ECE276B: Planning & Learning in Robotics Lecture 8: Sampling-based Planning

Instructor:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants: Zhichao Li: zhl355@eng.ucsd.edu Ehsan Zobeidi: ezobeidi@eng.ucsd.edu Ibrahim Akbar: iakbar@eng.ucsd.edu

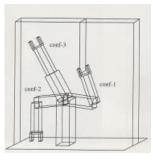
UC San Diego

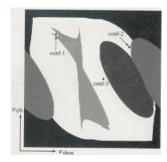
JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Search-based vs Sampling-based Planning

Search-based planning:

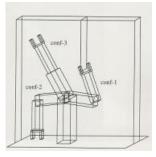
- Generates a systematic discrete representation (graph) of C_{free}
- Searches the representation for a path guaranteeing to find one if it exists (resolution complete)
- Can interleave the representation construction with the search, i.e., adds nodes only when necessary
- Provides suboptimality bounds on the solution
- Can get computationally expensive in high dimensions

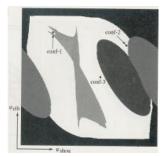




Search-based vs. Sampling-based Planning

- Sampling-based planning:
 - ▶ Generates a sparse sample-based representation (graph) of C_{free}
 - Searches the representation for a path guaranteeing that the probability of finding one if it exists approaches 1 as the number of iterations → ∞ (probabilistically complete)
 - Can interleave the representation construction with the search, i.e., adds samples only when necessary
 - Provides asymptotic suboptimality bounds on the solution
 - Well-suited for high-dimensional planning as it is faster and requires less memory than search-based planning in many domains





Motion Planning Problem

- ▶ Configuration space: C; Obstacle space: C_{obs}; Free space: C_{free}
- ▶ Initial state: $x_s \in C_{free}$; Goal state: $x_\tau \in C_{free}$
- ▶ Path: a continuous function $Q : [0,1] \rightarrow C$; Set of all paths: \mathbb{Q}
- ▶ Feasible path: a continuous function $Q : [0,1] \rightarrow C_{free}$ such that $Q(0) = x_s$ and $Q(1) = x_\tau$; Set of all feasible paths: $\mathbb{Q}_{s,\tau}$
- Motion Planning Problem Given a path planning problem (C_{free}, x_s, x_τ) and a cost function J : Q → R_{≥0}, find a feasible path Q^{*} such that:

$$J(Q^*) = \min_{Q \in \mathbb{Q}_{s,\tau}} J(Q)$$

Report failure if no such path exists.

Primitive Procedures for Sampling-based Motion Planning

- SAMPLE: returns iid samples from C
- SAMPLEFREE: returns iid samples from C_{free}
- NEAREST: given a graph G = (V, E) with V ⊂ C and a point x ∈ C, returns a vertex v ∈ V that is closest to x:

NEAREST
$$((V, E), x) := \underset{v \in V}{\arg \min} ||x - v||$$

NEAR: given a graph G = (V, E) with V ⊂ C, a point x ∈ C, and r > 0, returns the vertices in V that are within a distance r from x:

NEAR(
$$(V, E), x, r$$
) := { $v \in V | ||x - v|| \le r$ }

STEER: given points x, y ∈ C and e > 0, returns a point z ∈ C that minimizes ||z − y|| while remaining within e from x:

$$STEER_{\epsilon}(x, y) := \arg\min_{z: ||z-x|| \le \epsilon} ||z-y||$$

COLLISIONFREE: given points x, y ∈ C, returns TRUE if the line segment between x and y lies in C_{free} and FALSE otherwise.

Probabilistic Roadmap (PRM)

- Step 1. **Preprocessing Phase**: Build a roadmap (graph) \mathcal{G} which, hopefully, should be accessible from any point in C_{free}
 - ► Nodes: randomly sampled valid configurations x_i ∈ C_{free}
 - Edges: added between samples that are easy to connect with a simple local controller (e.g., follow straight line)

Step 2. Query Phase: Given a start configuration x_s and goal configuration x_{τ} , connect them to the roadmap G using a local planner, then search the augmented roadmap for a shortest path from x_s to x_{τ}

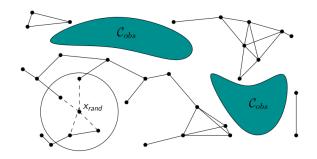
Pros and Cons:

- Simple and highly effective in high dimensions
- Can result in suboptimal paths, no guarantees on suboptimality
- Difficulty with narrow passages
- Useful for multiple queries with different start and goal in the same environment

Step 1: Preprocessing Phase

Algorithm 1 PRM (preprocessing phase)

1: $V \leftarrow \emptyset$; $E \leftarrow \emptyset$ 2: for i = 1, ..., n do 3: $x_{rand} \leftarrow \text{SAMPLEFREE}()$ 4: $V \leftarrow V \cup \{x_{rand}\}$ 5: for $x \in \text{NEAR}((V, E), x_{rand}, r)$ do \triangleright May use k nearest vertices 6: if (not G.same_component(x_{rand}, x)) and COLLISIONFREE(x_{rand}, x) then 7: $E \leftarrow E \cup \{(x_{rand}, x), (x, x_{rand})\}$ 8: return G = (V, E)



Optimal Probabilistic Roadmap

- S. Karaman and E. Frazzoli, "Incremental Sampling-based Algorithms for Optimal Motion Planning," IJRR, 2010.
- To achieve an asymptotically optimal PRM, the connection radius r should decrease such that the average number of connections attempted from a roadmap vertex is proportional to log(n):

$$r^* > 2\left(1 + \frac{1}{d}\right)^{1/d} \left(\frac{Vol(C_{free})}{Vol(\mathsf{Unit d-ball})}\right)^{1/d} \left(\frac{\log(n)}{n}\right)^{1/d}$$

Algorithm 2 PRM*

1:
$$V \leftarrow \{x_s\} \cup \{\text{SAMPLEFREE}()\}_{i=1}^n; E \leftarrow \emptyset$$

2: for $v \in V$ do

3: for
$$x \in NEAR((V, E), v, r^*) \setminus \{v\}$$
 do

- 4: **if** COLLISIONFREE(v, x) **then**
- 5: $E \leftarrow E \cup \{(v, x), (x, v)\}$

6: return G = (V, E)

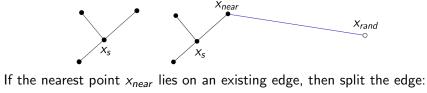
PRM vs RRT

- PRM: a graph constructed from random samples. It can be search for a path whenever a start node x_s and goal node x_τ are specified. PRMs are well-suited for repeated planning between different pairs of x_s and x_τ (*multiple queries*)
- RRT: a tree is constructed from random samples with root x_s. The tree is grown until it contains a path to x_τ. RRTs are well-suited for single-shot planning between a single pair of x_s and x_τ (single query)

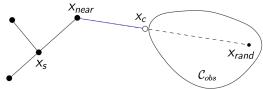
Rapidly Exploring Random Tree (RRT):

- One of the most popular planning techniques
- Introduced by Steven LaValle in 1998
- Many, many, many extensions and variants (articulated robots, kinematics, dynamics, differential constraints)
- There exist extensions of RRTs that try to reuse a previously constructed tree when replanning in response to map updates

Sample a new configuration x_{rand}, find the nearest neighbor x_{near} in G and connect them:

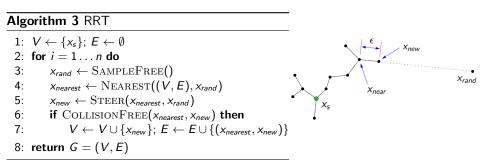


If there is an obstacle, the edge travels up to the obstacle boundary, as far as allowed by a collision detection algorithm

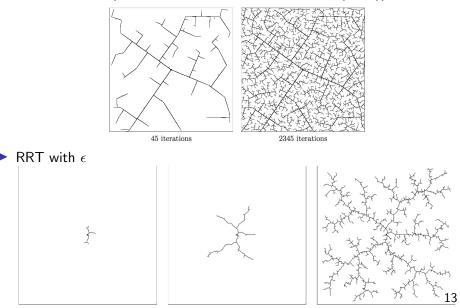


- What about the goal? Occasionally (e.g., every 100 iterations) add the goal configuration x_τ and see if it gets connected to the tree
- RRT can be implemented in the original workspace (need to do collision checking) or in configuration space
- Challenges with a C-Space implementation:
 - What distance function do we use to find the nearest configuration?
 - e.g., distance along the surface of a torus for a 2 link manipulator
 - An edge represents a path in C-Space. How do we construct a collision-free path between two configurations?
 - We do not have to connect the configurations all the way. Instead, use a small step size e and a local steering function to get closer to the second configuration.

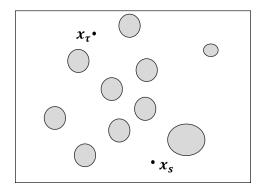
No preprocessing: starting with an initial configuration x_s build a graph (actually, tree) until the goal configuration x_τ is part of it



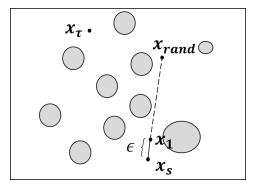
RRT without ϵ (called Rapidly Exploring Dense Tree (RDT)):



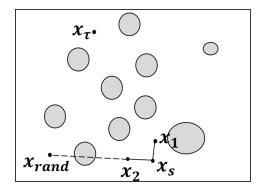
- ► Start node x_s
- Goal node x_{τ}
- Gray obstacles



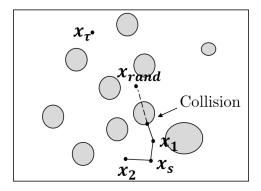
- Sample *x_{rand}* in the workspace
- Steer from x_s towards x_{rand} by a fixed distance ϵ to get x_1
- If the segment from x_s to x_1 is collision-free, insert x_1 into the tree



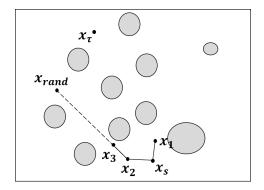
- Sample *x_{rand}* in the workspace
- Find the closest node x_{near} to x_{rand}
- Steer from x_{near} towards x_{rand} by a fixed distance ϵ to get x_2
- lf the segment from x_{near} to x_2 is collision-free, insert x_2 into the tree



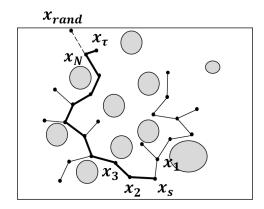
- Sample *x_{rand}* in the workspace
- Find the closest node x_{near} to x_{rand}
- Steer from x_{near} towards x_{rand} by a fixed distance ϵ to get x_3
- If the segment from x_{near} to x_3 is collision-free, insert x_3 into the tree



- Sample *x_{rand}* in the workspace
- Find the closest node x_{near} to x_{rand}
- Steer from x_{near} towards x_{rand} by a fixed distance ϵ to get x_3
- If the segment from x_{near} to x_3 is collision-free, insert x_3 into the tree

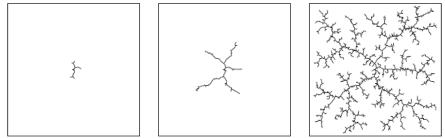


- \blacktriangleright Continue until a node that is a distance ϵ from the goal is generated
- Either terminate the algorithm or search for additional feasible paths

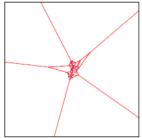


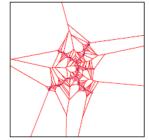
Sampling in RRTs

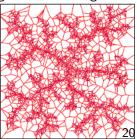
The vanilla RRT algorithm provides uniform coverage of space



Alternatively, the growth may be biased by the largest Voronoi region

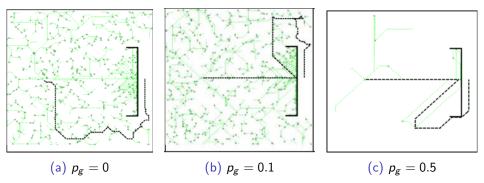






Sampling in RRTs

Goal-biased sampling: with probability (1 − p_g), x_{rand} is chosen as a uniform sample in C_{free} and with probability p_g, x_{rand} = x_τ



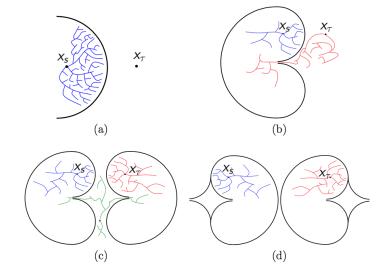
Handling Robot Dynamics with Steer()

- Steer() extends the tree towards a given random sample x_{rand}
- Consider a car-like robot with non-holonomic constraints (can't slide sideways) in SE(2). Obtaining a feasible path from x_{rand} = (0,0,90°) to x_{near} = (1,0,90°) is as hard as the original problem
- Steer() resolves this by not requiring the motion to get all the way to x_{rand}. We just apply the best control input for a fixed duration to obtain x_{new} and a dynamically feasible trajectory to it

Example: 5 DOF Kinodynamic Planning for a Car

Bug Traps

 Growing two trees, one from start and one for goal, often has better performance in practice.



Bi-directional RRT

Algorithm 4 Bi-directional RRT

1: $V_a \leftarrow \{x_s\}$; $E_a \leftarrow \emptyset$; $V_b \leftarrow \{x_\tau\}$; $E_b \leftarrow \emptyset$ 2: for i = 1 ... n do 3. $X_{rand} \leftarrow \text{SAMPLEFREE}()$ 4: $x_{nearest} \leftarrow \text{NEAREST}((V_a, E_a), x_{rand})$ 5: $x_c \leftarrow \text{STEER}(x_{\text{nearest}}, x_{\text{rand}})$ 6: if $x_c \neq x_{nearest}$ then 7: $V_a \leftarrow V_a \cup \{x_c\}; E_a \leftarrow \{(x_{\text{pearest}}, x_c), (x_c, x_{\text{pearest}})\}$ 8: $x'_{nearest} \leftarrow \text{NEAREST}((V_b, E_b), x_c)$ 9: $x'_{c} \leftarrow \text{STEER}(x'_{nearest}, x_{c})$ if $x'_{c} \neq x'_{nearest}$ then 10: $V_b \leftarrow V_b \cup \{x'_c\}; E_b \leftarrow \{(x'_{payrest}, x'_c), (x'_c, x'_{payrest})\}$ 11: if $x'_c = x_c$ then return SOLUTION 12: if $|V_b| < |V_a|$ then Swap($(V_a, E_a), (V_b, E_b)$) 13:

14: return FAILURE

RRT-Connect (J. Kuffner and S. LaValle, ICRA, 2000)

Bi-directional tree + relax the ϵ constraint on tree growth

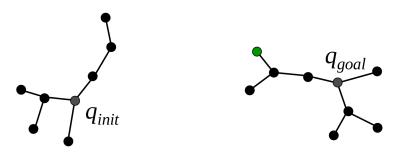
Algorithm 5 RRT-Connect

1:
$$V_a \leftarrow \{x_s\}; E_a \leftarrow \emptyset; V_b \leftarrow \{x_\tau\}; E_b \leftarrow \emptyset$$

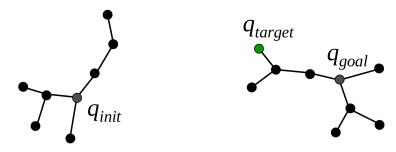
2: for
$$i = 1 ... n$$
 do

- 3: $x_{rand} \leftarrow \text{SAMPLEFREE}()$
- 4: if not $EXTEND((V_a, E_a), x_{rand}) = Trapped$ then
- 5: **if** CONNECT($(V_b, E_b), x_{new}$) = Reached **then** $\triangleright x_{new}$ was just added to (V_a, E_a) 6: **return** PATH($(V_a, E_a), (V_b, E_b)$)
- 7: $\operatorname{Swap}((V_a, E_a), (V_b, E_b))$
- 8: return Failure
- 9: function EXTEND((V, E), x)
- 10: $x_{nearest} \leftarrow \text{NEAREST}((V, E), x)$
- 11: $x_{new} \leftarrow \text{STEER}(x_{nearest}, x)$
- 12: **if** COLLISIONFREE (x_{near}, x_{new}) **then**
- 13: $V \leftarrow \{x_{new}\}; E \leftarrow \{(x_{near}, x_{new}), (x_{new}, x_{near})\}$
- 14: **if** $x_{new} = x$ **then return** Reached **else return** Advanced
- 15: return Trapped
- 16: function CONNECT((V, E), x)
- 17: repeat status $\leftarrow \text{EXTEND}((V, E), x)$ until status $\neq Advanced$
- 18: return status

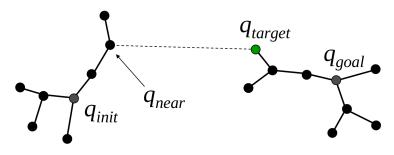
One tree is grown to a random target



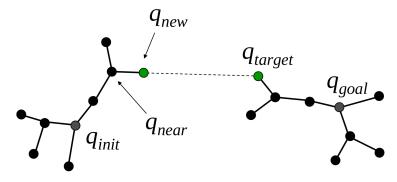
The new node becomes a target for the other tree



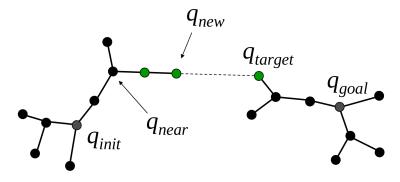
Determine the nearest node to the target



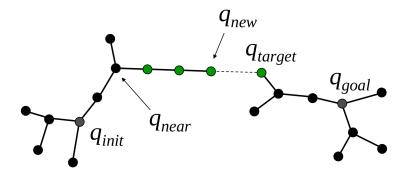
Try to add a new collision-free branch



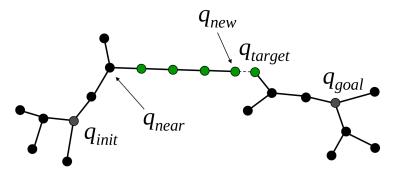
If successful, keep extending the branch



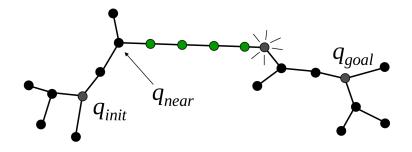
If successful, keep extending the branch



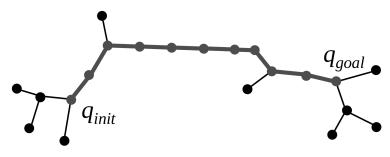
If successful, keep extending the branch



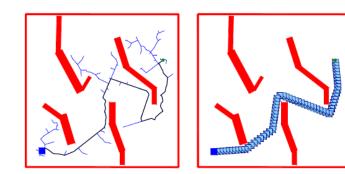
▶ If the branch reaches all the way to the target, a feasible path is found!



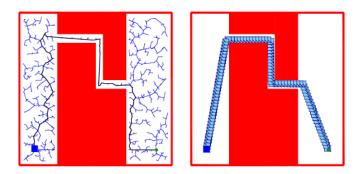
▶ If the branch reaches all the way to the target, a feasible path is found!



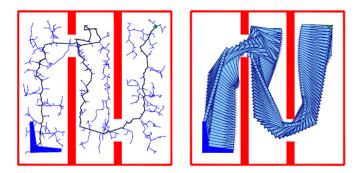
Example: RRT-Connect



Example: RRT-Connect



Example: RRT-Connect



Why are RRTs so popular?

- The algorithm is very simple once the following subroutines are implemented:
 - Random sample generator
 - Nearest neighbor
 - Collision checker
 - Steer

Pros:

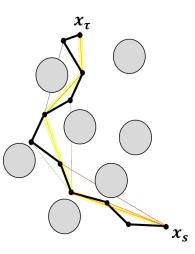
- Sparse exploration requires little memory and computation
- RRTs find feasible paths quickly in practice
- Can add heuristics on top, e.g., bias the sampling towards the goal

Cons:

- Solutions can be highly sub-optimal and require path smoothing as a post-processing step
- The smoothed path is still restricted to the same homotopy class

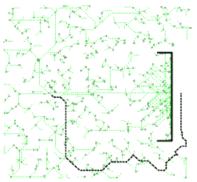
Path Smoothing

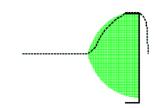
- Start with the initial point (1)
- Make connections to subsequent points in the path (2), (3), (4), ...
- When a connection collides with obstacles, add the previous waypoint to the smoothed path
- Continue smoothing from this point on



Search-based vs Sampling-based Planning

- RRT:
 - Sparse exploration requires little memory and computation
 - Solutions can be highly sub-optimal and require post-processing (path smoothing) which may be difficult
- Weighted A*:
 - Systematic exploration may require a lot of memory and computation
 - Returns a path with (sub-)optimality guarantees





RRT: Probabilistic Completeness but No Optimality

- RRT and RRT-Connect are probabilistically complete: the probability that a feasible path will be found if one exists, approaches 1 exponentially as the number of samples approaches infinity
- Assuming C_{free} is connected, bounded, and open, for any $x \in C_{free}$, $\lim_{N \to \infty} \mathbb{P}(||x - x_{near}|| < \epsilon) = 1$, where x_{near} is the closest node to x in \mathcal{T}
- RRT is not optimal: the probability that RRT converges to an optimal solution, as the number of samples approaches infinity, is zero under reasonable technical assumptions (S. Karaman, E. Frazzoli, RSS'10)
- **Problem**: once we build an RRT we never modify it
- RRT* (S. Karaman and E. Frazzoli, "Incremental Sampling-based Algorithms for Optimal Motion Planning," IJRR, 2010)
 - RRT + rewiring of the tree to ensure asymptotic optimality
 - Contains two steps: extend (similar to RRT) and rewire (new)

RRT*: Extend Step

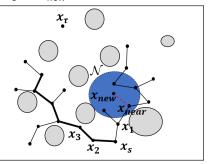
- Generate a new potential node x_{new} identically to RRT
- Instead of finding the closest node in the tree, find all nodes within a neighborhood N of radius min{r^{*}, €} where

$$r^* > 2\left(1 + \frac{1}{d}\right)^{1/d} \left(\frac{Vol(C_{free})}{Vol(\text{Unit d-ball})}\right)^{1/d} \left(\frac{\log|V|}{|V|}\right)^{(1/d)}$$

Let $x_{nearest} = \underset{x_{near} \in \mathcal{N}}{\arg \min g_{x_{near}}} + c_{x_{near},x_{new}}$ be the node in \mathcal{N} on the currently known shortest path from x_s to x_{new}

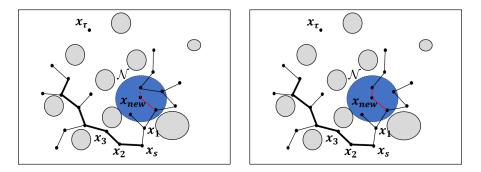
- $\blacktriangleright V \leftarrow V \cup \{x_{new}\}$
- $\blacktriangleright E \leftarrow E \cup \{(x_{nearest}, x_{new})\}$
- Set the label of x_{new} to:

$$g_{x_{new}} = g_{x_{nearest}} + c_{x_{nearest},x_{new}}$$



RRT*: Rewire Step

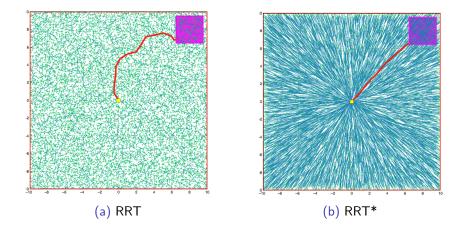
- Check all nodes x_{near} ∈ N to see if re-routing through x_{new} reduces the path length (label correcting!):
- ▶ If $g_{x_{new}} + c_{x_{new},x_{near}} < g_{x_{near}}$, then remove the edge between x_{near} and its parent and add a new edge between x_{near} and x_{new}



Algorithm 6 RRT*

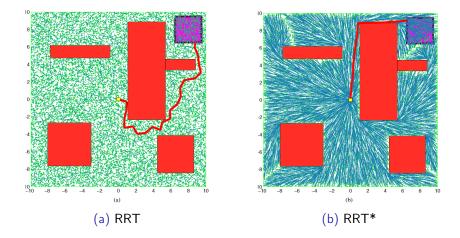
1: $V \leftarrow \{x_s\}; E \leftarrow \emptyset$ 2: for i = 1 ... n do 3. $x_{rand} \leftarrow \text{SAMPLEFREE}()$ 4: $x_{nearest} \leftarrow \text{NEAREST}((V, E), x_{rand})$ 5: $x_{new} \leftarrow \text{STEER}(x_{nearest}, x_{rand})$ 6: if COLLISIONFREE($x_{nearest}, x_{new}$) then 7: $X_{near} \leftarrow \text{NEAR}((V, E), x_{new}, \min\{r^*, \epsilon\})$ 8: $V \leftarrow V \cup \{x_{new}\}$ 9: $c_{min} \leftarrow \text{COST}(x_{nearest}) + \text{COST}(Line(x_{nearest}, x_{new}))$ for $x_{near} \in X_{near}$ do 10: ▷ Extend along a minimum-cost path if COLLISIONFREE(x_{near}, x_{new}) then 11: 12: if $COST(x_{near}) + COST(Line(x_{near}, x_{new})) < c_{min}$ then 13: $x_{min} \leftarrow x_{near}$ $c_{min} \leftarrow \text{COST}(x_{near}) + \text{COST}(Line(x_{near}, x_{new}))$ 14: $E \leftarrow E \cup \{(x_{min}, x_{new})\}$ 15: 16: for $x_{near} \in X_{near}$ do Rewire the tree if COLLISIONFREE(*x*_{new}, *x*_{near}) then 17: if $COST(x_{new}) + COST(Line(x_{new}, x_{near})) < COST(x_{near})$ then 18: 19: $x_{parent} \leftarrow PARENT(x_{near})$ $E \leftarrow (E \setminus \{(x_{parent}, x_{near})\}) \cup \{(x_{new}, x_{near})\}$ 20: 21: return G = (V, E)

RRT vs RRT*



Same nodes in the tree, only the edge connections are different. Notice how the RRT* edges are almost straight lines (optimal paths).

RRT vs RRT*



Same nodes in the tree, only the edge connections are different. Notice how the RRT* edges are almost straight lines (optimal paths).