ECE276B: Planning & Learning in Robotics
Lecture 8: Sampling-based Planning

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Zhichao Li: zhI355@eng.ucsd.edu
Ehsan Zobeidi: ezobeidi@eng.ucsd.edu
Ibrahim Akbar: iakbar@eng.ucsd.edu

UCSan Diego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

mailto:natanasov@ucsd.edu
mailto:zhl355@eng.ucsd.edu
mailto:ezobeidi@eng.ucsd.edu
mailto:iakbar@eng.ucsd.edu

Search-based vs Sampling-based Planning

» Search-based planning:

>
>

>

Generates a systematic discrete representation (graph) of Cpee

Searches the representation for a path guaranteeing to find one if it exists
(resolution complete)

Can interleave the representation construction with the search, i.e., adds
nodes only when necessary

Provides suboptimality bounds on the solution

Can get computationally expensive in high dimensions

Search-based vs. Sampling-based Planning

» Sampling-based planning:

> Generates a sparse sample-based representation (graph) of Cpee

» Searches the representation for a path guaranteeing that the probability of
finding one if it exists approaches 1 as the number of iterations — oo
(probabilistically complete)

» Can interleave the representation construction with the search, i.e., adds
samples only when necessary

» Provides asymptotic suboptimality bounds on the solution

» Well-suited for high-dimensional planning as it is faster and requires less
memory than search-based planning in many domains

Motion Planning Problem

» Configuration space: C; Obstacle space: C,ps; Free space: Cgree
» Initial state: xs € Cpee; Goal state: x; € Chree
» Path: a continuous function @ : [0,1] — C; Set of all paths: Q

» Feasible path: a continuous function Q : [0,1] — Cpee such that
Q(0) = xs and Q(1) = x,; Set of all feasible paths: Qs ,

» Motion Planning Problem Given a path planning problem
(Cfree, Xs, X-) and a cost function J : Q — Rxg, find a feasible path Q*
such that:

J(Q") = min J(Q)

QeQs,+

Report failure if no such path exists.

Primitive Procedures for Sampling-based Motion Planning

» SAMPLE: returns iid samples from C
» SAMPLEFREE: returns iid samples from Cree

» NEAREST: given a graph G = (V, E) with V C C and a point x € C,
returns a vertex v € V that is closest to x:
NEAREST((V, E), x) := arg min ||x — v/|
veV
» NEAR: given a graph G = (V,E) with V C C, a point x € C, and
r > 0, returns the vertices in V that are within a distance r from x:

NEAR((V,E),x,r) ={ve V||x—v| <r}
» STEER: given points x,y € C and € > 0, returns a point z € C that

minimizes ||z — y|| while remaining within € from x:

STEER((x, y) := argmin ||z — y]|
z:||z—x||<e
» COLLISIONFREE: given points x,y € C, returns TRUE if the line
segment between x and y lies in Cgee and FALSE otherwise.

Probabilistic Roadmap (PRM)

Step 1. Preprocessing Phase: Build a roadmap
(graph) G which, hopefully, should be
accessible from any point in Cgee

> Nodes: randomly sampled valid
configurations x; € Cree

> Edges: added between samples that
are easy to connect with a simple local
controller (e.g., follow straight line)

Step 2. Query Phase: Given a start configuration xs and goal configuration
Xr, connect them to the roadmap G using a local planner, then
search the augmented roadmap for a shortest path from x5 to x;

» Pros and Cons:
» Simple and highly effective in high dimensions
» Can result in suboptimal paths, no guarantees on suboptimality
> Difficulty with narrow passages
» Useful for multiple queries with different start and goal in the same
environment

Step 1: Preprocessing Phase

Algorithm 1 PRM (preprocessing phase)

1: V0, E«~0
2: fori=1,...,ndo

3: Xrand <~ SAMPLEFREE()

4: V + VU {Xand }

5: for x € NEAR((V, E), Xrand, r) do > May use k nearest vertices
6: if (not G.same_component(Xrand, X)) and COLLISIONFREE(Xand, X) then

7 E «+ E U {(Xrand; X), (X, Xrand) }

8: return G = (V,E)
Q

’
|

Optimal Probabilistic Roadmap

» S. Karaman and E. Frazzoli, “Incremental Sampling-based Algorithms
for Optimal Motion Planning,” IJRR, 2010.

» To achieve an asymptotically optimal PRM, the connection radius r
should decrease such that the average number of connections attempted
from a roadmap vertex is proportional to log(n):

1/d 1/d 1/d
reof1a 1 Vo/(le,ee) log(n)
d Vol(Unit d-ball) n

Algorithm 2 PRM*

1: V « {x} U{SAMPLEFREE()}_;; E < 0
2: for v € V do

3 for x € NEAR((V, E),v,r")\ {v} do
4: if COLLISIONFREE(v, x) then

5: E +— EU{(v,x),(x,v)}

6: return G = (V,E)

PRM vs RRT

» PRM: a graph constructed from random samples. It can be search for a
path whenever a start node xs and goal node x; are specified. PRMs are
well-suited for repeated planning between different pairs of x5 and x;
(multiple queries)

» RRT: a tree is constructed from random samples with root xs. The tree
is grown until it contains a path to x.. RRTs are well-suited for
single-shot planning between a single pair of x5 and x. (single query)

> Rapidly Exploring Random Tree (RRT):
» One of the most popular planning techniques
» Introduced by Steven LaValle in 1998
> Many, many, many extensions and variants (articulated robots,
kinematics, dynamics, differential constraints)
» There exist extensions of RRTs that try to reuse a previously constructed
tree when replanning in response to map updates

Rapidly Exploring Random Tree (RRT)

» Sample a new configuration Xx,s,4, find the nearest neighbor x,esr in G

and connect them:
Xnear

Xrand
Xs Xs

» If the nearest point x,ear lies on an existing edge, then split the edge:

Xnear

Xs Xrand
» If there is an obstacle, the edge travels up to the obstacle boundary, as

far as allowed by a collision detection algorithm
Xnear

10

Rapidly Exploring Random Tree (RRT)

» What about the goal? Occasionally (e.g., every 100 iterations) add the
goal configuration x; and see if it gets connected to the tree

» RRT can be implemented in the original workspace (need to do collision
checking) or in configuration space

» Challenges with a C-Space implementation:
» What distance function do we use to find the nearest configuration?
> e.g., distance along the surface of a torus for a 2 link manipulator
» An edge represents a path in C-Space. How do we construct a
collision-free path between two configurations?

> We do not have to connect the configurations all the way. Instead, use a

small step size € and a local steering function to get closer to the second
configuration.

11

Rapidly Exploring Random Tree (RRT)

» No preprocessing: starting with an initial configuration xs build a
graph (actually, tree) until the goal configuration x; is part of it

Algorithm 3 RRT

1 Ve {x}H E+0
2: fori=1...ndo
3: Xrand <— SAMPLEFREE()
Xnearest < I\IEAREST((\/7 E), Xrand)
Xnew <— STEER(Xnearest, Xrand)
if COLLISIONFREE(Xpearest; Xnew) then
V<« Vu {Xnew}; E+ EU {(Xnearest,Xnew)}

8: return G = (V,E)

.
Xrand

Nog s

12

Rapidly Exploring Random Tree (RRT)
» RRT without € (called Rapidly Exploring Dense Tree (RDT)):

G

)

45 iterations 2345 iterations

» RRT with €

Example: RRT Algorithm

» Start node xs
» Goal node x;

» Gray obstacles

14

Example: RRT Algorithm

» Sample X,3p4 in the workspace
» Steer from x5 towards x,,,4 by a fixed distance € to get x;

» If the segment from xs to x; is collision-free, insert x; into the tree

15

Example: RRT Algorithm

» Sample X34 in the workspace
» Find the closest node X,ear 10 Xpand
» Steer from Xpesr towards x,.ng by a fixed distance € to get x»

» If the segment from X,ear to X2 is collision-free, insert x, into the tree

Example: RRT Algorithm

» Sample x,3p4 in the workspace
» Find the closest node Xpear 1O Xrand
» Steer from Xpear towards x,,ng by a fixed distance € to get x3

» If the segment from xpesr to x3 is collision-free, insert x3 into the tree

xe O
O @,

COHlblOIl
© o

Example: RRT Algorithm

» Sample X,5,q in the workspace
» Find the closest node Xpear tO0 Xrand
» Steer from Xpesr towards x,.ng by a fixed distance € to get x3

» If the segment from xpesr to x3 is collision-free, insert x3 into the tree

18

Example: RRT Algorithm

» Continue until a node that is a distance € from the goal is generated

» Either terminate the algorithm or search for additional feasible paths

19

Sampling in RRTs

» The vanilla RRT algorithm provides uniform coverage of space

b

» Alternatively, the growth may be biased by the largest Voronoi region

_ P)\

.

Sampling in RRTs

» Goal-biased sampling: with probability (1 — pg), Xrang is chosen as a
uniform sample in Cgee and with probability pg, Xrang = X7

ey

¢

-,
] |
i
i

.......

21

Handling Robot Dynamics with Steer()

> Steer() extends the tree towards a given random sample Xang

» Consider a car-like robot with non-holonomic constraints (can't slide
sideways) in SE(2). Obtaining a feasible path from x,2ns = (0, 0,90°) to
Xnear = (1,0,90°) is as hard as the original problem

» Steer() resolves this by not requiring the motion to get all the way to
Xrand- We just apply the best control input for a fixed duration to obtain
Xnew and a dynamically feasible trajectory to it

22

Example: 5 DOF Kinodynamic Planning for a Car

23

Bug Traps

» Growing two trees, one from start and one for goal, often has better
performance in practice.

24

Bi-directional RRT

Algorithm 4 Bi-directional RRT

L Vo {x} Ea+0; Vo< {x}; B 0
2. fori=1...ndo

3 Xwand < SAMPLEFREE()

4: Xnearest $— 1\IEAREST((\/37 Ea), Xrand)
5: Xc < STEER(Xnearest s Xrand)

6: if Xc # Xnearest then
7.
8

Vi <+ VU {Xc}; E; + {(Xnearesh XC): (XC7 Xnearest)}
Xr/warest — NEAREST((Vba Eb)7 XC)

9: X, < STEER(Xearest, Xc)
10: if X! # X)earest then

11: Vb <~ Vb U {Xé}; Eb — {(Xllvearesh Xé)7 (X<I:7 Xrgearest)}
12: if x. = x. then return SOLUTION

13: if |Vi| < |Va| then SWAP((Va, Es), (s, Eb))
14: return FAILURE

25

RRT-Connect (J. Kuffner and S. LaValle, ICRA, 2000)

» Bi-directional tree + relax the € constraint on tree growth
Algorithm 5 RRT-Connect

L Vo {x} Ea+0; Vo< {x}; B 0

2: fori=1...ndo

3 Xrand <~ SAMPLEFREE()

4: if not EXTEND((V., E5), Xrand) = Trapped then

5: if CONNECT((Vb, Eb), Xnew) = Reached then > x,e, was just added to (Va, E,)
6: return PATH((Va, Ea), (Vb, Eb))

7 SWAP((Vs, EJ), (Vb, Eb))

8: return Failure

9: function EXTEND((V, E), x)

10: Xnearest <— NEAREST((V/, E), x)

11: Xnew — STEER(Xnearest, X)

12: if COLLISIONFREE(Xpear, Xnew) then

13: V {Xnew}; E {(Xneaanew), (Xnew,Xnear)}

14: if Xpew = x then return Reached else return Advanced

15: return Trapped

16: function CoNNECT((V, E), x)

17: repeat status < EXTEND((V, E), x) until status # Advanced

18: return status 2%

Example: Single RRT-Connect lteration

qinit

qgoal

27

Example: Single RRT-Connect lteration

» One tree is grown to a random target

qinit

qgoal

28

Example: Single RRT-Connect lteration

» The new node becomes a target for the other tree

qtarget

qinit

qgoal

29

Example: Single RRT-Connect lteration

» Determine the nearest node to the target

qtarget

qgoal

30

Example: Single RRT-Connect lteration

» Try to add a new collision-free branch

qgoal

31

Example: Single RRT-Connect lteration

» If successful, keep extending the branch

qnew

32

Example: Single RRT-Connect lteration

» If successful, keep extending the branch

new

/ qtarget

qnear

qgoal

33

Example: Single RRT-Connect lteration

» If successful, keep extending the branch

qnew

\ qtarget

qnear
qinit

qgoal

34

Example: Single RRT-Connect lteration

» If the branch reaches all the way to the target, a feasible path is found!

35

Example: Single RRT-Connect lteration

» If the branch reaches all the way to the target, a feasible path is found!

36

Example: RRT-Connect

\
\

37

Example: RRT-Connect

38

Example: RRT-Connect

39

Why are RRTs so popular?

» The algorithm is very simple once the following subroutines are
implemented:
» Random sample generator
» Nearest neighbor
> Collision checker
> Steer

» Pros:

P Sparse exploration requires little memory and computation
» RRTs find feasible paths quickly in practice
» Can add heuristics on top, e.g., bias the sampling towards the goal

» Cons:

» Solutions can be highly sub-optimal and require path smoothing as a
post-processing step
» The smoothed path is still restricted to the same homotopy class

40

Path Smoothing

» Start with the initial point (1)

» Make connections to subsequent points
in the path (2), (3), (4), ...

» When a connection collides with
obstacles, add the previous waypoint to
the smoothed path

» Continue smoothing from this point on

41

Search-based vs Sampling-based Planning
» RRT:

» Sparse exploration requires little memory and computation
> Solutions can be highly sub-optimal and require post-processing (path
smoothing) which may be difficult

> Weighted A*:
» Systematic exploration may require a lot of memory and computation
> Returns a path with (sub-)optimality guarantees

42

RRT: Probabilistic Completeness but No Optimality

» RRT and RRT-Connect are probabilistically complete: the probability
that a feasible path will be found if one exists, approaches 1
exponentially as the number of samples approaches infinity

» Assuming Cgee is connected, bounded, and open, for any x € Cgree,
Nlim P(||x —Xnear|| < €) = 1, where xpear is the closest node to x in T
— 00

» RRT is not optimal: the probability that RRT converges to an optimal
solution, as the number of samples approaches infinity, is zero under
reasonable technical assumptions (S. Karaman, E. Frazzoli, RSS'10)

» Problem: once we build an RRT we never modify it

» RRT* (S. Karaman and E. Frazzoli, “Incremental Sampling-based
Algorithms for Optimal Motion Planning,” 1JRR, 2010)

» RRT + rewiring of the tree to ensure asymptotic optimality
> Contains two steps: extend (similar to RRT) and rewire (new)

43

RRT*: Extend Step

>

>

Generate a new potential node x,e, identically to RRT

Instead of finding the closest node in the tree, find all nodes within a
neighborhood N of radius min{r*, e} where

1/d 1/d (1/d)
rsof14 1 VO/(.Cfree) log | V|
d Vol(Unit d-ball) |V]

Let Xnearest = arg Min gx.... + Cxponr.xnew PE the node in A on the
Xnear €
currently known shortest path from xs to xpen

V VU {Xnew}

E+~EU {(Xnearesta Xnew)}

Set the label of xpey to:

aneW = gxnearest + CXnearesthew

44

RRT*: Rewire Step
» Check all nodes x,ear € N to see if re-routing through x,e, reduces the
path length (label correcting!):

P I Bxren T Cxvew xner < Bxnearr then remove the edge between Xpesr and its
parent and add a new edge between Xpear and Xpew

45

Algorithm 6 RRT*

1 Ve {x}H E+ 0
2: fori=1...ndo

15:
16:
17:
18:
19:
20:

21: return G = (V,E)

Xrand <— SAMPLEFREE()

Xnearest $<— I\IEAREST((\/7 E)7 Xrand)
Xnew $— STEER(Xnearesn Xrand)

if COLLISIONFREE(Xpearest; Xnew) then

Xnear <= NEAR((V/, E), Xnew, min{r*, €})
V — VU {Xnew }
Cmin < COST(Xnearsst) + COST(Line(Xnearesty Xnew))
for Xpear € Xnear do > Extend along a minimum-cost path
if COLLISIONFREE(Xpear, Xnew) then
if COST(Xnear) + COST(Line(Xnear, Xnew)) < Cmin then
Xmin < Xnear
Cmin < COST(Xnear) + COST(Line(Xnear, Xnew))
E + E U {(Xmin, Xnew }
for xnpear € Xnear do > Rewire the tree
if COLLISIONFREE(Xpew, Xnear) then
if COST(Xnew) + COST(Line(Xnew, Xnear)) < COST(Xnear) then
Xparent <— PARENT(Xpear)
E + (E\ {(Xparent, Xnear)}) u {(XneW7 Xnear)}

46

2 o 2

(l;) RRT*

» Same nodes in the tree, only the edge connections are different. Notice
how the RRT* edges are almost straight lines (optimal paths).

47

RRT vs RRT*

» Same nodes in the tree, only the edge connections are different. Notice
how the RRT* edges are almost straight lines (optimal paths).

48

