ECE276B: Planning & Learning in Robotics Lecture 9: Infinite Horizon Problems and Stochastic Shortest Path

Instructor:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants: Zhichao Li: zhl355@eng.ucsd.edu

Ehsan Zobeidi: ezobeidi@eng.ucsd.edu

Ibrahim Akbar: iakbar@eng.ucsd.edu

UC San Diego

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Finite-Horizon Stochastic Optimal Control (Recap)

Recall the finite-horizon stochastic optimal control problem:

$$\min_{\pi_{t:T-1}} V_t^{\pi}(x_t) := \mathbb{E}_{x_{t+1:T}} \left[\gamma^{T-t} \mathfrak{q}(x_T) + \sum_{\tau=t}^{T-1} \gamma^{\tau-t} \ell_{\tau}(x_{\tau}, \pi_{\tau}(x_{\tau})) \ \middle| \ x_t \right]$$
s.t. $x_{\tau+1} \sim p_f(\cdot \mid x_{\tau}, \pi_{\tau}(x_{\tau})), \quad \tau = t, \dots, T-1$
 $x_{\tau} \in \mathcal{X},$
 $\pi_{\tau}(x_{\tau}) \in \mathcal{U}(x_{\tau})$

 $x \in \mathcal{X}$ state $u \in \mathcal{U}(x)$ control $p_f(x' \mid x, u)$ motion model x' = f(x, u, w)motion model $\ell(x, u)$ stage cost $\mathfrak{q}(x)$ terminal cost T, γ planning horizon and discount factor $\pi_{\tau}(x)$ policy function at time τ $V_{\tau}^{\pi}(x)$ value function at state x, time τ , under policy $\pi_{\tau:T-1}$

Finite-Horizon Stochastic Optimal Control (Recap)

Episode: a random sequence ρ_t of states and controls from the start state x_t, following the system dynamics to termination under policy π:

$$\rho_t := x_t, u_t, x_1, u_1, \dots, x_{T-1}, u_{T-1}, x_T \sim \pi$$

Long-term cost: a random variable defined as the sum of the discounted stage costs along an episode ρ_t := x_{t+1:T}, u_{t:T-1}:

$$L_t(\rho_t) := L_t(x_{t+1:T}, u_{t:T-1}) := \gamma^{T-t}\mathfrak{q}(x_T) + \sum_{\tau=t}^{T-1} \gamma^{\tau-t}\ell_{\tau}(x_{\tau}, u_{\tau})$$

- Value function: $V_t^{\pi}(x) := \mathbb{E}_{\rho_t \sim \pi} [L_t(\rho_t) \mid x_t = x]$
- Optimal value function: $V_t^*(x) := \min_{\pi} V_t^{\pi}(x)$
- Optimal policy: $\pi^*_{t:T-1} := \underset{\pi}{\arg\min} V^{\pi}_t(x)$ for all $x \in \mathcal{X}$
- The optimal value function and policy can be computed via the Dynamic Programming (DP) algorithm

Finite-Horizon Deterministic Optimal Control (Recap)

Deterministic finite-state (DFS) optimal control problem:

$$\min_{u_{t:\tau-1}} V_t^{u_{t:\tau-1}}(x_t) := \gamma^{T-t}\mathfrak{q}(x_T) + \sum_{\tau=t}^{T-1} \gamma^{\tau-t}\ell_{\tau}(x_{\tau}, u_{\tau})$$
s.t. $x_{\tau+1} = f(x_{\tau}, u_{\tau}), \quad \tau = t, \dots, T-1$
 $x_{\tau} \in \mathcal{X},$
 $\pi_{\tau}(x_{\tau}) \in \mathcal{U}(x_{\tau})$

- An open-loop policy is optimal for the DFS problem
- The DFS problem is equivalent to the deterministic shortest path (DSP) problem, which led to the forward DP and label correcting algorithms

Infinite-Horizon Stochastic Optimal Control

- ► In this lecture, we will consider what happens with the optimal control problem as the planning horizon T goes to infinity
- To get a meaningful problem, we consider time-invariant stage costs and no terminal cost:

$$\min_{\pi_{t:T-1}} V_t^{\pi}(x_t) := \mathbb{E}_{x_{t+1:T}} \left[\sum_{\tau=t}^{T-1} \gamma^{\tau-t} \ell(x_{\tau}, \pi_{\tau}(x_{\tau})) \middle| x_t \right]$$
s.t. $x_{\tau+1} \sim p_f(\cdot \mid x_{\tau}, \pi_{\tau}(x_{\tau})), \quad \tau = t, \dots, T-1$
 $x_{\tau} \in \mathcal{X},$
 $\pi_{\tau}(x_{\tau}) \in \mathcal{U}(x_{\tau})$

As T → ∞, the complexity collapses since the time-invariant dynamics and state costs lead to a time-invariant value function and associated optimal policy.

Infinite-Horizon Dynamic Programming

▶ For fixed *T*, the DP algorithm is:

$$egin{aligned} & V_{\mathcal{T}}(x) = 0, \quad orall x \in \mathcal{X} \ & V_{\tau}(x) = \min_{u \in \mathcal{U}(x)} \ell(x,u) + \gamma \mathbb{E}_{x' \sim p_f(\cdot | x, u)} \left[V_{\tau+1}(x')
ight], \quad orall x \in \mathcal{X}, au = T-1, \dots, t \end{aligned}$$

▶ Bellman Equation: as $T \to \infty$, the sequence ..., $V_{t+1}(x)$, $V_t(x)$, ... converges to a fixed point V(x) and the DP algorithm reduces to:

$$V(x) = \min_{u \in \mathcal{U}(x)} \left\{ \ell(x, u) + \gamma \mathbb{E}_{x' \sim p_f(\cdot | x, u)} \left[V(x') \right] \right\}, \quad \forall x \in \mathcal{X}$$

Assuming this convergence, V(x) is equal to the optimal cost-to-go V*(x), which suggests that both the value function and the opitmal policy are time-invariant, or stationary.

Value Iteration Algorithm

- ► The Bellman Equation may seem simple but it needs to be solved for all x ∈ X simultaneously, which can be done analytically only for very few problems (e.g., the Linear Quadratic Regulator (LQR) problem).
- ▶ Let $\bar{V}_0(x) := V_T(x)$. Below, $\bar{V}_0(x)$ corresponds to the terminal value function as $T \to \infty$
- Value Iteration (VI) algorithm: applies the DP recursion with an arbitrary initialization V
 ₀(x) for all x ∈ X:

$$\bar{V}_{t+1}(x) = \min_{u \in \mathcal{U}(x)} \Big[\ell(x, u) + \gamma \sum_{x' \in \mathcal{X}} p_f(x' \mid x, u) \bar{V}_t(x') \Big], \qquad \forall x \in \mathcal{X}$$

- ▶ VI requires infinite iterations for $\bar{V}_t(x)$ to converge to $V^*(x)$
- ▶ In practice, define a threshold for $|ar{V}_{t+1}(x) ar{V}_t(x)|$ for all $x \in \mathcal{X}$

The Stochastic Shortest Path (SSP) Problem

- \blacktriangleright The convergence on the previous slide does not hold for all problems when $\gamma=1$
- The SSP problem is one instance in which the convergence holds and solving the Bellman Equation yields the optimal cost-to-go and an associated optimal stationary policy
- Consider a finite state problem with X̃ := {0, 1, ..., n} and a finite control set Ũ(x) for all x ∈ X̃
- Motion model: specified by matrices:

$$\tilde{P}_{ij}^{u} = \mathbb{P}(x_{t+1} = j \mid x_t = i, u_t = u) = \tilde{p}_f(j \mid x_t = i, u_t = u)$$

► Terminal State Assumption: Suppose that state 0 is a cost-free termination state (the goal), i.e., P^u_{0,0} = p̃_f(0 | 0, u) = 1 and l(0, u) = 0, ∀u ∈ U(0)

Existence of Solutions to the SSP Problem

- Proper Stationary Policy: a policy π for which there exists an integer m such that P(x_m = 0 | x₀ = x) > 0 for all x ∈ X̃ subject to transitions governed by the motion model and policy π.
- Proper Policy Assumption: there exists at least one proper policy π. Furthermore, for every improper policy π', the corresponding value function V^{π'}(x) is infinite for at least one state x ∈ X̃.
- The above assumption is required to ensure that:
 - there exists a unique solution to the Bellman Equation for the SSP
 - \blacktriangleright a policy exists for which the probability of reaching the termination state goes to 1 as $\mathcal{T}\to\infty$
 - policies that do not reach the termination state incur infinite cost (i.e., there are no non-positive cycles as in the DSP problem)

Theorem: Bellman Equation for the SSP

Under the termination state and proper policy assumptions, the following are true for the SSP problem:

1. Given any initial conditions $\bar{V}_0(1), \ldots, \bar{V}_0(n)$ (corresp. to $T = \infty$), the sequence $\bar{V}_t(x)$ generated by the iteration:

$$ar{\mathcal{V}}_{t+1}(x) = \min_{u \in ilde{\mathcal{U}}(x)} \Big[ilde{\ell}(x,u) + \sum_{x' \in ilde{\mathcal{X}} \setminus \{0\}} ilde{p}_f(x'\mid,x,u) ar{V}_t(x') \Big], \quad orall x \in ilde{\mathcal{X}} \setminus \{0\}$$

converges to the optimal cost $V^*(x)$ for all $x \in \tilde{\mathcal{X}} \setminus \{0\}$

2. The optimal costs satisfy the Bellman Equation:

$$V^*(x) = \min_{u \in \tilde{\mathcal{U}}(x)} \Big[\tilde{\ell}(x,u) + \sum_{x' \in \tilde{\mathcal{X}} \setminus \{0\}} \tilde{p}_f(x'\mid,x,u) V^*(x') \Big], \quad orall x \in \tilde{\mathcal{X}} \setminus \{0\}$$

- 3. The solution to the Bellman Equation is unique
- 4. The minimizing *u* of the Bellman Equation for each $x \in \tilde{X} \setminus \{0\}$ gives an optimal policy, which is **stationary**

Theorem Intuition

- We give intuition under a stronger assumption: ∃m ∈ N such that for any admissible policy P(x_m = 0 | x₀ = x) > 0, subject to transitions governed by the motion model and π, i.e., there is a positive probability that the termination state will be reached regardless of the initial state.
- 1. Let $\bar{V}_0(0) = 0$ and consider the following finite-horizon problem:

$$V_0^{\pi}(x) = \mathbb{E}\left[\sum_{t=0}^{T-1} \tilde{\ell}(x_t, \pi_t(x_t)) + \bar{V}_0(x_T) \mid x_0 = x\right]$$

where $\overline{V}_0(x_T)$ is the terminal cost. As $T \to \infty$, the probability that state 0 is reached approaches 1 for all policies and, since $\overline{V}_0(0) = 0$, the terminal cost does not influence the solution. The DP algorithm with re-labeled time index k := T - t applied to this problem is:

$$\bar{V}_{k+1}(x) = \min_{u \in \tilde{\mathcal{U}}(x)} \left(\tilde{\ell}(x, u) + \sum_{x' \in \tilde{\mathcal{X}} \setminus \{0\}} \tilde{p}_f(x' \mid x, u) \bar{V}_k(x') \right), \quad \forall x \in \tilde{\mathcal{X}} \setminus \{0\}, \, k = 0, \dots, \, \mathcal{T} \quad \left(\bigstar \right)$$

where state 0 can be excluded because $\tilde{\ell}(0, u) = 0$ by assumption and $\tilde{p}_f(x' \mid 0, u) = 0$ for all $x' \in \tilde{\mathcal{X}} \setminus \{0\}$.

Theorem Intuition

- 1. Thus, $\bar{V}_T(x) = V_0^*(x)$ is the optimal cost for the finite horizon problem and as $T \to \infty$ it converges to the optimal cost of the infinite horizon problem due to the assumption that the terminal state is reached in finite time.
- 2. Follows from taking limits of both sides of (*) above.
- Let J
 ₀(1),..., J
 ₀(n) and V
 ₀(1),..., V
 ₀(n) be two different solutions to the Bellman Equation. If both are used as initial conditions for (*) above, they both converge after 1 iteration. This leads to two different optimal costs which is a contradiction.

- It turns out that the infinite-horizon discounted problem (no terminal state assumption but future stage costs are discounted by γ^t for γ ∈ [0,1)) is equivalent to the SSP problem.
- Given a Discounted problem, we can define an auxiliary SSP problem and show that it is equivalent
- ▶ Discounted Problem: $\mathcal{X} := \{1, ..., n\}$, $\mathcal{U}(x)$, $p_f(x' \mid x, u)$, $\ell(x, u)$

▶ **SSP**: $\tilde{\mathcal{X}} := \mathcal{X} \cup \{0\}$, where 0 is a virtual terminal state,

$$ilde{\mathcal{U}}(x) := egin{cases} \mathcal{U}(x), & x \in \mathcal{X} \ \{stay\}, & x = 0 \end{cases}$$

SSP motion model:

$$\begin{split} \tilde{p}_f(x' \mid x, u) &= \gamma p_f(x' \mid x, u) & \text{for } u \in \tilde{\mathcal{U}}(x) \text{ and } x, x' \in \mathcal{X} \\ \tilde{p}_f(0 \mid x, u) &= 1 - \gamma, & \text{for } u \in \tilde{\mathcal{U}}(x) \text{ and } x \in \mathcal{X} \\ \tilde{p}_f(x' \mid 0, u) &= 0, & \text{for } u = stay \text{ and } x' \in \mathcal{X} \\ \tilde{p}_f(0 \mid 0, u) &= 1, & \text{for } u = stay \end{split}$$

Terminal state and proper policy assumptions: since γ < 1, there is a non-zero probability to go to state 0 regardless of the control input and initial state and hence the SSP assumptions are satisfied.

► SSP Cost:
$$\tilde{\ell}(x, u) = \ell(x, u),$$
 for $u \in \tilde{\mathcal{U}}(x), x \in \mathcal{X}$
 $\tilde{\ell}(0, stay) = 0$

- There is a one-to-one mapping between a policy π̃ of the auxiliary SSP to a policy π of the discounted problem since π̃ just trivially assigns π̃_t(0) = stay while the rest remains the same
- Next, we show that for all $x \in \mathcal{X}$:

$$\tilde{V}^{\tilde{\pi}}(x) = \mathbb{E}\left[\sum_{t=0}^{T-1} \tilde{\ell}(\tilde{x}_t, \tilde{\pi}_t(\tilde{x}_t)) \mid x_0 = x\right] = V^{\pi}(x) = \mathbb{E}\left[\sum_{t=0}^{T-1} \gamma^t \ell(x_t, \pi_t(x_t)) \mid x_0 = x\right]$$

where the expectations are over $\tilde{x}_{1:T}$ and $x_{1:T}$ and subject to transitions induced by $\tilde{\pi}$ and π , respectively.

Conclusion: since V^π(x) = V^π(x) for all x ∈ X and the mapping of π to π minimizes V^π(x), by solving the Bellman Equation for the auxiliary SSP, we can obtain an optimal policy and the optimal cost-to-go for the infinite-horizon discounted problem.

$$\begin{split} \mathbb{E}_{\tilde{x}_{1:T}}[\tilde{\ell}(\tilde{x}_{t},\tilde{\pi}_{t}(\tilde{x}_{t})) \mid x_{0} = x] &= \sum_{\bar{x}_{1:T} \in \tilde{\mathcal{X}}^{T}} \tilde{\ell}(\bar{x}_{t},\tilde{\pi}_{t}(\bar{x}_{t})) \mathbb{P}(\tilde{x}_{1:T} = \bar{x}_{1:T} \mid x_{0} = x) \\ &= \sum_{\bar{x}_{t} \in \tilde{\mathcal{X}}} \tilde{\ell}(\bar{x}_{t},\tilde{\pi}_{t}(\bar{x}_{t})) \mathbb{P}(\tilde{x}_{t} = \bar{x}_{t} \mid x_{0} = x) \\ &\frac{\tilde{\ell}(0,stay,0)=0}{2} \sum_{\bar{x}_{t} \in \mathcal{X}} \tilde{\ell}(\bar{x}_{t},\tilde{\pi}_{t}(\bar{x}_{t})) \mathbb{P}(\tilde{x}_{t} = \bar{x}_{t},\tilde{x}_{t} \neq 0 \mid x_{0} = x) \\ &= \sum_{\bar{x}_{t} \in \mathcal{X}} \tilde{\ell}(\bar{x}_{t},\tilde{\pi}_{t}(\bar{x}_{t})) \mathbb{P}(\tilde{x}_{t} = \bar{x}_{t} \mid x_{0} = x, \tilde{x}_{t} \neq 0) \mathbb{P}(\tilde{x}_{t} \neq 0 \mid x_{0} = x) \\ &\stackrel{(?)}{=} \sum_{\bar{x}_{t} \in \mathcal{X}} \tilde{\ell}(\bar{x}_{t},\tilde{\pi}_{t}(\bar{x}_{t})) \mathbb{P}(x_{t} = \bar{x}_{t} \mid x_{0} = x) \gamma^{t} \\ &= \sum_{\bar{x}_{t} \in \mathcal{X}} \ell(\bar{x}_{t},\pi_{t}(\bar{x}_{t})) \mathbb{P}(x_{t} = \bar{x}_{t} \mid x_{0} = x) \gamma^{t} \\ &= \mathbb{E}_{x_{1:T}} \left[\gamma^{t} \ell(x_{t},\pi_{t}(x_{t})) \mid x_{0} = x \right] \end{split}$$

(?) Show that for transitions $\tilde{p}_f(x' \mid x, u)$ under $\tilde{\pi}$, $\mathbb{P}(\tilde{x}_t \neq 0 \mid x_0 = x) = \gamma^t$ For any $x \in \mathcal{X}$ and $u \in \tilde{\mathcal{U}}(x)$:

$$\mathbb{P}(\tilde{x}_{t+1} \neq 0 \mid \tilde{x}_t = x) = 1 - p_f(0 \mid x, u) = \gamma$$

Similarly, for any $x \in \mathcal{X}$

$$\begin{split} \mathbb{P}(\tilde{x}_{t+2} \neq 0 \mid \tilde{x}_t = x) &= \sum_{x' \in \mathcal{X}} \mathbb{P}(\tilde{x}_{t+2} \neq 0 \mid \tilde{x}_{t+1} = x', \tilde{x}_t = x) \mathbb{P}(\tilde{x}_{t+1} = x' \mid \tilde{x}_t = x) \\ &= \sum_{x' \in \mathcal{X}} \mathbb{P}(\tilde{x}_{t+2} \neq 0 \mid \tilde{x}_{t+1} = x') \mathbb{P}(\tilde{x}_{t+1} = x' \mid \tilde{x}_t = x) \\ &= \gamma \sum_{x' \in \mathcal{X}} \tilde{p}_f(x' \mid x, \tilde{\pi}(x)) = \gamma^2 \end{split}$$

▶ Similarly, we can show that for any m > 0: $\mathbb{P}(\tilde{x}_{t+m} \neq 0 \mid x_t = x) = \gamma^m$

(?) Show that
$$\mathbb{P}(\tilde{x}_t = \bar{x}_t \mid x_0 = x, \tilde{x}_t \neq 0) = \mathbb{P}(x_t = \bar{x}_t \mid x_0 = x)$$

For any $x, x' \in \mathcal{X}$ and $u = \tilde{\pi}_t(x) = \pi_t(x)$, we have

$$\mathbb{P}(\tilde{x}_{t+1} = x' | \tilde{x}_{t+1} \neq 0, \tilde{x}_t = x, \tilde{u}_t = u) = \frac{\mathbb{P}(\tilde{x}_{t+1} = x', \tilde{x}_{t+1} \neq 0 | \tilde{x}_t = x, \tilde{u}_t = u)}{\mathbb{P}(\tilde{x}_{t+1} \neq 0 | \tilde{x}_t = x, \tilde{u}_t = u)}$$
$$= \frac{\tilde{p}_f(x' | x, u)}{\gamma} = p_f(x' | x, u) = \mathbb{P}(x_{t+1} = x' | x_t = x, u_t = u)$$

Similarly, it can be shown that for $\bar{x}_t \in \mathcal{X}$:

$$\mathbb{P}(\tilde{x}_t = \bar{x}_t \mid x_0 = x, \tilde{x}_t \neq 0) = \mathbb{P}(x_t = \bar{x}_t \mid x_0 = x)$$

Bellman Equation for the Discounted Problem

Discounted Infinite-Horizon Problem:

$$V^*(x) = \min_{\pi} V^{\pi}(x) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \ell(x_t, \pi(x_t)) \mid x_0 = x\right]$$

s.t. $x_{t+1} \sim p_f(\cdot \mid x_t, \pi(x_t)),$
 $x_t \in \mathcal{X},$
 $\pi(x_t) \in \mathcal{U}(x_t)$

The optimal cost of the Discounted problem satisfies the Bellman Equation via the equivalence to the SSP problem:

$$V^*(x) = \min_{u \in \mathcal{U}(x)} \Big(\ell(x, u) + \gamma \sum_{x' \in \mathcal{X}} p_f(x' \mid x, u) V^*(x') \Big), \quad \forall x \in \mathcal{X}$$

- There exist several methods to solve the Bellman Equation for the Discounted and SSP problems:
 - Value Iteration
 - Policy Iteration
 - Linear Programming