ECE276B: Planning & Learning in Robotics Lecture 10: Bellman Equations

Instructor:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants: Zhichao Li: zhl355@eng.ucsd.edu Jinzhao Li: jil016@eng.ucsd.edu

UC San Diego JACOBS SCHOOL OF ENGINEERING

Electrical and Computer Engineering

First-Exit Problem

- The first exit problem is a slightly more general statement of the stochastic shortest path (SSP) problem
- ▶ Terminal Set: let $T \subseteq X$ be a set of terminal states with terminal cost q(x) for $x \in T$
- ▶ First-Exit Time: trajectories terminate at $T := \inf \{t \ge 1 | \mathbf{x}_t \in T\}$, the first passage time from an initial state \mathbf{x}_0 to a terminal state $\mathbf{x} \in T$
- ▶ Note that *T* is a random variable unlike in the finite-horizon problem
- First-Exit Problem:

$$V^{*}(\mathbf{x}) = \min_{\pi} V^{\pi}(\mathbf{x}) := \mathbb{E} \left[q(\mathbf{x}_{T}) + \sum_{t=0}^{T-1} \ell(\mathbf{x}_{t}, \pi(\mathbf{x}_{t})) \mid \mathbf{x}_{0} = \mathbf{x} \right]$$

s.t. $\mathbf{x}_{t+1} \sim p_{f}(\cdot \mid \mathbf{x}_{t}, \pi(\mathbf{x}_{t})),$
 $\mathbf{x}_{t} \in \mathcal{X},$
 $\pi(\mathbf{x}_{t}) \in \mathcal{U}(\mathbf{x}_{t})$

Discounted Problem

- Discount factor $\gamma \in [0, 1)$
- The optimal value function V*(x) and associated policy π*(x) are stationary
- The episodes ρ₀ := x₀, u₀, x₁, u₁,... ~ π continue forever but the costs are discounted by γ
- Discounted Problem:

$$V^{*}(\mathbf{x}) = \min_{\pi} V^{\pi}(\mathbf{x}) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^{t} \ell(\mathbf{x}_{t}, \pi(\mathbf{x}_{t})) \middle| \mathbf{x}_{0} = \mathbf{x} \right]$$

s.t. $\mathbf{x}_{t+1} \sim p_{f}(\cdot \mid \mathbf{x}_{t}, \pi(\mathbf{x}_{t})),$
 $\mathbf{x}_{t} \in \mathcal{X},$
 $\pi(\mathbf{x}_{t}) \in \mathcal{U}(\mathbf{x}_{t})$

Bellman Equation

First-Exit (SSP) Problem: the optimal value function satisfies:

$$egin{aligned} V^*(\mathbf{x}) &= \mathfrak{q}(\mathbf{x}), \quad orall \mathbf{x} \in \mathcal{T} \ V^*(\mathbf{x}) &= \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \Bigl(\ell(\mathbf{x},\mathbf{u}) + \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x},\mathbf{u}) V^*(\mathbf{x}') \Bigr), \quad orall \mathbf{x} \in \mathcal{X} \setminus \mathcal{T} \end{aligned}$$

Discounted Problem: the optimal value function satisfies (via the equivalence to the SSP problem):

$$V^*(\mathbf{x}) = \min_{\mathbf{u}\in\mathcal{U}(\mathbf{x})} \Big(\ell(\mathbf{x},\mathbf{u}) + \gamma \sum_{\mathbf{x}'\in\mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x},\mathbf{u}) V^*(\mathbf{x}') \Big), \quad \forall \mathbf{x}\in\mathcal{X}$$

- There exist several methods to solve the Bellman Equation for the Discounted and First-Exit problems:
 - Value Iteration (VI)
 - Policy Iteration (PI)
 - Linear Programming (LP)

Value Iteration (VI)

- ► Value Iteration: applies the Dynamic Programming recursion with an arbitrary initialization V₀(x) to compute V^{*}(x) for x ∈ X
- The VI algorithm is the infinite-horizon equivalent of the DP algorithm
- VI requires infinite iterations for V_k(**x**) to converge to V^{*}(**x**). In practice, define a threshold for |V_{k+1}(**x**) − V_k(**x**)| for all **x** ∈ X

First-Exit Problem:

$$V_{k}(\mathbf{x}) = \mathfrak{q}(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{T}$$

$$V_{k+1}(\mathbf{x}) = \min_{\mathbf{u} \in \tilde{\mathcal{U}}(\mathbf{x})} \Big[\ell(\mathbf{x}, \mathbf{u}) + \sum_{\mathbf{x}' \in \mathcal{X}} p_{f}(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_{k}(\mathbf{x}') \Big], \qquad \forall \mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$$

Discounted Problem:

$$V_{k+1}(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \Big[\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_k(\mathbf{x}') \Big], \qquad \forall \mathbf{x} \in \mathcal{X}$$

Gauss-Seidel Value Iteration

A regular VI implementation stores the values from a previous iteration and updates them for all states simultaneously:

$$\begin{split} \hat{V}(\mathbf{x}) \leftarrow \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V(\mathbf{x}') \right), \qquad \forall \mathbf{x} \in \mathcal{X} \\ V(\mathbf{x}) \leftarrow \hat{V}(\mathbf{x}), \qquad \forall \mathbf{x} \in \mathcal{X} \end{split}$$

• Gauss-Seidel Value Iteration updates the values in place:

$$V(\mathbf{x}) \leftarrow \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V(\mathbf{x}') \right), \quad \forall \mathbf{x} \in \mathcal{X}$$

 Gauss-Seidel VI often leads to faster convergence and requires less memory than VI

Policy Evaluation

- ► The VI algorithm computes the optimal value function V*(x) for every state x ∈ X
- Instead of the optimal value function V*(x), is it possible to compute the value function V^π(x) for a given policy π?

Policy Evaluation Theorem (Discounted Problem)

The value function $V^{\pi}(\mathbf{x})$ for policy π is the unique solution of:

$$V^{\pi}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \pi(\mathbf{x})) V^{\pi}(\mathbf{x}'), \qquad orall \mathbf{x} \in \mathcal{X}$$

Furthermore, given any initial conditions $V_0(\mathbf{x})$, the sequence $V_k(\mathbf{x})$ generated by the recursion below converges to $V^{\pi}(\mathbf{x})$:

$$V_{k+1}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \pi(\mathbf{x})) V_k(\mathbf{x}'), \qquad \forall \mathbf{x} \in \mathcal{X}$$

Policy Evaluation

Policy Evaluation Theorem (First-Exit Problem)

The value function $V^{\pi}(\mathbf{x})$ at $\mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$ for policy π is the unique solution of:

$$V^{\pi}(\mathbf{x}) = \ell(\mathbf{x},\pi(\mathbf{x})) + \sum_{\mathbf{x}'\in\mathcal{X}} p_f(\mathbf{x}'\mid\mathbf{x},\pi(\mathbf{x})) V^{\pi}(\mathbf{x}'). \hspace{1cm} orall \mathbf{x}\in\mathcal{X}\setminus\mathcal{T}$$

Furthermore, given any initial conditions $V_0(\mathbf{x})$, the sequence $V_k(\mathbf{x})$ generated by the recursion below converges to $V^{\pi}(\mathbf{x})$:

$$V_{k+1}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \pi(\mathbf{x})) V_k(\mathbf{x}'), \qquad orall \mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$$

Proof sketch: This is a special case of the Bellman Equation Theorem (SSP). Consider a modified problem, where the only allowable control at state x is π(x). Since the proper policy π is the only policy under consideration, the proper policy assumption is satisfied and the arg min over u ∈ U(x) has to be π(x).

Policy Evaluation as a Linear System

- Let $\mathcal{X} = \{1, \dots, n\}$ for the Discounted Problem
- Let $\mathcal{X} = \mathcal{N} \cup \mathcal{T}$ for the First-Exit Problem with $\mathcal{N} = \{1, \dots, n\}$
- ► Let $\mathbf{v}_i := V^{\pi}(i)$, $\ell_i := \ell(i, \pi(i))$, $P_{ij} := p_f(j \mid i, \pi(i))$ for i, j = 1, ..., n► Let $\mathbf{q}_i := \mathbf{q}(i)$ for $i \in \mathcal{T}$
- Policy evaluation requires solving a linear system:

Discounted: $\mathbf{v} = \ell + \gamma P \mathbf{v} \Rightarrow (I - \gamma P) \mathbf{v} = \ell$ **First-Exit:** $\mathbf{v} = \ell + P_{\mathcal{N}\mathcal{N}}\mathbf{v} + P_{\mathcal{N}\mathcal{T}}\mathbf{q} \Rightarrow (I - P_{\mathcal{N}\mathcal{N}})\mathbf{v} = \ell + P_{\mathcal{N}\mathcal{T}}\mathbf{q}$

Existence of solution:

- ▶ **Discounted**: The matrix *P* has eigenvalues with modulus ≤ 1 . All eigenvalues of γP have modulus < 1, so $(\gamma P)^T \rightarrow 0$ as $T \rightarrow \infty$ and $(I \gamma P)^{-1}$ exists.
- ▶ **First-Exit**: a unique solution for **v** exists as long as π is a proper policy. By the Chapman-Kolmogorov equation, $[P^k]_{ij} = \mathbb{P}(x_k = j \mid x_0 = i)$ and since π is proper, $[P^k]_{ij} \to 0$ as $k \to \infty$ for all $i, j \in \mathcal{X} \setminus \mathcal{T}$. Since $P_{\mathcal{N}\mathcal{N}}^k$ vanishes as $k \to \infty$, all eigenvalues of $P_{\mathcal{N}\mathcal{N}}$ must have modulus less than 1 and therefore $(I - P_{\mathcal{N}\mathcal{N}})^{-1}$ exists.

Policy Evaluation as a Linear System

The Policy Evaluation Thm. is an iterative solution to the linear system
 Discounted:

$$\mathbf{v}_{1} = \boldsymbol{\ell} + \gamma P \mathbf{v}_{0}$$

$$\mathbf{v}_{2} = \boldsymbol{\ell} + \gamma P \mathbf{v}_{1} = \boldsymbol{\ell} + \gamma P \boldsymbol{\ell} + (\gamma P)^{2} \mathbf{v}_{0}$$

$$\vdots$$

$$\mathbf{v}_{k} = (I + \gamma P + (\gamma P)^{2} + \ldots + (\gamma P)^{k-1})\boldsymbol{\ell} + (\gamma P)^{k} \mathbf{v}_{0}$$

$$\vdots$$

$$\mathbf{v}_{\infty} \rightarrow (I - \gamma P)^{-1} \boldsymbol{\ell}$$

$$\mathbf{First-Exit:}$$

$$\mathbf{v}_{1} = \boldsymbol{\ell} + P_{\mathcal{N}\mathcal{T}} \mathbf{q} + P_{\mathcal{N}\mathcal{N}} \mathbf{v}_{0}$$

$$\mathbf{v}_{2} = \boldsymbol{\ell} + P_{\mathcal{N}\mathcal{T}} \mathbf{q} + P_{\mathcal{N}\mathcal{N}} \mathbf{v}_{1} = \boldsymbol{\ell} + P_{\mathcal{N}\mathcal{T}} \mathbf{q} + P_{\mathcal{N}\mathcal{N}} (\boldsymbol{\ell} + P_{\mathcal{N}\mathcal{T}} \mathbf{q}) + P_{\mathcal{N}\mathcal{N}}^{2} \mathbf{v}_{0}$$

$$\vdots$$

$$\mathbf{v}_{\infty} \rightarrow (I - P_{\mathcal{N}\mathcal{N}})^{-1} (\boldsymbol{\ell} + P_{\mathcal{N}\mathcal{T}} \mathbf{q})$$

Policy Iteration (PI)

- ▶ PI is an alternative algorithm to VI for computing $V^*(\mathbf{x})$
- PI iterates over policies instead of values
- First-Exit Problem: repeat until V^{π'}(x) = V^π(x) for all x ∈ X \ T:
 1. Policy Evaluation: given a policy π, compute V^π:

$$V^{\pi}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \pi(\mathbf{x})) V^{\pi}(\mathbf{x}'), \qquad orall \mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$$

2. **Policy Improvement**: given V^{π} , obtain a new stationary policy π' :

$$\pi'(\mathbf{x}) = \arg\min_{\mathbf{u}\in\mathcal{U}(\mathbf{x})} \Big[\ell(\mathbf{x},\mathbf{u}) + \sum_{\mathbf{x}'\in\mathcal{X}} p_f(\mathbf{x}'\mid\mathbf{x},\mathbf{u}) V^{\pi}(\mathbf{x}') \Big], \qquad \forall \mathbf{x}\in\mathcal{X}\setminus\mathcal{T}$$

Policy Iteration (PI)

- ▶ PI is an alternative algorithm to VI for computing $V^*(\mathbf{x})$
- PI iterates over policies instead of values
- Discounted Problem: repeat until V^{π'}(x) = V^π(x) for all x ∈ X:
 1. Policy Evaluation: given a policy π, compute V^π:

$$V^{\pi}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \pi(\mathbf{x})) V^{\pi}(\mathbf{x}'), \qquad \forall \mathbf{x} \in \mathcal{X}$$

2. **Policy Improvement**: given V^{π} , obtain a new stationary policy π' :

$$\pi'(\mathbf{x}) = \arg\min_{\mathbf{u}\in\mathcal{U}(\mathbf{x})} \Big[\ell(\mathbf{x},\mathbf{u}) + \gamma \sum_{\mathbf{x}'\in\mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x},\mathbf{u}) V^{\pi}(\mathbf{x}') \Big], \qquad \forall \mathbf{x}\in\mathcal{X}$$

Policy Improvement Theorem

Let π and π' be deterministic policies such that $V^{\pi}(\mathbf{x}) \ge Q^{\pi}(\mathbf{x}, \pi'(\mathbf{x}))$ for all $\mathbf{x} \in \mathcal{X}$. Then, π' is at least as good as π , i.e., $V^{\pi}(\mathbf{x}) \ge V^{\pi'}(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}$

► Proof:

$$V^{\pi}(\mathbf{x}) \geq Q^{\pi}(\mathbf{x}, \pi'(\mathbf{x})) = \ell(\mathbf{x}, \pi'(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \pi'(\mathbf{x}))} [V^{\pi}(\mathbf{x}')]$$

$$\geq \ell(\mathbf{x}, \pi'(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \pi'(\mathbf{x}))} [Q^{\pi}(\mathbf{x}', \pi'(\mathbf{x}'))]$$

$$= \ell(\mathbf{x}, \pi'(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \pi'(\mathbf{x}))} \{\ell(\mathbf{x}', \pi'(\mathbf{x}')) + \gamma \mathbb{E}_{\mathbf{x}'' \sim p_f(\cdot | \mathbf{x}', \pi'(\mathbf{x}'))} V^{\pi}(\mathbf{x}'')\}$$

$$\geq \cdots \geq \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t \ell(\mathbf{x}_t, \pi'(\mathbf{x}_t)) \middle| \mathbf{x}_0 = \mathbf{x}\right] = V^{\pi'}(\mathbf{x})$$

Theorem: Optimality of PI

Suppose that \mathcal{X} is finite and:

• $\gamma \in [0,1)$ (Discounted Problem)

• there exists a termination set \mathcal{T} and a proper policy (First-Exit Problem) Then, the Policy Iteration algorithm converges to an optimal policy after a finite number of steps.

Proof of Optimality of PI (First-Exit Problem)

- Let π be a proper policy with value V^{π} obtained from the Policy Evaluation step.
- Let π' be the policy obtained from the Policy Improvement step.
- By definition of the Policy Improvement step: V^π(x) ≥ Q^π(x, π'(x)) for all x ∈ X \ T
- ▶ By the Policy Improvement Thm., $V^{\pi}(\mathbf{x}) \ge V^{\pi'}(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$
- Since π is proper, $V^{\pi}(\mathbf{x}) < \infty$ for all $\mathbf{x} \in \mathcal{X}$, and hence π' is proper
- Since π' is proper, the Policy Evaluation step has a unique solution $V^{\pi'}$
- Since the number of stationary policies is finite, eventually $V^{\pi} = V^{\pi'}$ after a finite number of steps.
- Once V^{π} has converged, it follows from the Policy Improvement step:

$$V^{\pi'}(\mathbf{x}) = V^{\pi}(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left(\ell(\mathbf{x}, \mathbf{u}) + \sum_{\mathbf{x}' \in \mathcal{X}} \widetilde{p}_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V^{\pi}(\mathbf{x}')
ight), \quad \mathbf{x} \in \mathcal{X} \setminus \mathcal{T}$$

Since this is the Bellman Equation for the First-Exit problem, we have converged to an optimal policy π^{*} = π with optimal cost V^{*} = V^π.

Comparison between VI and PI

- PI and VI actually have a lot in common
- Rewrite VI as follows:
 - 2. **Policy Improvement**: Given $V_k(\mathbf{x})$ obtain a stationary policy:

$$\pi(\mathbf{x}) = \underset{\mathbf{u} \in \mathcal{U}(\mathbf{x})}{\arg\min} \Big[\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_k(\mathbf{x}') \Big], \qquad \forall \mathbf{x} \in \mathcal{X}$$

1. Value Update: Given $\pi(\mathbf{x})$ and $V_k(\mathbf{x})$, compute

$$V_{k+1}(\mathbf{x}) = \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \pi(\mathbf{x})) V_k(\mathbf{x}'), \qquad \forall \mathbf{x} \in \mathcal{X}$$

- The Value Update step of VI is one step of an iterative solution to the linear system of equations in the Policy Evaluation Theorem
- PI solves the Policy Evaluation equation completely, which is equivalent to running the Value Update step of VI an infinite number of times!

Comparison between VI and PI

- Complexity of VI per Iteration: O(|X|²|U|): evaluating the expectation (i.e., sum over x') requires |X| operations and there are |X| minimizations over |U| possible control inputs.
- Complexity of PI per Iteration: O(|X|² (|X| + |U|)): the Policy Evaluation step requires solving a system of |X| equations in |X| unknowns (O(|X|³)), while the Policy Improvement step has the same complexity as one iteration of VI.
- PI is more computationally expensive than VI
- ► Theoretically it takes an infinite number of iterations for VI to converge
- ▶ PI converges in $|\mathcal{U}|^{|\mathcal{X}|}$ iterations (all possible policies) in the worst case

Generalized Policy Iteration

- Assuming that the Value Update and Policy Improvement steps are executed an infinite number of times for all states, all combinations of the following converge:
 - Any number of Value Update steps in between Policy Improvement steps
 - Any number of states updated at each Value Update step
 - Any number of states updated at each Policy Improvement step

Example: Frozen Lake Problem

- Winter is here.
- You and your friends were tossing around a frisbee at the park when you made a wild throw that left the frisbee out in the middle of the lake.
- The water is mostly frozen, but there are a few holes where the ice has melted.
- ▶ If you step into one of those holes, you'll fall into the freezing water.
- At this time, there's an international frisbee shortage, so it's absolutely imperative that you navigate across the lake and retrieve the disc.
- However, the ice is slippery, so you won't always move in the direction you intend.

Example: Frozen Lake Problem

S : starting point, safe

- F : frozen surface, safe
- H : hole, fall to your doom
- G : goal, where the frisbee is located
- $\blacktriangleright \ \mathcal{X} = \{0, 1, \dots, 15\}$
- $\mathcal{U}(x) = \{ \text{Left}(0), \text{ Down}(1), \text{ Right}(2), \text{ Up}(3) \}$
- You receive a reward of 1 if you reach the goal, and zero otherwise
- A requested action u ∈ U(x) succeeds 80% of the time. A neighboring action is executed in the other 50% of the time due to slip:

$$x' \mid x = 9, u = 1 = \begin{cases} 13, & \text{with prob. } 0.8\\ 8, & \text{with prob. } 0.1\\ 10, & \text{with prob. } 0.1 \end{cases}$$

The state remains unchanged if a control leads outside of the map

An episode ends when you reach the goal or fall in a hole.

Value Iteration on Frozen Lake

(a) t = 0

(b) t = 1

(e) t = 4

 ←5
 ←F
 ←F
 ←F

 ←F
 ←H
 ←F
 ←H

 ←F
 ←F
 F
 ←H

 ←H
 F
 ←G

(c) t = 2

(f) t = 5

Value Iteration on Frozen Lake				
Iteration	$\max_{x} V_{t+1}(x) - V_t(x) $	# changed actions	V(0)	
0	0.80000	0	0.000	
1	0.60800	1	0.000	
2	0.51984	2	0.000	
3	0.39508	2	0.000	
4	0.30026	2	0.000	
5	0.25355	2	0.254	
6	0.10478	1	0.345	
7	0.09657	0	0.442	
8	0.03656	0	0.478	
9	0.02772	0	0.506	
10	0.01111	0	0.517	
11	0.00735	0	0.524	
12	0.00310	0	0.527	
13	0.00190	0	0.529	
14	0.00083	0	0.530	
15	0.00049	0	0.531	
16	0.00022	0	0.531	
	0.00010	•	0 - 01	

Policy Iteration on Frozen Lake

(a) t = 0

(b) t = 1

(c) t = 2

 S
 F+
 F
 +F

 F+
 +H
 F+
 +H

 F+
 F+
 F+
 +H

 +H
 F+
 F+
 +H

 S
 F+
 F
 ←F

 F+
 ←H
 F+
 ←H

 F+
 F+
 F+
 ←H

 F+
 F+
 F+
 ←H

 F+
 F+
 F+
 ←H

(f) t = 5

(d) t = 3

(e) t = 4

Policy Iteration on Frozen Lake				
Iteration	$\max_{x} V_{t+1}(x) - V_t(x) $	# changed actions	V(0)	
0	0.00000	0	0.000	
1	0.89296	1	0.000	
2	0.88580	9	0.398	
3	0.48504	2	0.455	
4	0.07573	1	0.531	
5	0.00000	0	0.531	
6	0.00000	0	0.531	
7	0.00000	0	0.531	
8	0.00000	0	0.531	
9	0.00000	0	0.531	
10	0.00000	0	0.531	
11	0.00000	0	0.531	
12	0.00000	0	0.531	
13	0.00000	0	0.531	
14	0.00000	0	0.531	
15	0.00000	0	0.531	
16	0.00000	0	0.531	
4 -	0.0000	•	0 - 01	

Value Iteration vs Policy Iteration

Value Iteration vs Policy Iteration

Linear Programming Solution to the Bellman Equation

Suppose we initialize VI with V₀ that satisfies a relaxed Bellman Equation:

$$V_0(\mathbf{x}) \leq \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_0(\mathbf{x}') \right), \qquad \forall \mathbf{x} \in \mathcal{X}$$

Applying VI to V₀ leads to:

$$\begin{split} V_{1}(\mathbf{x}) &= \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_{f}(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_{0}(\mathbf{x}') \right) \geq V_{0}(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{X} \\ V_{2}(\mathbf{x}) &= \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_{f}(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_{1}(\mathbf{x}') \right) \\ &\geq \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_{f}(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_{0}(\mathbf{x}') \right) = V_{1}(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{X} \end{split}$$

Linear Programming Solution to the Bellman Equation

- ▶ The above shows that $V_{k+1}(\mathbf{x}) \ge V_k(\mathbf{x})$ for all k and $\mathbf{x} \in \mathcal{X}$
- ▶ Since VI guarantees that $V_k(\mathbf{x}) \to V^*(\mathbf{x})$ as $k \to \infty$ we also have:

$$V^*(\mathbf{x}) \geq V_0(\mathbf{x}), \quad orall \mathbf{x} \in \mathcal{X} \quad \Rightarrow \quad \sum_{\mathbf{x} \in \mathcal{X}} w(\mathbf{x}) V^*(\mathbf{x}) \geq \sum_{\mathbf{x} \in \mathcal{X}} w(\mathbf{x}) V_0(\mathbf{x})$$

for any $w(\mathbf{x}) > 0$ for all $\mathbf{x} \in \mathcal{X}$.

▶ The above holds for **any** V₀ that satisfies:

$$V_0(\mathbf{x}) \leq \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V_0(\mathbf{x}')
ight), \qquad orall \mathbf{x} \in \mathcal{X}$$

Note that V* also satisfies this condition with equality (Bellman Equation) and hence is the maximal V₀ (at each state) that satisfies the condition. Linear Programming Solution to the Bellman Equation

LP Solution to the Bellman Equation

The solution V^* to the linear program with $w(\mathbf{x}) > 0$:

$$\begin{split} \max_{V} & \sum_{\mathbf{x} \in \mathcal{X}} w(\mathbf{x}) V(\mathbf{x}) \\ \text{s.t.} & V(\mathbf{x}) \leq \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V(\mathbf{x}') \right), \qquad \forall \mathbf{u} \in \mathcal{U}(\mathbf{x}), \forall \mathbf{x} \in \mathcal{X} \end{split}$$

also solves the Bellman Equation to yield the optimal value function for an infinite-horizon finite-state discounted stochastic optimal control problem.

An equivalent result holds for the First-Exit Problem.

LP Solution to the BE (Proof)

▶ Let *J*^{*} be the solution to the linear program so that:

$$J^*(\mathbf{x}) \leq \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) J^*(\mathbf{x}')\right), \qquad \forall \mathbf{u} \in \mathcal{U}(\mathbf{x}), \forall \mathbf{x} \in \mathcal{X}$$

▶ Since J^* is feasible, it satisfies $J^*(\mathbf{x}) \leq V^*(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}$

By contradiction, suppose that J^{*} ≠ V^{*}. Then, there exists a state y ∈ X such that:

$$J^*(\mathbf{y}) < V^*(\mathbf{y}) \quad \Rightarrow \quad \sum_{\mathbf{x} \in \mathcal{X}} w(\mathbf{x}) J^*(\mathbf{x}) < \sum_{\mathbf{x} \in \mathcal{X}} w(\mathbf{x}) V^*(\mathbf{x})$$

for any positive $w(\mathbf{x})$ but since V^* solves the Bellman Equation:

$$V^*(\mathbf{x}) \leq \left(\ell(\mathbf{x}, \mathbf{u}) + \gamma \sum_{\mathbf{x}' \in \mathcal{X}} p_f(\mathbf{x}' \mid \mathbf{x}, \mathbf{u}) V^*(\mathbf{x}')\right), \qquad \forall \mathbf{u} \in \mathcal{U}(\mathbf{x}), \forall \mathbf{x} \in \mathcal{X}$$

Thus, V* is feasible and has higher value than J*, which is a contradiction.

Bellman Equations (Summary)

Finite-Horizon Problem

• Trajectories terminate at fixed
$$T < \infty$$

$$\min_{\pi} V_{\tau}^{\pi}(\mathbf{x}) = \mathbb{E} \left[\mathfrak{q}(\mathbf{x}_{\tau}) + \sum_{t=\tau}^{T-1} \ell_t(\mathbf{x}_t, \pi_t(\mathbf{x}_t)) \middle| \mathbf{x}_{\tau} = \mathbf{x} \right]$$

The optimal value V^{*}_t(x) can be found with a single backward pass through time, initialized from V^{*}_T(x) = q(x) and following the recursion:

Bellman Equations (Finite-Horizon Problem)

Hamiltonian:	$H_t[\mathbf{x}, \mathbf{u}, V(\cdot)] = \ell_t(\mathbf{x}, \mathbf{u}) + \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot \mathbf{x}, \mathbf{u})} V(\mathbf{x}')$
Policy Evaluation:	$V_t^{\pi}(\mathbf{x}) = H_t[\mathbf{x}, \pi_t(\mathbf{x}), V_{t+1}^{\pi}(\cdot)]$
Bellman Equation:	$V_t^*(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} H_t[\mathbf{x}, \mathbf{u}, V_{t+1}^*(\cdot)]$
Optimal Policy:	$\pi^*_t(\mathbf{x}) = \argmin_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} H_t[\mathbf{x}, \mathbf{u}, V^*_{t+1}(\cdot)]$

First-Exit Problem

First-Exit Time: trajectories terminate at T := inf {t ≥ 1 | x_t ∈ T}, the first passage time from the initial state x₀ to a terminal state x ∈ T ⊆ X

$$\min_{\pi} V^{\pi}(\mathbf{x}) = \mathbb{E}\left[\sum_{t=0}^{T-1} \ell(\mathbf{x}_t, \pi(\mathbf{x}_t)) + \mathfrak{q}(x_T) \middle| \mathbf{x}_0 = \mathbf{x}\right]$$

▶ At terminal states, $V^*(\mathbf{x}) = V^{\pi}(\mathbf{x}) = \mathfrak{q}(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{T}$

At other states, the following are satisfied:

Bellman Equations (First-Exit Problem)

Hamiltonian: $H[\mathbf{x}, \mathbf{u}, V(\cdot)] = \ell(\mathbf{x}, \mathbf{u}) + \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} V(\mathbf{x}')$ Policy Evaluation: $V^{\pi}(\mathbf{x}) = H[\mathbf{x}, \pi(\mathbf{x}), V^{\pi}(\cdot)]$ Bellman Equation: $V^*(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} H[\mathbf{x}, \mathbf{u}, V^*(\cdot)]$ Optimal Policy: $\pi^*(\mathbf{x}) = \arg\min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} H[\mathbf{x}, \mathbf{u}, V^*(\cdot)]$

Discounted Problem

Trajectories continue forever but costs are discounted via $\gamma \in [0, 1)$:

$$\min_{\pi} V^{\pi}(\mathbf{x}) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \ell(\mathbf{x}_{t}, \pi(\mathbf{x}_{t})) \middle| \mathbf{x}_{0} = \mathbf{x}\right]$$

Bellman Equations (Discounted Problem)

Hamiltonian:	$H[\mathbf{x}, \mathbf{u}, V(\cdot)] = \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot \mathbf{x}, \mathbf{u})} V(\mathbf{x}')$
Policy Evaluation:	$\mathcal{V}^{\pi}(\mathbf{x}) = \mathcal{H}[\mathbf{x}, \pi(\mathbf{x}), \mathcal{V}^{\pi}(\cdot)]$
Bellman Equation:	$V^*(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} H[\mathbf{x}, \mathbf{u}, V^*(\cdot)]$
Optimal Policy:	$\pi^*(\mathbf{x}) = \operatorname*{argmin}_{\mathbf{u}\in\mathcal{U}(\mathbf{x})} H[\mathbf{x},\mathbf{u},V^*(\cdot)]$

Every discounted problem can be converted to a first exit problem by scaling the transition probabilities by γ, introducing a terminal state with zero cost, and setting all transition probabilities to that state to 1 - γ

Value Function

Value Function: the expected long-term cost of following policy π starting from state x:

$$V^{\pi}(\mathbf{x}) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \ell(\mathbf{x}_{t}, \pi(\mathbf{x}_{t})) \mid \mathbf{x}_{0} = \mathbf{x}\right]$$
$$= \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} \ell(\mathbf{x}_{t}, \pi(\mathbf{x}_{t})) \mid \mathbf{x}_{0} = \mathbf{x}\right]$$
$$= \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim \rho_{f}}(\cdot | \mathbf{x}, \pi(\mathbf{x})) \left[V^{\pi}(\mathbf{x}')\right]$$

Value Iteration: computes the optimal value function

$$V^*(\mathbf{x}) := \min_{\pi} V^{\pi}(\mathbf{x}) = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V^*(\mathbf{x}') \right] \right\}$$

Action-Value (Q) Function

Q Function: the expected long-term cost of taking action u in state x and following policy π afterwards:

$$Q^{\pi}(\mathbf{x}, \mathbf{u}) := \ell(\mathbf{x}, \mathbf{u}) + \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t} \ell(\mathbf{x}_{t}, \pi(\mathbf{x}_{t})) \mid \mathbf{x}_{0} = \mathbf{x}\right]$$
$$= \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot \mid \mathbf{x}, \mathbf{u})} \left[V^{\pi}(\mathbf{x}')\right]$$
$$= \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot \mid \mathbf{x}, \mathbf{u})} \left[Q^{\pi}(\mathbf{x}', \pi(\mathbf{x}'))\right]$$

Q-Value Iteration: computes the optimal Q function

$$Q^{*}(\mathbf{x}, \mathbf{u}) := \min_{\pi} Q^{\pi}(\mathbf{x}, \mathbf{u}) = \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot | \mathbf{x}, \mathbf{u})} \left[\min_{\pi} V^{\pi}(\mathbf{x}') \right]$$
$$= \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot | \mathbf{x}, \mathbf{u})} \left[V^{*}(\mathbf{x}') \right]$$
$$= \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_{f}(\cdot | \mathbf{x}, \mathbf{u})} \left[\min_{\mathbf{u}' \in \mathcal{U}(\mathbf{x}')} Q^{*}(\mathbf{x}', \mathbf{u}') \right]$$

Q*(x, u) allows us to choose optimal actions without having to know anything about the dynamics p_f(x' | x, u):
 π*(x) = arg min {ℓ(x, u) + γE_{x'~p_f(·|x,u)} [V*(x')]} = arg min Q*(x, u) u∈U(x) 35

Bellman Backup Operators

Policy Evaluation Backup Operator:

 $\mathcal{T}_{\pi}[V](\mathbf{x}) := H[\mathbf{x}, \pi(\mathbf{x}), V] = \ell(\mathbf{x}, \pi(\mathbf{x})) + \gamma \mathbb{E}_{\mathbf{x}' \sim \rho_f(\cdot | \mathbf{x}, \pi(\mathbf{x}))} \left[V(\mathbf{x}') \right]$

Value Iteration Backup Operator:

 $\mathcal{T}_*[V](\mathbf{x}) := \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} H[\mathbf{x}, \mathbf{u}, V] = \min_{\mathbf{u} \in \mathcal{U}(\mathbf{x})} \left\{ \ell(\mathbf{x}, \mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x}, \mathbf{u})} \left[V(\mathbf{x}') \right] \right\}$

Policy Q-Evaluation Backup Operator:

$$\mathcal{T}_{\pi}[Q](\mathsf{x},\mathsf{u}) := \ell(\mathsf{x},\mathsf{u}) + \gamma \mathbb{E}_{\mathsf{x}' \sim p_{f}(\cdot | \mathsf{x}, \pi(\mathsf{x}))} \left[Q(\mathsf{x}', \pi(\mathsf{x}'))
ight]$$

Q-Value Iteration Backup Operator:

$$\mathcal{T}_*[Q](\mathbf{x},\mathbf{u}) := \ell(\mathbf{x},\mathbf{u}) + \gamma \mathbb{E}_{\mathbf{x}' \sim p_f(\cdot | \mathbf{x},\mathbf{u})} \left[\min_{\mathbf{u}' \in \mathcal{U}(\mathbf{x}')} Q(\mathbf{x}',\mathbf{u}')
ight]$$

Bellman Backup Operators (Stochastic Policy)

Contraction in Discounted Problems

Properties of $\mathcal{T}_*[V]$

- 1. Monotonicity: $V(\mathbf{x}) \leq V'(\mathbf{x}) \Rightarrow \mathcal{T}_*[V](\mathbf{x}) \leq \mathcal{T}_*[V'](\mathbf{x})$
- 2. γ -Additivity: $\mathcal{T}_*[V(\cdot) + d](\mathbf{x}) = \mathcal{T}_*[V](\mathbf{x}) + \gamma d$
- 3. Contraction: $\|\mathcal{T}_*[V](\mathbf{x}) \mathcal{T}_*[V'](\mathbf{x})\|_{\infty} \leq \gamma \|V(\mathbf{x}) V'(\mathbf{x})\|_{\infty}$
- **Proof of Contraction**: Let $d = \max_{\mathbf{x}} |V(\mathbf{x}) V'(\mathbf{x})|$. Then:

$$V(\mathbf{x}) - d \leq V'(\mathbf{x}) \leq V(\mathbf{x}) + d, \quad orall \mathbf{x} \in \mathcal{X}$$

Apply \mathcal{T}_* to both sides and use monotonicity and γ -additivity:

$$\mathcal{T}_*[V](\mathbf{x}) - \gamma d \leq \mathcal{T}_*[V'](\mathbf{x}) \leq \mathcal{T}_*[V](\mathbf{x}) + \gamma d, \quad \forall \mathbf{x} \in \mathcal{X}$$

VI and PI Revisited

Value Iteration:

- V^* is the solution to $V = \mathcal{T}_*[V]$ (Bellman Equation)
- Since T_{*} is a contraction, the fixed-point equation has a unique solution (Contraction Mapping Theorem), which can be determined iteratively:

 $V_{k+1} = \mathcal{T}_*[V_k]$ (Value Iteration)

Initialization:

- Discounted: arbitrary
- First exit: $V_k(\mathbf{x}) = \mathfrak{q}(\mathbf{x})$ for all k and all terminal $\mathbf{x} \in \mathcal{T}$

Policy Iteration:

Policy Evaluation: Given π compute V^{π} via

 $\mathbf{v} = (I - \gamma P)^{-1} \ell$ OR $V_{k+1} = \mathcal{T}_{\pi}[V_k]$ (Policy Evaluation Thm)

Policy Improvement: choose the action that minimizes the Hamiltonian:

$$\pi'(\mathbf{x}) = \arg\min_{\mathbf{u}\in\mathcal{U}(\mathbf{x})} H[\mathbf{x},\mathbf{u},V^{\pi}(\cdot)]$$

• Initialization: arbitrary as long as V^{π} is finite

Value Iteration

▶ V^* is a fixed point of \mathcal{T}_* : V_0 , $\mathcal{T}_*[V_0]$, $\mathcal{T}_*^2[V_0]$, $\mathcal{T}_*^3[V_0]$,... $\to V^*$

Algorithm 1 Value Iteration

- 1: Initialize V_0
- 2: for $k = 0, 1, 2, \dots$ do
- 3: $V_{k+1} = \mathcal{T}_*[V_k]$

• Q^* is a fixed point of \mathcal{T}_* : $Q_0, \ \mathcal{T}_*[Q_0], \ \mathcal{T}_*^2[Q_0], \ \mathcal{T}_*^3[Q_0], \dots \rightarrow Q^*$

Algorithm 2 Q-Value Iteration

- 1: Initialize Q_0
- 2: for $k = 0, 1, 2, \dots$ do
- 3: $Q_{k+1} = \mathcal{T}_*[Q_k]$

Policy Iteration

▶ Policy Evaluation: V_0 , $\mathcal{T}_{\pi}[V_0]$, $\mathcal{T}_{\pi}^2[V_0]$, $\mathcal{T}_{\pi}^3[V_0]$,... → V^{π}

Algorithm 3 Policy Iteration

1: Initialize V_0

2: for
$$k = 0, 1, 2, \dots$$
 do

3:
$$\pi_{k+1}(\mathbf{x}) = \arg\min_{\mathbf{u}\in\mathcal{U}(\mathbf{x})} H[\mathbf{x},\mathbf{u},V_k(\cdot)]$$

4:
$$V_{k+1} = \mathcal{T}_{\pi_{k+1}}^{\infty} [V_k]$$

Policy Improvement

▷ Policy Evaluation

Policy Q-Evaluation: $Q_0, \ \mathcal{T}_{\pi}[Q_0], \ \mathcal{T}_{\pi}^2[Q_0], \ \mathcal{T}_{\pi}^3[Q_0], \ldots \to Q^{\pi}$

Algorithm 4 Q-Policy Iteration

- 1: Initialize Q_0
- 2: for k = 0, 1, 2... do

3:
$$\pi_{k+1}(\mathbf{x}) = \underset{\mathbf{u} \in \mathcal{U}(\mathbf{x})}{\arg \min} Q_k(\mathbf{x}, \mathbf{u})$$

4:
$$Q_{k+1} = \mathcal{T}_{\pi_{k+1}}^{\infty} [Q_k]$$

Policy Improvement

Policy Evaluation

Generalized Policy Iteration

Algorithm 5 Generalized Policy Iteration

- 1: Initialize V_0
- 2: for $k = 0, 1, 2, \dots$ do
- 3: $\pi_{k+1}(\mathbf{x}) = \underset{\mathbf{u} \in \mathcal{U}(\mathbf{x})}{\arg \min} H[\mathbf{x}, \mathbf{u}, V_k(\cdot)]$
- 4: $V_{k+1} = \mathcal{T}_{\pi_{k+1}}^n \left[V_k \right], \quad \text{for } n \geq 1$

Policy Improvement

▷ Policy Evaluation

Algorithm 6 Generalized Q-Policy Iteration

1: Initialize Q_0 2: for k = 0, 1, 2, ... do3: $\pi_{k+1}(\mathbf{x}) = \underset{\mathbf{u} \in \mathcal{U}(\mathbf{x})}{\arg \min Q_k(\mathbf{x}, \mathbf{u})}$ 4: $Q_{k+1} = \mathcal{T}_{\pi_{k+1}}^n [Q_k],$ for $n \ge 1$ \triangleright Policy Evaluation