ECE276B: Planning & Learning in Robotics Lecture 0: Introduction

Instructor:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:

Zhichao Li: zhl355@eng.ucsd.edu

What is this class about?

- ► **ECE276A**: sensing and state estimation in robotics:
 - how to model a robot's motion and observations
 - how to estimate (a distribution of) the robot state \mathbf{x}_t from the history of observations $\mathbf{z}_{0:t}$ and control inputs $\mathbf{u}_{0:t-1}$
- ► ECE276B: planning and decision making in robotics:
 - ightharpoonup how to select control inputs $\mathbf{u}_{0:t-1}$ to accomplish a task
- References (not required):
 - Dynamic Programming and Optimal Control: Bertsekas
 - Planning Algorithms: LaValle (http://planning.cs.uiuc.edu)
 - Reinforcement Learning: Sutton & Barto (http://incompleteideas.net/book/the-book.html)
 - Calculus of Variations and Optimal Control Theory: Liberzon (http://liberzon.csl.illinois.edu/teaching/cvoc.pdf)

Logistics

- Course website: https://natanaso.github.io/ece276b
- Includes links to (sign up!):
 - Canvas: Zoom meeting schedule and lecture recordings
 - ▶ Piazza: discussion it is your responsibility to check Piazza regularly because class announcements, updates, etc., will be posted there
 - Gradescope: homework submission and grades
- Assignments:
 - ▶ 4 theoretical homework sets (5% of grade each)
 - ▶ 4 programming assignments in **python** + project report:
 - Project 1: Dynamic Programming (20% of grade)
 - Project 2: Motion Planning (20% of grade)
 - Project 3: Optimal Control (20% of grade)
 - Project 4: Final project (20% of grade)
- Final project proposals due May 14, 2020
 - Selected by you. Teams of 2 allowed but not required.
- ► Grades:
 - ▶ assigned based on the class performance, i.e., there will be a curve
 - ▶ no late policy: work submitted past the deadline will receive 0 credit

Prerequisites

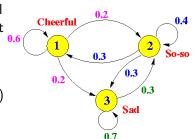
- ▶ **Probability theory**: random vectors, probability density functions, expectation, covariance, total probability, conditioning, Bayes rule
- ► Linear algebra/systems: eigenvalues, positive definiteness, linear systems of ODEs, matrix exponential
- ▶ Optimization: gradient descent
- ▶ Programming: experience with at least one language (python/C++/Matlab), classes/objects, data structures (e.g., queue, list), data input/output, plotting
- ▶ It is up to you to judge if you are ready for this course!
 - Consult with your classmates who took ECE276A
 - ► Take a look at the material from last year: https://natanaso.github.io/ece276b2019
 - If the first assignment seems hard, the rest will be hard as well

Syllabus (Winter 2018)

Date	Lecture	Materials	Assignments
Mar 31	Markov Chains	Grinstead-Snell-Ch11	
Apr 02	Markov Decision Processes	Bertsekas 1.1-1.2	
Apr 07	Dynamic Programming	Bertsekas 1.3-1.4	HW1, PR1
Apr 09	Deterministic Shortest Path	Bertsekas 2.1-2.3	
Apr 14	Configuration Space	LaValle 4.3, 6.2-6.3	
Apr 16	Search-based Planning	LaValle 2.1-2.3, JPS	
Apr 21	Catch-up		HW2, PR2
Apr 23	Anytime Incremental Search	RTAA*, ARA*, AD*, Journal Paper	
Apr 28	Sampling-based Planning	LaValle 5.5-5.6	
Apr 30	Stochastic Shortest Path	Bertsekas 7.1-7.3	
May 05	Bellman Equations I	Sutton-Barto 4.1-4.4	
May 07	Bellman Equations II	Sutton-Barto 4.5-4.8	HW3, PR3
May 12	Catch-up		
May 14	Model-free Prediction	Sutton-Barto 6.1-6.3	
May 19	Model-free Control	Sutton-Barto 6.4-6.7	
May 21	Value Function Approximation	Sutton-Barto Ch.9	PR4
May 26	Continuous-time Optimal Control	Bertsekas 3.1-3.2	HW4
May 28	Pontryagin's Minimum Principle	Bertsekas 3.3-3.4, Liberzon Ch. 2.4 and Ch. 4	
Jun 02	Linear Quadratic Control	Bertsekas 4.1	
Jun 04	TBD		

Markov Chain

- A Markov Chain is a probabilistic model used to represent the evolution of a robot system
- ► The state $x_t \in \{1, 2, 3\}$ is fully observed (unlike HMM and Bayes filtering settings)
- The transitions are random, determined by a motion model but uncontrolled (just like in the HMM and Bayes filtering settings, the control input is known)
- A Markov Decision Process (MDP) is a Markov chain, whose transitions are controlled



$$P = \begin{bmatrix} 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3 \\ 0.0 & 0.3 & 0.7 \end{bmatrix}$$

$$P_{ij} = \mathbb{P}(x_{t+1} = j \mid x_t = i)$$

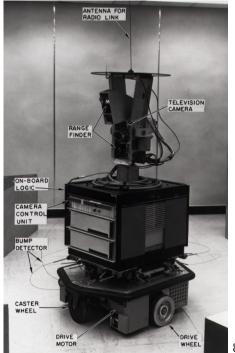
Motion Planning

R.O.B.O.T. Comics

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

A* Search

- Invented by Hart, Nilsson and Raphael of Stanford Research Institute in 1968 for the Shakey robot
- Video: https://youtu.be/
 qXdn6ynwpiI?t=3m55s



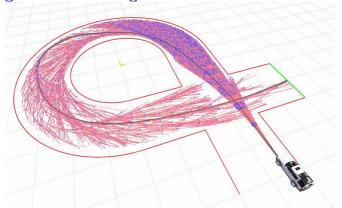
Search-based Planning

- CMU's autonomous car used search-based planning in the DARPA Urban Challenge in 2007
- ► Likhachev and Ferguson, "Planning Long Dynamically Feasible Maneuvers for Autonomous Vehicles," IJRR'09
- Video: https://www.youtube.com/watch?v=4hFh100i8KI
- ► Video: https://www.youtube.com/watch?v=qXZt-B7iUyw
- Paper: http://journals.sagepub.com/doi/pdf/10.1177/0278364909340445

Sampling-based Planning

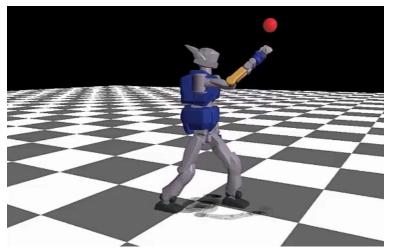
- ▶ RRT algorithm on the PR2 planning with both arms (12 DOF)
- Karaman and Frazzoli, "Sampling-based algorithms for optimal motion planning," IJRR'11
- ► Video: https://www.youtube.com/watch?v=vW74bC-Ygb4
- Paper: http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761

Sampling-based Planning



- ▶ RRT* algorithm on a race car 270 degree turn
- Karaman and Frazzoli, "Sampling-based algorithms for optimal motion planning," IJRR'11
- ► Video: https://www.youtube.com/watch?v=p3nZHnOWhrg
- ▶ Video: https://www.youtube.com/watch?v=LKL5qRBiJaM
- Paper: http://journals.sagepub.com/doi/pdf/10.1177/0278364911406761

Dynamic Programming and Optimal Control



- ▶ Tassa, Mansard and Todorov, "Control-limited Differential Dynamic Programming," ICRA'14
- ► Video: https://www.youtube.com/watch?v=tCQSSkBH2NI
- Paper: http://ieeexplore.ieee.org/document/6907001/

Model-free Reinforcement Learning

- Robot learns to flip pancakes
- Kormushev, Calinon and Caldwell, "Robot Motor Skill Coordination with EM-based Reinforcement Learning," IROS'10
- Video: https://www.youtube.com/watch?v=W_gxLKSsSIE
- Paper: http://www.dx.doi.org/10.1109/IROS.2010.5649089

Applications of Optimal Control & Reinforcement Learning

(a) Games

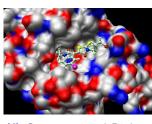
(b) Character Animation

(c) Robotics

explore & more
a children's museum

Pumpkinville
Fall Emily Red

Part Delig Rend and
Red file Persons A decoding for Abid Appel
Citic Jairs for more infrastrum.



(d) Autonomous Driving

(e) Marketing

(f) Computational Biology

Problem Formulation

▶ Motion model: specifies how a dynamical system evolves

$$\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_t) \sim p_f(\cdot \mid \mathbf{x}_t, \mathbf{u}_t), \quad t = 0, \dots, T-1$$

- ▶ discrete time $t \in \{0, ..., T\}$
- ▶ state $\mathbf{x}_t \in \mathcal{X}$
- ightharpoonup control $\mathbf{u}_t \in \mathcal{U}(\mathbf{x}_t)$ and $\mathcal{U} := \bigcup_{\mathbf{x} \in \mathcal{X}} \mathcal{U}(\mathbf{x})$
- control $\mathbf{u}_t \in \mathcal{U}(\mathbf{x}_t)$ and $\mathcal{U} := \bigcup_{\mathbf{x} \in \mathcal{X}} \mathcal{U}(\mathbf{x})$ motion noise \mathbf{w}_t (random vector) with known probability density function
- (pdf) and assumed conditionally independent of other disturbances \mathbf{w}_{τ} for $\tau \neq t$ for given \mathbf{x}_t and \mathbf{u}_t The motion model is specified by the nonlinear function f or equivalently
- by the pdf p_f of \mathbf{x}_{t+1} conditioned on \mathbf{x}_t and \mathbf{u}_t
- **Observation model**: the state **x**_t might not be observable but perceived through measurements:

$$\mathbf{z}_t = h(\mathbf{x}_t, \mathbf{v}_t) \sim p_h(\cdot \mid \mathbf{x}_t), \quad t = 0, \dots, T$$

measurement noise \mathbf{v}_t (random vector) with known pdf and conditionally independent of other disturbances \mathbf{v}_{τ} for $\tau \neq t$ and \mathbf{w}_t for all t for given \mathbf{x}_t

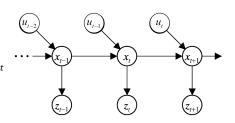
15

▶ the observation model is specified by the nonlinear function h or equivalently by the pdf p_h of \mathbf{z}_t conditioned on \mathbf{x}_t

Problem Formulation

► Markov Assumptions

- The state x_{t+1} only depends on the previous input u_t and state x_t
- The observation z_t only depends on the state x_t



▶ **Problem structure**: due to the Markov assumptions, the joint distribution of the robot states $\mathbf{x}_{0:T}$, observations $\mathbf{z}_{0:T}$, and controls $\mathbf{u}_{0:T-1}$ satisfies:

$$p(\mathbf{x}_{0:T}, \mathbf{z}_{0:T}, \mathbf{u}_{0:T-1}) = \underbrace{p_0(\mathbf{x}_0)}_{\text{prior}} \prod_{t=0}^{T} \underbrace{p_h(\mathbf{z}_t \mid \mathbf{x}_t)}_{\text{observation model}} \prod_{t=1}^{T} \underbrace{p_f(\mathbf{x}_t \mid \mathbf{x}_{t-1}, \mathbf{u}_{t-1})}_{\text{motion model}} \underbrace{\prod_{t=0}^{T-1} p(\mathbf{u}_t \mid \mathbf{x}_t)}_{\text{control policy}}$$

The Problem of Acting Optimally

- In general, states \mathbf{x}_t are **partially observable** through the observations \mathbf{z}_t based on the observation model p_h and the prior $p_0(\mathbf{x}_0)$
- A partially obserable problem can always be converted to a fully observed one by changing the state from \mathbf{x}_t to the probability density function $p_{t|t}(\mathbf{x}_t) := p(\mathbf{x}_t \mid \mathbf{z}_{0:t}, \mathbf{u}_{0:t-1})$
- ▶ Thus, without loss of generality, we consider fully observable problems
- **Problem Statement**: given a motion model p_f and direct observations of the system state \mathbf{x}_t , determine control inputs $\mathbf{u}_{0:T-1}$ to minimize (maximize) a long-term cost (reward) function:

$$V_0^{\mathbf{u}_{0:T-1}}(\mathbf{x}_0) := \mathbb{E}_{\mathbf{x}_{1:T}} \left| \underbrace{\mathfrak{q}(\mathbf{x}_T)}_{\text{terminal cost}} + \sum_{t=0}^{T-1} \underbrace{\ell(\mathbf{x}_t, \mathbf{u}_t)}_{\text{stage cost}} \right| \mathbf{x}_0, \mathbf{u}_{0:T-1}$$

Problem Solution: Control Policy

- ▶ The solution to an OC/RL problem is a **policy** π
 - Let $\pi_t(\mathbf{x}_t)$ be a **function** that maps a state $\mathbf{x}_t \in \mathcal{X}$ to a feasible control input $\mathbf{u}_t \in \mathcal{U}(\mathbf{x}_t)$
 - The sequence $\pi_{0:T-1} := \{\pi_0(\cdot), \pi_1(\cdot), \dots, \pi_{T-1}(\cdot)\}$ of functions is called an **admissible control policy**
 - ▶ To simplify notation, we informally denote $\pi_{0:T-1}$ by π
 - The long-term cost (reward) $V_t^{\pi}(\mathbf{x}_t)$ of a policy π starting at time t at state \mathbf{x}_t is called the **value function** of π :

$$V^\pi_t(\mathbf{x}_t) := \mathbb{E}_{\mathbf{x}_{t+1: au}}\left[\mathfrak{q}(\mathbf{x}_{\mathcal{T}}) + \sum_{ au=t}^{T-1} \ell(\mathbf{x}_{ au}, \pi_{ au}(\mathbf{x}_{ au})) \ \middle| \ \mathbf{x}_t
ight]$$

A policy π^* is an **optimal policy** if $V_0^{\pi^*}(\mathbf{x}_0) \leq V_0^{\pi}(\mathbf{x}_0)$ for all admissible π and its value function is denoted $V_0^*(\mathbf{x}_0) := V_0^{\pi^*}(\mathbf{x}_0)$

Conventions and Observations

- The problem of acting optimally is called:
 - **Optimal Control** (OC): when the models p_f , p_h are known
 - **Reinforcement Learning** (RL): when the models p_f , p_h are unknown but samples can be obtained from them
 - ▶ Inverse RL/OC: when the cost (reward) functions ℓ , q are unknown
- Conventions differ in optimal control and reinforcement learning:
 - **OC**: minimization, cost, state \mathbf{x} , control \mathbf{u} , policy μ
 - **RL**: maximization, reward, state **s**, action **a**, policy π
 - **ECE276B**: minimization, cost, state x, control u, policy π

Conventions and Observations

- Goal: select controls to minimize long-term cumulative costs
 - Controls may have long-term consequences, e.g., delayed reward
 - ▶ It may be better to sacrifice immediate reward to gain long-term rewards:
 - ► A financial investment may take months to mature
 - ▶ Re-fueling a helicopter now might prevent a crash in several hours
 - Blocking opponent moves might help winning chances many moves from now
- ▶ A policy fully defines the behavior of a robot by specifying, at any given point in time, which controls to apply.
- Policies can be:
 - **>** stationary $(\pi \equiv \pi_0 \equiv \pi_1 \equiv \cdots) \subset \text{non-stationary (time-dependent)}$
 - ▶ deterministic $(\mathbf{u}_t = \pi_t(\mathbf{x}_t)) \subset \text{stochastic } (\mathbf{u}_t \sim \pi_t(\cdot \mid \mathbf{x}_t))$
 - ▶ open-loop (a sequence $\mathbf{u}_{0:T-1}$ regardless of \mathbf{x}_t) \subset closed-loop (π_t depends on \mathbf{x}_t)

Problem Variations

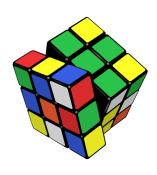
- **deterministic** (no noise \mathbf{v}_t , \mathbf{w}_t) vs **stochastic**
- fully observable $(z_t = x_t)$ vs partially observable $(z_t \sim p_h(\cdot|x_t))$
- fully observable: Markov Decision Process (MDP)
 partially observable: Partially Observable Markov Decision Process (POMDP)
- ▶ stationary vs nonstationary (time-dependent $p_{f,t}$, $p_{h,t}$, ℓ_t)
 ▶ finite vs continuous state space \mathcal{X}
 - ► tabular approach vs function approximation (linear, SVM, neural nets,...)
- finite vs continuous control space U:
 tabular approach vs optimization problem to select next-best control
- discrete vs continuous time:
 finite herizon discrete time: dynamic programming
 - finite-horizon discrete time: dynamic programming
 - infinite-horizon (T→∞) discrete time: Bellman equation (first-exit vs discounted vs average-reward)
 continuous time: Hamilton-Jacobi-Bellman (HJB) Partial Differential
 - Equation (PDE)
- reinforcement learning (p_f, p_h) are unknown variants:
 - Model-based RL: explicitly approximate models p̂_f, p̂_h from experience and use optimal control algorithms
 Model-free RL: directly approximate V_t* and π_t* without approximating the motion/observation models

Example: Inventory Control

- Consider the problem of keeping an item stocked in a warehouse:
 - If there is too little, we will run out of it soon (not preferred).
- ▶ If there is too much, the storage cost will be high (not preferred).
- ▶ We can model this scenario as a discrete-time system:
 - $\mathbf{x}_t \in \mathbb{R}$: stock available in the warehouse at the beginning of the t-th time period
 - $u_t \in \mathbb{R}_{\geq 0}$: stock ordered and immediately delivered at the beginning of the t-th time period (supply)
 - w_t : (random) demand during the t-th time period with known pdf. Note that excess demand is back-logged, i.e., corresponds to negative stock x_t
 - ▶ Motion model: $x_{t+1} = x_t + u_t w_t$
 - **Cost function**: $\mathbb{E}\left[R(x_T) + \sum_{t=0}^{T-1} (r(x_t) + cu_t pw_t)\right]$ where
 - \triangleright pw_t : revenue
 - cut: cost of items
 - $ightharpoonup r(x_t)$: penalizes too much stock or negative stock
 - \triangleright $R(x_T)$: remaining items we cannot sell or demand that we cannot meet

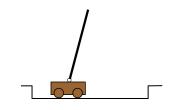
Example: Rubik's Cube

- Invented in 1974 by Ernő Rubik
- ► Formalization:
 - ► State space: $\sim 4.33 \times 10^{19}$
 - Actions: 12
 - ightharpoonup Reward: -1 for each time step
 - Deterministic, Fully Observable
- ▶ The cube can be solved in 20 or fewer moves



Example: Cart-Pole Problem

- Move a cart left and right in order to keep a pole balanced
- Formalization:
 - ► State space: 4-D continuous $(x, \dot{x}, \theta, \dot{\theta})$
 - Actions: $\{-N, N\}$
 - Reward:
 - 0 when in the goal region
 - ightharpoonup -1 when outside the goal region
 - ► −100 when outside the feasible region
 - Deterministic, Fully Observable



Example: Chess

- Formalization:
 - State space: $\sim 10^{47}$
 - ► Actions: from 0 to 218
 - ▶ Reward: 0 each step, $\{-1,0,1\}$ at the end of the game
 - Deterministic, opponent-dependent state transitions (can be modeled as a game)
- ightharpoonup The size of the game tree is 10^{123}

Example: Grid World Navigation

- Navigate to a goal without crashing into obstacles
- Formalization:
 - State space: robot pose, e.g., 2-D position
 - Actions: allowable robot movement, e.g., {left, right, up, down}
 - ▶ Reward: -1 until the goal is reached; $-\infty$ if an obstacles is hit
 - Can be deterministic or stochastic; fully or partially observable

