
ECE276B: Planning & Learning in Robotics
Lecture 10: Bellman Equations

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Zhichao Li: zhl355@eng.ucsd.edu
Jinzhao Li: jil016@eng.ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:zhl355@eng.ucsd.edu
mailto:jil016@eng.ucsd.edu

First-Exit Problem
I The first exit problem is a slightly more general statement of the

stochastic shortest path (SSP) problem

I Terminal Set: let T ⊆ X be a set of terminal states with terminal cost
q(x) for x ∈ T

I First-Exit Time: trajectories terminate at T := inf {t ≥ 1|xt ∈ T }, the
first passage time from an initial state x0 to a terminal state x ∈ T

I Note that T is a random variable unlike in the finite-horizon problem

I First-Exit Problem:

V ∗(x) = min
π

V π(x) := E

[
q(xT) +

T−1∑
t=0

`(xt , π(xt))

∣∣∣∣ x0 = x

]
s.t. xt+1 ∼ pf (· | xt , π(xt)),

xt ∈ X ,
π(xt) ∈ U(xt)

2

Discounted Problem

I Discount factor γ ∈ [0, 1)

I The optimal value function V ∗(x) and associated policy π∗(x) are
stationary

I The episodes ρ0 := x0,u0, x1,u1, . . . ∼ π continue forever but the costs
are discounted by γ

I Discounted Problem:

V ∗(x) = min
π

V π(x) := E

[∞∑
t=0

γt`(xt , π(xt))

∣∣∣∣ x0 = x

]
s.t. xt+1 ∼ pf (· | xt , π(xt)),

xt ∈ X ,
π(xt) ∈ U(xt)

3

Bellman Equation

I First-Exit (SSP) Problem: the optimal value function satisfies:

V ∗(x) = q(x), ∀x ∈ T

V ∗(x) = min
u∈U(x)

(
`(x,u) +

∑
x′∈X

pf (x′ | x,u)V ∗(x′)
)
, ∀x ∈ X \ T

I Discounted Problem: the optimal value function satisfies (via the
equivalence to the SSP problem):

V ∗(x) = min
u∈U(x)

(
`(x,u) + γ

∑
x′∈X

pf (x′ | x,u)V ∗(x′)
)
, ∀x ∈ X

I There exist several methods to solve the Bellman Equation for the
Discounted and First-Exit problems:
I Value Iteration (VI)
I Policy Iteration (PI)
I Linear Programming (LP)

4

Value Iteration (VI)

I Value Iteration: applies the Dynamic Programming recursion with an
arbitrary initialization V0(x) to compute V ∗(x) for x ∈ X

I The VI algorithm is the infinite-horizon equivalent of the DP algorithm

I VI requires infinite iterations for Vk(x) to converge to V ∗(x). In
practice, define a threshold for |Vk+1(x)− Vk(x)| for all x ∈ X

I First-Exit Problem:

Vk(x) = q(x), ∀x ∈ T

Vk+1(x) = min
u∈Ũ(x)

[
`(x,u) +

∑
x′∈X

pf (x′ | x,u)Vk(x′)
]
, ∀x ∈ X \ T

I Discounted Problem:

Vk+1(x) = min
u∈U(x)

[
`(x,u) + γ

∑
x′∈X

pf (x′ | x,u)Vk(x′)
]
, ∀x ∈ X

5

Gauss-Seidel Value Iteration

I A regular VI implementation stores the values from a previous iteration
and updates them for all states simultaneously:

V̂ (x)← min
u∈U(x)

(
`(x,u) + γ

∑
x′∈X

pf (x′ | x,u)V (x′)

)
, ∀x ∈ X

V (x)← V̂ (x), ∀x ∈ X

I Gauss-Seidel Value Iteration updates the values in place:

V (x)← min
u∈U(x)

(
`(x,u) + γ

∑
x′∈X

pf (x′ | x,u)V (x′)

)
, ∀x ∈ X

I Gauss-Seidel VI often leads to faster convergence and requires less
memory than VI

6

Policy Evaluation

I The VI algorithm computes the optimal value function V ∗(x) for every
state x ∈ X

I Instead of the optimal value function V ∗(x), is it possible to compute
the value function V π(x) for a given policy π?

Policy Evaluation Theorem (Discounted Problem)

The value function V π(x) for policy π is the unique solution of:

V π(x) = `(x, π(x)) + γ
∑
x′∈X

pf (x′ | x, π(x))V π(x′), ∀x ∈ X

Furthermore, given any initial conditions V0(x), the sequence Vk(x)
generated by the recursion below converges to V π(x):

Vk+1(x) = `(x, π(x)) + γ
∑
x′∈X

pf (x′ | x, π(x))Vk(x′), ∀x ∈ X

7

Policy Evaluation

Policy Evaluation Theorem (First-Exit Problem)

The value function V π(x) at x ∈ X \ T for policy π is the unique solution of:

V π(x) = `(x, π(x)) +
∑
x′∈X

pf (x′ | x, π(x))V π(x′). ∀x ∈ X \ T

Furthermore, given any initial conditions V0(x), the sequence Vk(x)
generated by the recursion below converges to V π(x):

Vk+1(x) = `(x, π(x)) +
∑
x′∈X

pf (x′ | x, π(x))Vk(x′), ∀x ∈ X \ T

I Proof sketch: This is a special case of the Bellman Equation Theorem
(SSP). Consider a modified problem, where the only allowable control at
state x is π(x). Since the proper policy π is the only policy under
consideration, the proper policy assumption is satisfied and the arg min
over u ∈ U(x) has to be π(x).

8

Policy Evaluation as a Linear System
I Let X = {1, . . . , n} for the Discounted Problem
I Let X = N ∪ T for the First-Exit Problem with N = {1, . . . , n}
I Let vi := V π(i), `i := `(i , π(i)), Pij := pf (j | i , π(i)) for i , j = 1, . . . , n
I Let qi := q(i) for i ∈ T
I Policy evaluation requires solving a linear system:

Discounted: v = ` + γPv ⇒ (I − γP)v = `

First-Exit: v = ` + PNN v + PNT q ⇒ (I − PNN) v = ` + PNT q

I Existence of solution:
I Discounted: The matrix P has eigenvalues with modulus ≤ 1. All

eigenvalues of γP have modulus < 1, so (γP)T → 0 as T →∞ and
(I − γP)−1 exists.

I First-Exit: a unique solution for v exists as long as π is a proper policy.
By the Chapman-Kolmogorov equation, [Pk]ij = P(xk = j | x0 = i) and
since π is proper, [Pk]ij → 0 as k →∞ for all i , j ∈ X \ T . Since Pk

NN
vanishes as k →∞, all eigenvalues of PNN must have modulus less than
1 and therefore (I − PNN)−1 exists.

9

Policy Evaluation as a Linear System
I The Policy Evaluation Thm. is an iterative solution to the linear system
I Discounted:

v1 = ` + γPv0

v2 = ` + γPv1 = ` + γP` + (γP)2v0
...

vk = (I + γP + (γP)2 + . . .+ (γP)k−1)` + (γP)kv0
...

v∞ → (I − γP)−1`

I First-Exit:

v1 = ` + PNT q + PNN v0

v2 = ` + PNT q + PNN v1 = ` + PNT q + PNN (` + PNT q) + P2
NN v0

...

v∞ → (I − PNN)−1 (` + PNT q)
10

Policy Iteration (PI)

I PI is an alternative algorithm to VI for computing V ∗(x)

I PI iterates over policies instead of values

I First-Exit Problem: repeat until V π′
(x) = V π(x) for all x ∈ X \ T :

1. Policy Evaluation: given a policy π, compute V π:

V π(x) = `(x, π(x)) +
∑

x′∈X
pf (x′ | x, π(x))V π(x′), ∀x ∈ X \ T

2. Policy Improvement: given V π, obtain a new stationary policy π′:

π′(x) = arg min
u∈U(x)

[
`(x,u) +

∑
x′∈X

pf (x′ | x,u)V π(x′)
]
, ∀x ∈ X \ T

11

Policy Iteration (PI)

I PI is an alternative algorithm to VI for computing V ∗(x)

I PI iterates over policies instead of values

I Discounted Problem: repeat until V π′
(x) = V π(x) for all x ∈ X :

1. Policy Evaluation: given a policy π, compute V π:

V π(x) = `(x, π(x)) + γ
∑

x′∈X
pf (x′ | x, π(x))V π(x′), ∀x ∈ X

2. Policy Improvement: given V π, obtain a new stationary policy π′:

π′(x) = arg min
u∈U(x)

[
`(x,u) + γ

∑
x′∈X

pf (x′ | x,u)V π(x′)
]
, ∀x ∈ X

12

Policy Improvement Theorem

Let π and π′ be deterministic policies such that V π(x) ≥ Qπ(x, π′(x)) for all
x ∈ X . Then, π′ is at least as good as π, i.e., V π(x) ≥ V π′

(x) for all x ∈ X

I Proof:
V π(x) ≥ Qπ(x, π′(x)) = `(x, π′(x)) + γEx′∼pf (·|x,π′(x))

[
V π(x′)

]
≥ `(x, π′(x)) + γEx′∼pf (·|x,π′(x))

[
Qπ(x′, π′(x′))

]
= `(x, π′(x)) + γEx′∼pf (·|x,π′(x))

{
`(x′, π′(x′)) + γEx′′∼pf (·|x′,π′(x′))V

π(x′′)
}

≥ · · · ≥ E

[∞∑
t=0

γt`(xt , π
′(xt))

∣∣∣∣x0 = x

]
= V π′

(x)

Theorem: Optimality of PI

Suppose that X is finite and:

I γ ∈ [0, 1) (Discounted Problem)

I there exists a termination set T and a proper policy (First-Exit Problem)

Then, the Policy Iteration algorithm converges to an optimal policy after a
finite number of steps.

13

Proof of Optimality of PI (First-Exit Problem)
I Let π be a proper policy with value V π obtained from the Policy

Evaluation step.
I Let π′ be the policy obtained from the Policy Improvement step.
I By definition of the Policy Improvement step: V π(x) ≥ Qπ(x, π′(x)) for

all x ∈ X \ T
I By the Policy Improvement Thm., V π(x) ≥ V π′

(x) for all x ∈ X \ T
I Since π is proper, V π(x) <∞ for all x ∈ X , and hence π′ is proper
I Since π′ is proper, the Policy Evaluation step has a unique solution V π′

I Since the number of stationary policies is finite, eventually V π = V π′

after a finite number of steps.
I Once V π has converged, it follows from the Policy Improvement step:

V π′
(x) = V π(x) = min

u∈U(x)

(
`(x,u) +

∑
x′∈X

p̃f (x′ | x,u)V π(x′)

)
, x ∈ X \ T

I Since this is the Bellman Equation for the First-Exit problem, we have
converged to an optimal policy π∗ = π with optimal cost V ∗ = V π.

14

Comparison between VI and PI

I PI and VI actually have a lot in common

I Rewrite VI as follows:

2. Policy Improvement: Given Vk(x) obtain a stationary policy:

π(x) = arg min
u∈U(x)

[
`(x,u) + γ

∑
x′∈X

pf (x′ | x,u)Vk(x′)
]
, ∀x ∈ X

1. Value Update: Given π(x) and Vk(x), compute

Vk+1(x) = `(x, π(x)) + γ
∑

x′∈X
pf (x′ | x, π(x))Vk(x′), ∀x ∈ X

I The Value Update step of VI is one step of an iterative solution to the
linear system of equations in the Policy Evaluation Theorem

I PI solves the Policy Evaluation equation completely, which is equivalent
to running the Value Update step of VI an infinite number of times!

15

Comparison between VI and PI

I Complexity of VI per Iteration: O(|X |2|U|): evaluating the
expectation (i.e., sum over x′) requires |X | operations and there are |X |
minimizations over |U| possible control inputs.

I Complexity of PI per Iteration: O(|X |2 (|X |+ |U|)): the Policy
Evaluation step requires solving a system of |X | equations in |X |
unknowns (O(|X |3)), while the Policy Improvement step has the same
complexity as one iteration of VI.

I PI is more computationally expensive than VI

I Theoretically it takes an infinite number of iterations for VI to converge

I PI converges in |U||X | iterations (all possible policies) in the worst case

16

Generalized Policy Iteration

I Assuming that the Value Update and Policy Improvement steps are
executed an infinite number of times for all states, all combinations of
the following converge:
I Any number of Value Update steps in between Policy Improvement steps

I Any number of states updated at each Value Update step

I Any number of states updated at each Policy Improvement step

17

Example: Frozen Lake Problem

I Winter is here.

I You and your friends were tossing around a frisbee at the park when you
made a wild throw that left the frisbee out in the middle of the lake.

I The water is mostly frozen, but there are a few holes where the ice has
melted.

I If you step into one of those holes, you’ll fall into the freezing water.

I At this time, there’s an international frisbee shortage, so it’s absolutely
imperative that you navigate across the lake and retrieve the disc.

I However, the ice is slippery, so you won’t always move in the direction
you intend.

18

Example: Frozen Lake Problem
I S : starting point, safe

I F : frozen surface, safe

I H : hole, fall to your doom

I G : goal, where the frisbee is located

I X = {0, 1, . . . , 15}
I U(x) = {Left(0), Down(1), Right(2), Up(3)}
I You receive a reward of 1 if you reach the

goal, and zero otherwise

I A requested action u ∈ U(x) succeeds 80% of the time. A neighboring
action is executed in the other 50% of the time due to slip:

x ′ | x = 9, u = 1 =

13, with prob. 0.8

8, with prob. 0.1

10, with prob. 0.1

I The state remains unchanged if a control leads outside of the map

I An episode ends when you reach the goal or fall in a hole. 19

Value Iteration on Frozen Lake

(a) t = 0 (b) t = 1 (c) t = 2

(d) t = 3 (e) t = 4 (f) t = 5
20

Value Iteration on Frozen Lake
Iteration maxx |Vt+1(x)− Vt(x)| # changed actions V (0)

0 0.80000 0 0.000
1 0.60800 1 0.000
2 0.51984 2 0.000
3 0.39508 2 0.000
4 0.30026 2 0.000
5 0.25355 2 0.254
6 0.10478 1 0.345
7 0.09657 0 0.442
8 0.03656 0 0.478
9 0.02772 0 0.506

10 0.01111 0 0.517
11 0.00735 0 0.524
12 0.00310 0 0.527
13 0.00190 0 0.529
14 0.00083 0 0.530
15 0.00049 0 0.531
16 0.00022 0 0.531
17 0.00013 0 0.531
18 0.00006 0 0.531
19 0.00003 0 0.531

21

Policy Iteration on Frozen Lake

(a) t = 0 (b) t = 1 (c) t = 2

(d) t = 3 (e) t = 4 (f) t = 5
22

Policy Iteration on Frozen Lake
Iteration maxx |Vt+1(x)− Vt(x)| # changed actions V (0)

0 0.00000 0 0.000
1 0.89296 1 0.000
2 0.88580 9 0.398
3 0.48504 2 0.455
4 0.07573 1 0.531
5 0.00000 0 0.531
6 0.00000 0 0.531
7 0.00000 0 0.531
8 0.00000 0 0.531
9 0.00000 0 0.531

10 0.00000 0 0.531
11 0.00000 0 0.531
12 0.00000 0 0.531
13 0.00000 0 0.531
14 0.00000 0 0.531
15 0.00000 0 0.531
16 0.00000 0 0.531
17 0.00000 0 0.531
18 0.00000 0 0.531
19 0.00000 0 0.531

23

Value Iteration vs Policy Iteration

(a) VI (b) PI

24

Value Iteration vs Policy Iteration

(a) State 0 (b) State 1

(c) State 2 (d) State 3
25

Linear Programming Solution to the Bellman Equation

I Suppose we initialize VI with V0 that satisfies a relaxed Bellman
Equation:

V0(x) ≤ min
u∈U(x)

(
`(x,u) + γ

∑
x′∈X

pf (x′ | x,u)V0(x′)

)
, ∀x ∈ X

I Applying VI to V0 leads to:

V1(x) = min
u∈U(x)

(
`(x,u) + γ

∑
x′∈X

pf (x′ | x,u)V0(x′)

)
≥ V0(x), ∀x ∈ X

V2(x) = min
u∈U(x)

(
`(x,u) + γ

∑
x′∈X

pf (x′ | x,u)V1(x′)

)

≥ min
u∈U(x)

(
`(x,u) + γ

∑
x′∈X

pf (x′ | x,u)V0(x′)

)
= V1(x), ∀x ∈ X

26

Linear Programming Solution to the Bellman Equation

I The above shows that Vk+1(x) ≥ Vk(x) for all k and x ∈ X

I Since VI guarantees that Vk(x)→ V ∗(x) as k →∞ we also have:

V ∗(x) ≥ V0(x), ∀x ∈ X ⇒
∑
x∈X

w(x)V ∗(x) ≥
∑
x∈X

w(x)V0(x)

for any w(x) > 0 for all x ∈ X .

I The above holds for any V0 that satisfies:

V0(x) ≤ min
u∈U(x)

(
`(x,u) + γ

∑
x′∈X

pf (x′ | x,u)V0(x′)

)
, ∀x ∈ X

I Note that V ∗ also satisfies this condition with equality (Bellman
Equation) and hence is the maximal V0 (at each state) that satisfies the
condition.

27

Linear Programming Solution to the Bellman Equation

LP Solution to the Bellman Equation

The solution V ∗ to the linear program with w(x) > 0:

max
V

∑
x∈X

w(x)V (x)

s.t. V (x) ≤

(
`(x,u) + γ

∑
x′∈X

pf (x′ | x,u)V (x′)

)
, ∀u ∈ U(x), ∀x ∈ X

also solves the Bellman Equation to yield the optimal value function for an
infinite-horizon finite-state discounted stochastic optimal control problem.

I An equivalent result holds for the First-Exit Problem.

28

LP Solution to the BE (Proof)
I Let J∗ be the solution to the linear program so that:

J∗(x) ≤

(
`(x,u) + γ

∑
x′∈X

pf (x′ | x,u)J∗(x′)

)
, ∀u ∈ U(x),∀x ∈ X

I Since J∗ is feasible, it satisfies J∗(x) ≤ V ∗(x) for all x ∈ X

I By contradiction, suppose that J∗ 6= V ∗. Then, there exists a state
y ∈ X such that:

J∗(y) < V ∗(y) ⇒
∑
x∈X

w(x)J∗(x) <
∑
x∈X

w(x)V ∗(x)

for any positive w(x) but since V ∗ solves the Bellman Equation:

V ∗(x) ≤

(
`(x,u) + γ

∑
x′∈X

pf (x′ | x,u)V ∗(x′)

)
, ∀u ∈ U(x),∀x ∈ X

I Thus, V ∗ is feasible and has higher value than J∗, which is a
contradiction.

29

Bellman Equations (Summary)

30

Finite-Horizon Problem

I Trajectories terminate at fixed T <∞

min
π

V π
τ (x) = E

[
q(xT) +

T−1∑
t=τ

`t(xt , πt(xt))

∣∣∣∣xτ = x

]

I The optimal value V ∗t (x) can be found with a single backward pass
through time, initialized from V ∗T (x) = q(x) and following the recursion:

Bellman Equations (Finite-Horizon Problem)

Hamiltonian: Ht [x,u,V (·)] = `t(x,u) + Ex′∼pf (·|x,u)V (x′)

Policy Evaluation: V π
t (x) = Ht [x, πt(x),V π

t+1(·)]

Bellman Equation: V ∗t (x) = min
u∈U(x)

Ht [x,u,V
∗
t+1(·)]

Optimal Policy: π∗t (x) = arg min
u∈U(x)

Ht [x,u,V
∗
t+1(·)]

31

First-Exit Problem
I First-Exit Time: trajectories terminate at T := inf {t ≥ 1|xt ∈ T }, the

first passage time from the initial state x0 to a terminal state x ∈ T ⊆ X

min
π

V π(x) = E

[
T−1∑
t=0

`(xt , π(xt)) + q(xT)

∣∣∣∣x0 = x

]
I At terminal states, V ∗(x) = V π(x) = q(x) for all x ∈ T

I At other states, the following are satisfied:

Bellman Equations (First-Exit Problem)

Hamiltonian: H[x,u,V (·)] = `(x,u) + Ex′∼pf (·|x,u)V (x′)

Policy Evaluation: V π(x) = H[x, π(x),V π(·)]

Bellman Equation: V ∗(x) = min
u∈U(x)

H[x,u,V ∗(·)]

Optimal Policy: π∗(x) = arg min
u∈U(x)

H[x,u,V ∗(·)]

32

Discounted Problem

I Trajectories continue forever but costs are discounted via γ ∈ [0, 1):

min
π

V π(x) = E

[∞∑
t=0

γt`(xt , π(xt))

∣∣∣∣x0 = x

]

Bellman Equations (Discounted Problem)

Hamiltonian: H[x,u,V (·)] = `(x,u) + γEx′∼pf (·|x,u)V (x′)

Policy Evaluation: V π(x) = H[x, π(x),V π(·)]

Bellman Equation: V ∗(x) = min
u∈U(x)

H[x,u,V ∗(·)]

Optimal Policy: π∗(x) = arg min
u∈U(x)

H[x,u,V ∗(·)]

I Every discounted problem can be converted to a first exit problem by
scaling the transition probabilities by γ, introducing a terminal state with
zero cost, and setting all transition probabilities to that state to 1− γ

33

Value Function

I Value Function: the expected long-term cost of following policy π
starting from state x:

V π(x) :=E

[∞∑
t=0

γt`(xt , π(xt))

∣∣∣∣ x0 = x

]

=`(x, π(x)) + γE

[∞∑
t=1

γt−1`(xt , π(xt))

∣∣∣∣ x0 = x

]
=`(x, π(x)) + γEx′∼pf (·|x,π(x))

[
V π(x′)

]
I Value Iteration: computes the optimal value function

V ∗(x) := min
π

V π(x) = min
u∈U(x)

{
`(x,u) + γEx′∼pf (·|x,u)

[
V ∗(x′)

]}

34

Action-Value (Q) Function
I Q Function: the expected long-term cost of taking action u in state x

and following policy π afterwards:

Qπ(x,u) :=`(x,u) + E

[∞∑
t=1

γt`(xt , π(xt))

∣∣∣∣ x0 = x

]
=`(x,u) + γEx′∼pf (·|x,u)

[
V π(x′)

]
=`(x,u) + γEx′∼pf (·|x,u)

[
Qπ(x′, π(x′))

]
I Q-Value Iteration: computes the optimal Q function

Q∗(x,u) := min
π

Qπ(x,u) =`(x,u) + γEx′∼pf (·|x,u)

[
min
π

V π(x′)
]

=`(x,u) + γEx′∼pf (·|x,u)
[
V ∗(x′)

]
=`(x,u) + γEx′∼pf (·|x,u)

[
min

u′∈U(x′)
Q∗(x′,u′)

]
I Q∗(x,u) allows us to choose optimal actions without having to know

anything about the dynamics pf (x′ | x,u):

π∗(x) = arg min
u∈U(x)

{
`(x,u) + γEx′∼pf (·|x,u)

[
V ∗(x′)

]}
= arg min

u∈U(x)
Q∗(x,u)

35

Bellman Backup Operators

I Policy Evaluation Backup Operator:

Tπ[V](x) := H[x, π(x),V] = `(x, π(x)) + γEx′∼pf (·|x,π(x))
[
V (x′)

]
I Value Iteration Backup Operator:

T∗[V](x) := min
u∈U(x)

H[x,u,V] = min
u∈U(x)

{
`(x,u) + γEx′∼pf (·|x,u)

[
V (x′)

]}
I Policy Q-Evaluation Backup Operator:

Tπ[Q](x,u) := `(x,u) + γEx′∼pf (·|x,π(x))
[
Q(x′, π(x′))

]
I Q-Value Iteration Backup Operator:

T∗[Q](x,u) := `(x,u) + γEx′∼pf (·|x,u)

[
min

u′∈U(x′)
Q(x′,u′)

]

36

Bellman Backup Operators (Stochastic Policy)

(a) T∗[V](x) (b) Tπ[V](x)

(c) T∗[Q](x,u) (d) Tπ[Q](x,u)

37

Contraction in Discounted Problems

Properties of T∗[V]

1. Monotonicity: V (x) ≤ V ′(x) ⇒ T∗[V](x) ≤ T∗[V ′](x)

2. γ-Additivity: T∗[V (·) + d](x) = T∗[V](x) + γd

3. Contraction: ‖T∗[V](x)− T∗[V ′](x)‖∞ ≤ γ‖V (x)− V ′(x)‖∞

I Proof of Contraction: Let d = maxx |V (x)− V ′(x)|. Then:

V (x)− d ≤ V ′(x) ≤ V (x) + d , ∀x ∈ X

Apply T∗ to both sides and use monotonicity and γ-additivity:

T∗[V](x)− γd ≤ T∗[V ′](x) ≤ T∗[V](x) + γd , ∀x ∈ X

38

VI and PI Revisited
I Value Iteration:

I V ∗ is the solution to V = T∗[V] (Bellman Equation)
I Since T∗ is a contraction, the fixed-point equation has a unique solution

(Contraction Mapping Theorem), which can be determined iteratively:

Vk+1 = T∗[Vk] (Value Iteration)

I Initialization:
I Discounted: arbitrary
I First exit: Vk(x) = q(x) for all k and all terminal x ∈ T

I Policy Iteration:
I Policy Evaluation: Given π compute V π via

v = (I − γP)−1` OR Vk+1 = Tπ[Vk] (Policy Evaluation Thm)

I Policy Improvement: choose the action that minimizes the Hamiltonian:

π′(x) = arg min
u∈U(x)

H[x,u,V π(·)]

I Initialization: arbitrary as long as V π is finite

39

Value Iteration

I V ∗ is a fixed point of T∗: V0, T∗[V0], T 2
∗ [V0], T 3

∗ [V0], . . . → V ∗

Algorithm 1 Value Iteration

1: Initialize V0

2: for k = 0, 1, 2, . . . do
3: Vk+1 = T∗ [Vk]

I Q∗ is a fixed point of T∗: Q0, T∗[Q0], T 2
∗ [Q0], T 3

∗ [Q0], . . . → Q∗

Algorithm 2 Q-Value Iteration

1: Initialize Q0

2: for k = 0, 1, 2, . . . do
3: Qk+1 = T∗ [Qk]

40

Policy Iteration
I Policy Evaluation: V0, Tπ[V0], T 2

π [V0], T 3
π [V0], . . . → V π

Algorithm 3 Policy Iteration

1: Initialize V0

2: for k = 0, 1, 2, . . . do
3: πk+1(x) = arg min

u∈U(x)
H[x,u,Vk(·)] . Policy Improvement

4: Vk+1 = T ∞πk+1
[Vk] . Policy Evaluation

I Policy Q-Evaluation: Q0, Tπ[Q0], T 2
π [Q0], T 3

π [Q0], . . . → Qπ

Algorithm 4 Q-Policy Iteration

1: Initialize Q0

2: for k = 0, 1, 2 . . . do
3: πk+1(x) = arg min

u∈U(x)
Qk(x,u) . Policy Improvement

4: Qk+1 = T ∞πk+1
[Qk] . Policy Evaluation

41

Generalized Policy Iteration

Algorithm 5 Generalized Policy Iteration

1: Initialize V0

2: for k = 0, 1, 2, . . . do
3: πk+1(x) = arg min

u∈U(x)
H[x,u,Vk(·)] . Policy Improvement

4: Vk+1 = T n
πk+1

[Vk] , for n ≥ 1 . Policy Evaluation

Algorithm 6 Generalized Q-Policy Iteration

1: Initialize Q0

2: for k = 0, 1, 2, . . . do
3: πk+1(x) = arg min

u∈U(x)
Qk(x,u) . Policy Improvement

4: Qk+1 = T n
πk+1

[Qk] , for n ≥ 1 . Policy Evaluation

42

