}}
$$

The Three Main HMM Problems

P1 Given an observation sequence $\bar{z}_{1: T}$ and model parameters $\theta:=\left(p_{0 \mid 0}, A, B\right)$, how do we efficiently compute the likelihood $p_{\theta}\left(\bar{z}_{1: T}\right)$ of the observation sequence?

- Forward Procedure (Filtering) and Forward-Backward Procedure (Smoothing)

P2 Given an observation sequence $\bar{z}_{1: T}$ and model parameters $\theta:=\left(p_{0 \mid 0}, A, B\right)$, how do we choose a corresponding state sequence $x_{0: T}^{*}$ which best explains the observations, i.e., maximizes $p\left(x_{0: T}, \bar{z}_{1: T}\right)$?

- Viterbi Decoding

P3 How do we adjust the model parameters $\theta:=\left(p_{0 \mid 0}, A, B\right)$ to maximize $p_{\theta}\left(\bar{z}_{1: T}\right)$?

- Maximum Likelihood Estimation (MLE) and Baum-Welch Algorithm (Expectation Maximization)

Viterbi Decoding

- Viterbi Decoding: computes the most-likely state sequence corresponding to the observations:

$$
x_{0: T}^{*}=\underset{x_{0: T}}{\arg \max } p\left(x_{0: T}, \bar{z}_{1: T}\right)
$$

- The Viterbi algorithm keeps track of two variables:
- Likelihood of the observed sequence with the most likely state assignment up to $t-1$:

$$
\delta_{t}(i):=\max _{x_{0: t-1}} p\left(x_{0: t-1}, x_{t}=i, \bar{z}_{1: t}\right)
$$

- State from the previous time that leads to the maximum for the current state at time t :

$$
\psi_{t}(i):=\underset{x_{t-1}}{\arg \max } \max _{x_{0: t-2}} p\left(x_{0: t-1}, x_{t}=i, \bar{z}_{1: t}\right)
$$

Viterbi Decoding

- Initialize: $\delta_{0}(i)=p_{0 \mid 0}(i)$ and $\psi_{0}(i)=0$
- Forward Pass for $t=1, \ldots, T$

$$
\begin{aligned}
& \delta_{t}(j)=\max _{i} \mathbb{P}\left(z_{t}=\bar{z}_{t} \mid x_{t}=j\right) \mathbb{P}\left(x_{t}=j \mid x_{t-1}=i\right) \delta_{t-1}(i) \\
&=\max _{i} B\left(j, \bar{z}_{t}\right) A(i, j) \delta_{t-1}(i) \\
& \psi_{t}(j)=\underset{i}{\arg \max } \mathbb{P}\left(z_{t}=\bar{z}_{t} \mid x_{t}=j\right) \mathbb{P}\left(x_{t}=j \mid x_{t-1}=i\right) \delta_{t-1}(i) \\
&=\underset{i}{\arg \max } B\left(j, \bar{z}_{t}\right) A(i, j) \delta_{t-1}(i) \\
& p\left(x_{0: T}^{*}, \bar{z}_{1: T}\right)=\max _{i} \delta_{T}(i) \quad x_{T}^{*}=\arg \max _{i} \delta_{T}(i)
\end{aligned}
$$

- Backward Pass for $t=T-1, \ldots, 0$:

$$
x_{t}^{*}=\psi_{t+1}\left(x_{t+1}^{*}\right)
$$

Viterbi Decoding

- By the conditioning rule, $p\left(x_{0: T}, \bar{z}_{1: T}\right)=p\left(x_{0: T} \mid \bar{z}_{1: T}\right) p\left(\bar{z}_{1: T}\right)$. Since $p\left(\bar{z}_{1: T}\right)$ is fixed and positive, maximizing $p\left(x_{0: T} \mid \bar{z}_{1: T}\right)$ is equivalent to maximizing $p\left(x_{0: T}, \bar{z}_{1: T}\right)$
- Joint probability density function:

$$
p\left(x_{0: T}, z_{1: T}\right)=\underbrace{p_{0 \mid 0}\left(x_{0}\right)}_{\text {prior }} \prod_{t=1}^{T} \underbrace{A\left(x_{t-1}, x_{t}\right)}_{\text {motion model }} \prod_{t=1}^{T} \underbrace{B\left(x_{t}, z_{t}\right)}_{\text {observation model }}
$$

- Idea: we can express $\max _{x_{0: T}} p\left(x_{0: T}, z_{1: T}\right)$ as a shortest path problem:

$$
\min _{x_{0}: T}\left(c_{s,\left(0, x_{0}\right)}+\sum_{t=1}^{T} c_{\left(t-1, x_{t-1}\right),\left(t, x_{t}\right)}\right)
$$

where:

$$
\begin{aligned}
c_{s,\left(0, x_{0}\right)} & :=-\log \left(p_{0 \mid 0}\left(x_{0}\right)\right) \\
c_{\left(t-1, x_{t-1}\right),\left(t, x_{t}\right)} & :=-\log \left(A\left(x_{t-1}, x_{t}\right) B\left(x_{t}, z_{t}\right)\right)
\end{aligned}
$$

Viterbi Decoding

- Construct a graph of state-time pairs with artificial starting node s and terminal node τ

- Computing the shortest path via the forward DP algorithm leads to the forward pass of the Viterbi algorithm!

Label Correcting Methods for the SP Problem

- The DP algorithm computes the shortest paths from all nodes to the goal. Often many nodes are not part of the shortest path from s to τ
- The label correcting (LC) algorithm is a general algorithm for SP problems that does not necessarily visit every node of the graph
- LC algorithms prioritize the visited nodes using the cost-to-arrive values
- Key Ideas:
- Label g_{i} : keeps (an estimate of) the lowest cost from s to each visited node $i \in \mathcal{V}$
- Each time g_{i} is reduced, the labels g_{j} of the children of i can be corrected: $g_{j}=g_{i}+c_{i j}$
- OPEN: set of nodes that can potentially be part of the shortest path to τ

Label Correcting Algorithm

Algorithm 3 Label Correcting Algorithm

```
1: OPEN \(\leftarrow\{s\}, g_{s}=0, g_{i}=\infty\) for all \(i \in \mathcal{V} \backslash\{s\}\)
while OPEN is not empty do
Remove \(i\) from OPEN
for \(j \in\) Children \((i)\) do
    if \(\left(g_{i}+c_{i j}\right)<g_{j}\) and \(\left(g_{i}+c_{i j}\right)<g_{\tau}\) then \(\quad \triangleright\) Only when \(c_{i j} \geq 0\) for all \(i, j \in \mathcal{V}\)
    \(g_{j} \leftarrow\left(g_{i}+c_{i j}\right)\)
    \(\operatorname{Parent}(j) \leftarrow i\)
    if \(j \neq \tau\) then
        OPEN \(\leftarrow\) OPEN \(\cup\{j\}\)
```


Theorem

If there exists at least one finite cost path from s to τ, then the Label Correcting (LC) algorithm terminates with $g_{\tau}=J^{Q^{*}}$ (the shortest path from s to $\tau)$. Otherwise, the LC algorithm terminates with $g_{\tau}=\infty$.

Label Correcting Algorithm

Label Correcting Algorithm Proof

1. Claim: The LC algorithm terminates in a finite number of steps

- Each time a node j enters OPEN, its label is decreased and becomes equal to the length of some path from s to j.
- The number of distinct paths from s to j whose length is smaller than any given number is finite (no negative cycles assumption)
- There can only be a finite number of label reductions for each node j
- Since the LC algorithm removes nodes from OPEN in line 3, the algorithm will eventually terminate

2. Claim: The LC algorithm terminates with $g_{\tau}=\infty$ if there is no finite cost path from s to τ

- A node $i \in \mathcal{V}$ is in OPEN only if there is a finite cost path from s to i
- If there is no finite cost path from s to τ, then for any node i in OPEN $c_{i, \tau}=\infty$; otherwise there would be a finite cost path from s to τ
- Since $c_{i, \tau}=\infty$ for every i in OPEN, line 5 ensures that g_{τ} is never updated and remains ∞

Label Correcting Algorithm Proof

3. Claim: The LC algorithm terminates with $g_{\tau}=J^{Q^{*}}$ if there is at least one finite cost path from s to τ

Let $Q^{*}=\left(s, i_{1}, i_{2}, \ldots, i_{q-2}, \tau\right) \in \mathbb{Q}_{s, \tau}$ be a shortest path from s to τ with length $J^{Q^{*}}$

- By the principle of optimality $Q_{m}^{*}:=\left(s, i_{1}, \ldots, i_{m}\right)$ is the shortest path from s to i_{m} with length $J^{Q_{m}^{*}}$ for any $m=1, \ldots, q-2$
- Suppose that $g_{\tau}>J^{Q^{*}}$ (proof by contradiction)
- Since g_{τ} only decreases in the algorithm and every cost is nonnegative, $g_{\tau}>J_{m}^{Q_{m}^{*}}$ for all $m=2, \ldots, q-2$
- Thus, i_{q-2} does not enter OPEN with $g_{i_{q-2}}=J^{Q_{q-2}^{*}}$ since if it did, then the next time i_{q-2} is removed from OPEN, g_{τ} would be updated to $J_{Q^{*}}$
- Similarly, i_{q-3} will not enter OPEN with $g_{i_{q-3}}=J^{Q_{q-3}^{*}}$. Continuing this way, i_{1} will not enter open with $g_{i_{1}}=J_{1}^{Q_{1}^{*}}=c_{s, i_{1}}$ but this happens at the first iteration of the algorithm, which is a contradiction!

Example: Deterministic Scheduling Problem

- Consider a deterministic scheduling problem where 4 operations A, B, C, D are used to produce a product
- Rules: Operation A must occur before B, and C before D
- Cost: there is a transition cost between each two operations:

Example: Deterministic Scheduling Problem

- The state transition diagram of the scheduling problem can be simplified in order to reduce the number of nodes

- This results in a DFS problem with $T=4, \mathcal{X}_{0}=\{\mathrm{I} . \mathrm{C}\},. \mathcal{X}_{1}=\{\mathrm{A}, \mathrm{C}\}$, $\mathcal{X}_{2}=\{\mathrm{AB}, \mathrm{AC}, \mathrm{CA}, \mathrm{CD}\}, \mathcal{X}_{3}=\{\mathrm{ABC}, \mathrm{ACD}$ or CAD, CAB or $\mathrm{ACB}, \mathrm{CDA}\}$, $\mathcal{X}_{T}=\{D O N E\}$
- We can map the DFS problem to a DSP problem

Example: Deterministic Scheduling Problem

- We can map the DFS problem to a SP problem and apply the LC algorithm
- Keeping track of the parents when a child node is added OPEN, it can be determined that a shortest path is $(s, 2,5,9, \tau)$ with total cost 10, which corresponds to $(C, C A, C A B, C A B D)$ in the original problem

Specific Label Correcting Methods

- There is freedom in selecting the node to be removed from OPEN at each iteration, which gives rise to several different methods:
- Breadth-first search (BFS) (Bellman-Ford Algorithm): "first-in, first-out" policy with OPEN implemented as a queue.
- Depth-first search (DFS): "last-in, first-out" policy with OPEN implemented as a stack; often saves memory
- Best-first search (Dijkstra's Algorithm): the node with minimum label $i^{*}=\arg \min g_{j}$ is removed, which guarantees that a node will enter OPEN $j \in$ OPEN at most once. OPEN is implemented as a priority queue.
- D'Esopo-Pape method: removes nodes at the top of OPEN. If a node has been in OPEN before it is inserted at the top; otherwise at the bottom.
- Small-label-first (SLF): removes nodes at the top of OPEN. If $d_{i} \leq d_{T O P}$ node i is inserted at the top; otherwise at the bottom.
- Large-label-last (LLL): the top node is compared with the average of OPEN and if it is larger, it is placed at the bottom of OPEN; otherwise it is removed.

A* Algorithm

- The \mathbf{A}^{*} algorithm is a modification to the LC algorithm in which the requirement for admission to OPEN is strengthened:

$$
\text { from } g_{i}+c_{i j}<g_{\tau} \text { to } g_{i}+c_{i j}+h_{j}<g_{\tau}
$$

where h_{j} is a positive lower bound on the optimal cost to get from node j to τ, known as heuristic.

- The more stringent criterion can reduce the number of iterations required by the LC algorithm
- The heuristic is constructed depending on special knowledge about the problem. The more accurately h_{j} estimates the optimal cost from j to τ, the more efficient the A^{*} algorithm becomes!

