
ECE276B: Planning & Learning in Robotics
Lecture 7: Anytime, Incremental, and Agent-centered

Search

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Zhichao Li: zhl355@eng.ucsd.edu
Ehsan Zobeidi: ezobeidi@eng.ucsd.edu
Ibrahim Akbar: iakbar@eng.ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:zhl355@eng.ucsd.edu
mailto:ezobeidi@eng.ucsd.edu
mailto:iakbar@eng.ucsd.edu

Anytime, Incremental, and Agent-centered Search

I There are three important situations that happen in practice but our
vanilla label correcting algorithms do not handle:

1. How should we plan the best possible path in a given, fixed amount of
time? (Anytime Search)

2. How should we reuse a previous plan (rather than computing it from
scratch) in a dynamic or partially known environment, where the edge
costs cij change? (Incremental Search)

3. How should we plan in really large environments, where it is impossible to
compute the path all the way to the goal? (Agent-centered Search)

2

Anytime, Incremental, and Agent-centered Search

I CMU’s autonomous car used anytime, incremental, agent-centered
search (Anytime D*) in the DARPA Urban Challenge in 2007

I Likhachev and Ferguson, “Planning Long Dynamically Feasible
Maneuvers for Autonomous Vehicles,” IJRR’09

I Paper: http://journals.sagepub.com/doi/pdf/10.1177/0278364909340445

I Video: https://www.youtube.com/watch?v=4hFhl0Oi8KI

I Video: https://www.youtube.com/watch?v=qXZt-B7iUyw

3

https://www.youtube.com/watch?v=4hFhl0Oi8KI
https://www.youtube.com/watch?v=4hFhl0Oi8KI
http://journals.sagepub.com/doi/pdf/10.1177/0278364909340445
https://www.youtube.com/watch?v=4hFhl0Oi8KI
https://www.youtube.com/watch?v=qXZt-B7iUyw

Agent-centered Search

4

Planning in Large Unknown Environments

I Freespace Assumption: unknown space is free – costs between
unknown cells are the same as between free cells

I Move the robot on a shortest potentially unblocked path and replan
whenever new sensor information is received

5

Planning in Large Unknown Environments
I A constantly updating map requires a lot of replanning!

I Anytime incremental planning helps but what if the map is large and we
cannot plan all the way to the goal even a single time?

I Agent-centered Search: places a strict limit on the amount of
computation

6

Agent-centered Search
I Agent-centered search with a freespace assumption:

1. Compute a partial path by expanding at most N nodes around the robot
2. Move once, incorporate sensor information, and repeat

I Example in a known terrain:

I Example in an unknown terrain:

I Research questions:
I how to compute a partial path
I how to guarantee that the goal is eventually reached
I how to provide bounds on the number of steps before reaching the goal 7

Learning Real-Time A* (LRTA*)

I Repeatedly move to the most promising adjacent cell using a heuristic:

s = arg min
j∈Children(s)

csj + hj

I Example: hi = max{|xi − xτ |, |yi − yτ |}+ 0.4 min{|xi − xτ |, |yi − yτ |}

I Problem: this myopic behavior cannot overcome local minima!

8

Learning Real-Time A* (LRTA*)
I Idea: the heuristic needs to be updated over time!

I Repeatedly move to the most promising adjacent cell using and
updating a heuristic:

1. Update: hs = minj∈Children(s) csj + hj
2. Move: s = arg min

j∈Children(i)
csj + hj

I The heuristic updates make h more informed while ensuring it remains
admissible and consistent

I The robot is guaranteed to reach the goal in a finite number of steps if:
I All edge costs are bounded from below: cij ≥ ∆ > 0
I The graph is finite size and there exists a finite-cost path to the goal
I All actions are reversible – ensures that we do not get stuck in a local min

9

Learning Real-Time A* (LRTA*)

I LRTA* is related to limited-horizon A* (N = 1) because it makes a
move towards the node j in OPEN with smallest gj + hj = csj + hj value

I LRTA* with N ≥ 1 expands:

1. Expand N nodes

2. Update h-values of expanded nodes via Dynamic Programming (necessary
to guarantee that the goal is reached):

I Initialize: hi =∞ for all i in CLOSED
I Repeat: hi = minj∈Children(i)(cij + hj)

3. Move on the path to state j∗ = arg min
j∈OPEN

gj + hj . This node minimizes the

cost to it plus the heuristic estimate of the remaining distance to the goal,
i.e., it looks promising in terms of the whole path from the current robot
state to the goal.

10

Example: Learning Real-Time A* (LRTA*)

(a) 4-connected grid with
Manhattan heuristic

(b) Expand N = 7 nodes (c) Unexpanded node
with smallest f = 5 + 3
value

11

Example: Learning Real-Time A* (LRTA*)

I Update h-values of expanded nodes via Dynamic Programming

hi = min
j∈Children(i)

(cij + hj)

12

Example: Learning Real-Time A* (LRTA*)

I Update h-values of expanded nodes via Dynamic Programming

hi = min
j∈Children(i)

(cij + hj)

13

Example: Learning Real-Time A* (LRTA*)

I Repeat:

1. Expand N nodes

2. Update h-values of expanded nodes by Dynamic Programming

3. Make one move along the shortest path to the unexpanded node in OPEN
with smallest f value

14

Real-time Adaptive A* (RTAA*)
I RTAA* with N ≥ 1 expands

1. Expand N nodes

2. Update h-values of expanded nodes i by hi = fj∗ − gi where
j∗ = arg min

j∈OPEN
gj + hj (only a single pass through the nodes in CLOSED!)

3. Move on the path to state j∗ = arg min
j∈OPEN

gj + hj

I Proof of admissability: V ∗i ,τ ≥ V ∗s,τ − gi ≥ fj∗ − gi = hi

(a) 4-connected grid with
Manhattan heuristic

(b) Expand N = 7 states (c) Unexpanded state
with smallest f = 5 + 315

Real-time Adaptive A* (RTAA*)

I Unexpanded state j∗ with smallest fj∗ = 8

I Update h-values of expanded nodes: hi = fj∗ − gi

16

LRTA* vs RTAA*

(a) LRTA* (b) RTAA*

I Update of h-values in RTAA* is much faster but not as informed

I Both guarantee admissible and consistent heuristics

I Heuristics are monotonically increasing for both

I Both guarantee that the goal is reached in a finite number of steps
(given the conditions listed previously)

17

Anytime Search

18

Anytime Search

I Objective: return the best plan possible within a fixed planning time

I Idea: run a series of weighted A* searches with decreasing ε:

I This is inefficient because many labels (g -values) remain the same
between search iterations yet we are recomputing them from scratch

I Anytime Repairing A* (ARA*): an algorithm that is able to reuse the
results from previous searches

19

Reusing Labels from a Previous Search
I Idea: mark nodes whose g -values have changed since the last expansion

I v-value: the g -value of a node at the time of its last expansion
I vi =∞ for nodes that were never expanded
I gj = mini∈Parents(j) vi + cij for all nodes

Algorithm 1 A* that keeps track of inconsistent nodes

1: OPEN ← {s}, CLOSED ← {}, ε ≥ 1
2: gs = 0, gi =∞ for all i ∈ V \ {s}
3: vi =∞ for all i ∈ V
4: ComputePath()
5:
6: function ComputePath()
7: while fτ > mini∈OPEN fi do . τ is not the most promising node yet
8: Remove i with smallest fi := gi + εhi from OPEN
9: Insert i into CLOSED; vi = gi

10: for j ∈ Children(i) do
11: if gj > (gi + cij) then
12: gj ← (gi + cij)
13: if j /∈ CLOSED then insert j into OPEN

}
Ensure no node is
expanded multiple times

14: otherwise insert j into INCONS
20

Reusing Labels from a Previous Search

I Consistent node: a node i such that vi = gi

I Overconsistent node: a node i such that vi > gi

I All i ∈ OPEN are overconsistent because vi =∞ > gi

I Alternative view: A* expands overconsistent nodes in the order of their
f -values

I All you need to do to make A* reuse previous information is to initialize
OPEN with all overconsistent nodes!
I A* (consistent heuristic): OPEN is initialized with the OPEN set from a

previous search since a consistent heuristic ensures that all nodes in
CLOSED remain consistent

I Weighted A* (ε-consistent heuristic): OPEN is initialized with the OPEN
set from a previous search and all nodes in CLOSED whose g -values
decreased after entering CLOSED (INCONS)

21

Example: Reusing Labels from a Previous Search
I OPEN contains all overconsistent nodes initially
I Invariant maintained throughout the search: gj = mini∈Parents(j)vi + cij
I OPEN = {4, τ}
I CLOSED = {}
I Next to expand: 4

22

Example: Reusing Labels from a Previous Search
I OPEN = {3, τ}
I CLOSED = {4}
I Next to expand: τ

23

Example: Reusing Labels from a Previous Search

I OPEN = {3}
I CLOSED = {4, τ}
I Done

24

Anytime Repairing A* (ARA*)

I Efficient series of weighted A* searches with decreasing ε

I Need to keep track of all overconsistent nodes = OPEN ∪ INCONS

Algorithm 2 ARA*

1: Set ε to large value
2: OPEN ← {s}
3: gs = 0, gi =∞ for all i ∈ V \ {s}
4: vi =∞ for all i ∈ V
5: while ε ≥ 1 do
6: CLOSED ← {}; INCONS ← {}
7: OPEN, INCONS ← ComputePath()
8: Publish current ε suboptimal solution
9: Decrease ε

10: OPEN = OPEN ∪ INCONS . Initialize OPEN with all overconsistent nodes

25

Repeated A* vs ARA*
I A series of weighted A* searches (no g-value reuse)

I Anytime Repairing A* (ARA*)

26

Incremental Search

27

Unknown, Dynamic Graphs
I So far, we have assumed that we know all edge costs and they don’t

change

I This is not the case in practice when the environment is partially
unknown or changing

I Naive solution: recompute the path any time an edge cost changes

I Lifelong Planning A* (LPA*):
I Assumes edge costs change over time but the robot has not actually

moved yet
I Recomputes the path from start to goal while reusing as much

information as possible

I D* and D* Lite:
I The robot starts moving on the path to goal and updates edge costs along

the way as the sensors observe new obstacles or free areas
I Recomputes the path from the current node to the goal while reusing as

much information as possible

I Many other variations: Anytime D*, Field D*, Theta*, ...
28

Motivation for Incremental Search
I Optimal g -values for a backwards search:

(a) cost of least-cost path to τ initially

(b) cost of least-cost path to τ after a
door turns out to be closed

I Can the g-values from the first search be re-used in the second search?
I Would the number of changed g -values be different for forward A*? 29

Map Changes and Underconsistent Nodes
I So far, ComputePath() only distinguishes consistent and overconsistent

nodes, i.e., vi ≥ gi

I Edge cost increases may introduce underconsistent nodes (vi < gi)
which violates the ComputePath() invariant: gj = mini∈Parents(j)vi + cij

I Idea:
1. Fix all underconsistent nodes by setting vi =∞, which makes them either

overconsistent or consistent

2. Propagate the changes to maintain the invariant:
gj = mini∈Parents(j) vi + cij

I Additional f -value requirement: For a consistent or overconsistent
node i that can belong to some path from s to τ , we require that all
underconsistent nodes j that could be on a path from s to i are
expanded before i , i.e., keyi > keyj

keyi = [min{gi , vi}+ εhi ; min{gi , vi}] (second value for tie breaking)

30

Lifelong Planning A*

Algorithm 3 LPA* ComputePath()

1: function UpdateMembership(i)
2: if vi 6= gi then
3: if i /∈ CLOSED then Insert/Update i in OPEN with keyi
4: else
5: if i ∈ OPEN then Remove i from OPEN

6: function ComputePath()
7: while keyτ > minj∈OPEN keyj or vτ < gτ do
8: Remove i with smallest keyi from OPEN
9: if vi > gi (overconsistent) then

10: vi = gi ; Insert i into CLOSED
11: for j ∈ Children(i) do
12: if gj > (gi + cij) then
13: gj ← (gi + cij)
14: UpdateMembership(j)

15: else (underconsistent)
16: vi =∞; UpdateMembership(i)
17: for j ∈ Children(i) and j 6= s do
18: gj = mink∈Parents(j) vk + ckj
19: UpdateMembership(j)

31

Example: Map Changes and Underconsistent Nodes
I Suppose that an edge cost changes
I Propagate the changes to maintain: gj = mini∈Parents(j) vi + cij

32

Example: Map Changes and Underconsistent Nodes
I This may introduce underconsistent nodes (vi < gi)
I OPEN = {1, 3}, CLOSED = {s, 2, 4, τ}
I Next to expand: 1 (underconsistent)

33

Example: Map Changes and Underconsistent Nodes

I Fix the underconsistent node by setting v1 =∞ and reinsert in OPEN

34

Example: Map Changes and Underconsistent Nodes

I Propagate the changes to maintain: gj = mini∈Parents(j) vi + cij

35

Example: Map Changes and Underconsistent Nodes

I OPEN = {1, 3}, CLOSED = {s, 2, 4, τ}
I Next to expand: 3 (overconsistent)

36

Example: Map Changes and Underconsistent Nodes

I Expand 3 and insert in CLOSED

37

Example: Map Changes and Underconsistent Nodes

I OPEN = {1}, CLOSED = {s, 2, 4, τ, 3}
I Next to expand: 1 (overconsistent)

38

Example: Map Changes and Underconsistent Nodes

I Done. Backtrack the optimal path.

39

D* Lite

I Backward search: The search is done backwards from the goal to the
current state of the robot with all edges reversed because this way the
root of the search tree remains the same and the g values are more
likely to remain unchanged inbetween two calls to ComputePath()

Algorithm 4 D* Lite

1: repeat
2: ComputePath() . Modified to fix underconsistent nodes
3: Publish optimal path
4: Follow the path until the map is updated with new sensor information
5: Update the corresponding edge costs
6: Set τ to the current state of the agent
7: until τ is reached

I Details in M. Likhachev, D. Ferguson, G. Gordon, A. Stenz, and S.
Thrun, “Anytime search in dynamic graphs,” Artificial Intelligence, 2012.

40

D* Lite (i.e., Incremental A*) vs A*

I Backward A* does not reuse g -values from previous searches:

(a) initial search by backward A* (b) second search by backward A*

I D* Lite reuses g -values from previous searches:

(a) initial search by D* Lite (b) second search by D* Lite

41

Anytime and Incremental Planning

I Decrease ε and update edge costs at the same time

I Re-compute a path by reusing previous g values

Algorithm 5 Anytime D*

1: Set ε to large value
2: repeat
3: ComputePath() . Modified to fix underconsistent nodes
4: Publish ε-suboptimal path
5: Follow the path until the map is updated with new sensor information
6: Update the corresponding edge costs
7: Set τ to the current state of the agent
8: if Significant changes were observed then
9: Increase ε or replan from scratch

10: else
11: Decrease ε
12: until τ is reached

42

