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Finite-Horizon Stochastic Optimal Control (Recap)
I Recall the finite-horizon stochastic optimal control problem:

min
πt:T−1

V π
t (xt) := Ext+1:T

[
γT−tq(xT ) +

T−1∑
τ=t

γτ−t`τ (xτ , πτ (xτ ))

∣∣∣∣ xt
]

s.t. xτ+1 ∼ pf (· | xτ , πτ (xτ )), τ = t, . . . ,T − 1

xτ ∈ X ,
πτ (xτ ) ∈ U(xτ )

x ∈ X state
u ∈ U(x) control
pf (x ′ | x , u) motion model
x ′ = f (x , u,w) motion model
`(x , u) stage cost
q(x) terminal cost
T , γ planning horizon and discount factor
πτ (x) policy function at time τ
V π
τ (x) value function at state x , time τ , under policy πτ :T−1 2



Finite-Horizon Stochastic Optimal Control (Recap)
I Episode: a random sequence ρt of states and controls from the start

state xt , following the system dynamics to termination under policy π:

ρt := xt , ut , x1, u1, . . . , xT−1, uT−1, xT ∼ π

I Long-term cost: a random variable defined as the sum of the
discounted stage costs along an episode ρt := xt+1:T , ut:T−1:

Lt(ρt) := Lt(xt+1:T , ut:T−1) := γT−tq(xT ) +
T−1∑
τ=t

γτ−t`τ (xτ , uτ )

I Value function: V π
t (x) := Eρt∼π [Lt(ρt) | xt = x ]

I Optimal value function: V ∗t (x) := minπ V
π
t (x)

I Optimal policy: π∗t:T−1 := arg min
π

V π
t (x) for all x ∈ X

I The optimal value function and policy can be computed via the
Dynamic Programming (DP) algorithm
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Finite-Horizon Deterministic Optimal Control (Recap)

I Deterministic finite-state (DFS) optimal control problem:

min
ut:T−1

V
ut:T−1
t (xt) := γT−tq(xT ) +

T−1∑
τ=t

γτ−t`τ (xτ , uτ )

s.t. xτ+1 = f (xτ , uτ ), τ = t, . . . ,T − 1

xτ ∈ X ,
πτ (xτ ) ∈ U(xτ )

I An open-loop policy is optimal for the DFS problem

I The DFS problem is equivalent to the deterministic shortest path (DSP)
problem, which led to the forward DP and label correcting algorithms

4



Infinite-Horizon Stochastic Optimal Control

I In this lecture, we will consider what happens with the optimal control
problem as the planning horizon T goes to infinity

I To get a meaningful problem, we consider time-invariant stage costs and
no terminal cost:

min
πt:T−1

V π
t (xt) := Ext+1:T

[
T−1∑
τ=t

γτ−t`(xτ , πτ (xτ ))

∣∣∣∣ xt
]

s.t. xτ+1 ∼ pf (· | xτ , πτ (xτ )), τ = t, . . . ,T − 1

xτ ∈ X ,
πτ (xτ ) ∈ U(xτ )

I As T →∞, the complexity collapses since the time-invariant dynamics
and state costs lead to a time-invariant value function and associated
optimal policy.
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Infinite-Horizon Dynamic Programming

I For fixed T , the DP algorithm is:

VT (x) = 0, ∀x ∈ X
Vτ (x) = min

u∈U(x)
`(x , u) + γEx ′∼pf (·|x ,u)

[
Vτ+1(x ′)

]
, ∀x ∈ X , τ = T − 1, . . . , t

I Bellman Equation: as T →∞, the sequence . . . ,Vt+1(x),Vt(x), . . .
converges to a fixed point V (x) and the DP algorithm reduces to:

V (x) = min
u∈U(x)

{
`(x , u) + γEx ′∼pf (·|x ,u)

[
V (x ′)

]}
, ∀x ∈ X

I Assuming this convergence, V (x) is equal to the optimal cost-to-go
V ∗(x), which suggests that both the value function and the opitmal
policy are time-invariant, or stationary.
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Value Iteration Algorithm

I The Bellman Equation may seem simple but it needs to be solved for all
x ∈ X simultaneously, which can be done analytically only for very few
problems (e.g., the Linear Quadratic Regulator (LQR) problem).

I Let V̄0(x) := VT (x). Below, V̄0(x) corresponds to the terminal value
function as T →∞

I Value Iteration (VI) algorithm: applies the DP recursion with an
arbitrary initialization V̄0(x) for all x ∈ X :

V̄t+1(x) = min
u∈U(x)

[
`(x , u) + γ

∑
x ′∈X

pf (x ′ | x , u)V̄t(x
′)
]
, ∀x ∈ X

I VI requires infinite iterations for V̄t(x) to converge to V ∗(x)

I In practice, define a threshold for |V̄t+1(x)− V̄t(x)| for all x ∈ X
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The Stochastic Shortest Path (SSP) Problem

I The convergence on the previous slide does not hold for all problems
when γ = 1

I The SSP problem is one instance in which the convergence holds and
solving the Bellman Equation yields the optimal cost-to-go and an
associated optimal stationary policy

I Consider a finite state problem with X̃ := {0, 1, . . . , n} and a finite
control set Ũ(x) for all x ∈ X̃

I Motion model: specified by matrices:

P̃u
ij = P(xt+1 = j | xt = i , ut = u) = p̃f (j | xt = i , ut = u)

I Terminal State Assumption: Suppose that state 0 is a cost-free
termination state (the goal), i.e., P̃u

0,0 = p̃f (0 | 0, u) = 1 and
˜̀(0, u) = 0, ∀u ∈ Ũ(0)
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Existence of Solutions to the SSP Problem

I Proper Stationary Policy: a policy π for which there exists an integer
m such that P(xm = 0 | x0 = x) > 0 for all x ∈ X̃ subject to transitions
governed by the motion model and policy π.

I Proper Policy Assumption: there exists at least one proper policy π.
Furthermore, for every improper policy π′, the corresponding value
function V π′(x) is infinite for at least one state x ∈ X̃ .

I The above assumption is required to ensure that:
I there exists a unique solution to the Bellman Equation for the SSP

I a policy exists for which the probability of reaching the termination state
goes to 1 as T →∞

I policies that do not reach the termination state incur infinite cost (i.e.,
there are no non-positive cycles as in the DSP problem)

9



Theorem: Bellman Equation for the SSP

Under the termination state and proper policy assumptions, the following are
true for the SSP problem:

1. Given any initial conditions V̄0(1), . . . , V̄0(n) (corresp. to T =∞), the
sequence V̄t(x) generated by the iteration:

V̄t+1(x) = min
u∈Ũ(x)

[
˜̀(x , u) +

∑
x ′∈X̃\{0}

p̃f (x ′ |, x , u)V̄t(x
′)
]
, ∀x ∈ X̃ \ {0}

converges to the optimal cost V ∗(x) for all x ∈ X̃ \ {0}
2. The optimal costs satisfy the Bellman Equation:

V ∗(x) = min
u∈Ũ(x)

[
˜̀(x , u) +

∑
x ′∈X̃\{0}

p̃f (x ′ |, x , u)V ∗(x ′)
]
, ∀x ∈ X̃ \ {0}

3. The solution to the Bellman Equation is unique

4. The minimizing u of the Bellman Equation for each x ∈ X̃ \ {0} gives
an optimal policy, which is stationary
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Theorem Intuition
I We give intuition under a stronger assumption: ∃m ∈ N such that for

any admissible policy P(xm = 0 | x0 = x) > 0, subject to transitions
governed by the motion model and π, i.e., there is a positive probability
that the termination state will be reached regardless of the initial state.

1. Let V̄0(0) = 0 and consider the following finite-horizon problem:

V π
0 (x) = E

[
T−1∑
t=0

˜̀(xt , πt(xt)) + V̄0(xT )

∣∣∣∣ x0 = x

]
where V̄0(xT ) is the terminal cost. As T →∞, the probability that
state 0 is reached approaches 1 for all policies and, since V̄0(0) = 0, the
terminal cost does not influence the solution. The DP algorithm with
re-labeled time index k := T − t applied to this problem is:

V̄k+1(x) = min
u∈Ũ(x)

(
˜̀(x , u) +

∑
x ′∈X̃\{0}

p̃f (x ′ | x , u)V̄k(x ′)
)
, ∀x ∈ X̃ \ {0}, k = 0, . . . ,T (*)

where state 0 can be excluded because ˜̀(0, u) = 0 by assumption and
p̃f (x ′ | 0, u) = 0 for all x ′ ∈ X̃ \ {0}.
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Theorem Intuition

1. Thus, V̄T (x) = V ∗0 (x) is the optimal cost for the finite horizon problem
and as T →∞ it converges to the optimal cost of the infinite horizon
problem due to the assumption that the terminal state is reached in
finite time.

2. Follows from taking limits of both sides of (*) above.

3. Let J̄0(1), . . . , J̄0(n) and V̄0(1), . . . , V̄0(n) be two different solutions to
the Bellman Equation. If both are used as initial conditions for (*)
above, they both converge after 1 iteration. This leads to two different
optimal costs which is a contradiction.

12



Equivalence between Discounted and SSP Problems

I It turns out that the infinite-horizon discounted problem (no terminal
state assumption but future stage costs are discounted by γt for
γ ∈ [0, 1)) is equivalent to the SSP problem.

I Given a Discounted problem, we can define an auxiliary SSP problem
and show that it is equivalent

I Discounted Problem: X := {1, . . . , n}, U(x), pf (x ′ | x , u), `(x , u)

I SSP: X̃ := X ∪ {0}, where 0 is a virtual terminal state,

Ũ(x) :=

{
U(x), x ∈ X
{stay}, x = 0

13



Equivalence between Discounted and SSP Problems

I SSP motion model:

p̃f (x ′ | x , u) = γpf (x ′ | x , u) for u ∈ Ũ(x) and x , x ′ ∈ X
p̃f (0 | x , u) = 1− γ, for u ∈ Ũ(x) and x ∈ X
p̃f (x ′ | 0, u) = 0, for u = stay and x ′ ∈ X
p̃f (0 | 0, u) = 1, for u = stay

I Terminal state and proper policy assumptions: since γ < 1, there is
a non-zero probability to go to state 0 regardless of the control input
and initial state and hence the SSP assumptions are satisfied.

I SSP Cost:
˜̀(x , u) = `(x , u), for u ∈ Ũ(x), x ∈ X

˜̀(0, stay) = 0
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Equivalence between Discounted and SSP Problems

I There is a one-to-one mapping between a policy π̃ of the auxiliary SSP
to a policy π of the discounted problem since π̃ just trivially assigns
π̃t(0) = stay while the rest remains the same

I Next, we show that for all x ∈ X :

Ṽ π̃(x) = E

[
T−1∑
t=0

˜̀(x̃t , π̃t(x̃t))

∣∣∣∣ x0 = x

]
= V π(x) = E

[
T−1∑
t=0

γt`(xt , πt(xt))

∣∣∣∣ x0 = x

]

where the expectations are over x̃1:T and x1:T and subject to transitions
induced by π̃ and π, respectively.

I Conclusion: since Ṽ π̃(x) = V π(x) for all x ∈ X and the mapping of π̃
to π minimizes V π(x), by solving the Bellman Equation for the auxiliary
SSP, we can obtain an optimal policy and the optimal cost-to-go for the
infinite-horizon discounted problem.
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Equivalence between Discounted and SSP Problems

Ex̃1:T
[˜̀(x̃t ,π̃t(x̃t)) | x0 = x ] =

∑
x̄1:T∈X̃T

˜̀(x̄t , π̃t(x̄t))P(x̃1:T = x̄1:T | x0 = x)

=
∑
x̄t∈X̃

˜̀(x̄t , π̃t(x̄t))P(x̃t = x̄t | x0 = x)

˜̀(0,stay ,0)=0
=========

∑
x̄t∈X

˜̀(x̄t , π̃t(x̄t))P(x̃t = x̄t , x̃t 6= 0 | x0 = x)

=
∑
x̄t∈X

˜̀(x̄t , π̃t(x̄t))P(x̃t = x̄t | x0 = x , x̃t 6= 0)P(x̃t 6= 0 | x0 = x)

(?)
===

∑
x̄t∈X

˜̀(x̄t , π̃t(x̄t))P(xt = x̄t | x0 = x)γt

=
∑
x̄t∈X

`(x̄t , πt(x̄t))P(xt = x̄t | x0 = x)γt

= Ex1:T

[
γt`(xt , πt(xt)) | x0 = x

]
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Equivalence between Discounted and SSP Problems

(?) Show that for transitions p̃f (x ′ | x , u) under π̃, P(x̃t 6= 0 | x0 = x) = γt

I For any x ∈ X and u ∈ Ũ(x):

P(x̃t+1 6= 0 | x̃t = x) = 1− pf (0 | x , u) = γ

I Similarly, for any x ∈ X

P(x̃t+2 6= 0 | x̃t = x) =
∑
x′∈X

P(x̃t+2 6= 0 | x̃t+1 = x ′, x̃t = x)P(x̃t+1 = x ′ | x̃t = x)

=
∑
x′∈X

P(x̃t+2 6= 0 | x̃t+1 = x ′)P(x̃t+1 = x ′ | x̃t = x)

= γ
∑
x′∈X

p̃f (x ′ | x , π̃(x)) = γ2

I Similarly, we can show that for any m > 0: P(x̃t+m 6= 0 | xt = x) = γm
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Equivalence between Discounted and SSP Problems

(?) Show that P(x̃t = x̄t | x0 = x , x̃t 6= 0) = P(xt = x̄t | x0 = x)
I For any x , x ′ ∈ X and u = π̃t(x) = πt(x), we have

P(x̃t+1 = x ′ |x̃t+1 6= 0, x̃t = x , ũt = u) =
P(x̃t+1 = x ′, x̃t+1 6= 0 | x̃t = x , ũt = u)

P(x̃t+1 6= 0 | x̃t = x , ũt = u)

=
p̃f (x ′ | x , u)

γ
= pf (x ′ | x , u) = P(xt+1 = x ′ | xt = x , ut = u)

I Similarly, it can be shown that for x̄t ∈ X :

P(x̃t = x̄t | x0 = x , x̃t 6= 0) = P(xt = x̄t | x0 = x)
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Bellman Equation for the Discounted Problem
I Discounted Infinite-Horizon Problem:

V ∗(x) = min
π

V π(x) := E

[ ∞∑
t=0

γt`(xt , π(xt))

∣∣∣∣ x0 = x

]
s.t. xt+1 ∼ pf (· | xt , π(xt)),

xt ∈ X ,
π(xt) ∈ U(xt)

I The optimal cost of the Discounted problem satisfies the Bellman
Equation via the equivalence to the SSP problem:

V ∗(x) = min
u∈U(x)

(
`(x , u) + γ

∑
x ′∈X

pf (x ′ | x , u)V ∗(x ′)
)
, ∀x ∈ X

I There exist several methods to solve the Bellman Equation for the
Discounted and SSP problems:
I Value Iteration
I Policy Iteration
I Linear Programming
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