ECE276B: Planning \& Learning in Robotics Lecture 11: Model-free Prediction

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Zhichao Li: zhl355@eng.ucsd.edu
Jinzhao Li: jil016@eng.ucsd.edu

UCSanDiego
JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

From Optimal Control To Reinforcement Learning

- Stochastic Optimal Control: MDP with known motion model $p_{f}\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{u}\right)$ and cost function $\ell(\mathbf{x}, \mathbf{u})$
- Model-based Prediction: computes the value function V^{π} of a given policy π (policy evaluation theorem)
- Model-based Control: optimizes the value function V^{π} to obtain an improved policy π^{\prime} (policy improvement theorem)
- Reinforcement Learning: MDP with unknown motion model $p_{f}\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{u}\right)$ and cost function $\ell(\mathbf{x}, \mathbf{u})$ but access to examples of system transitions and incurred costs
- Model-free Prediction: estimates the value function V^{π} of a given policy π :
- Monte-Carlo (MC) Prediction
- Temporal-Difference (TD) Prediction
- Model-free Control: optimizes the value function:
- On-policy MC Control: ϵ-greedy
- On-policy TD Control: SARSA
- Off-policy MC Control: Importance Sampling
- Off-policy TD Control: Q-Learning

Bellman Backup Operators

- Operators for policy-specific value functions:
- Policy Evaluation Backup Operator:

$$
\mathcal{T}_{\pi}[V](\mathbf{x}):=H[\mathbf{x}, \pi(\mathbf{x}), V(\cdot)]=\ell(\mathbf{x}, \pi(\mathbf{x}))+\gamma \mathbb{E}_{\mathbf{x}^{\prime} \sim p_{f}(\cdot|\cdot| \mathbf{x}, \pi(\mathbf{x}))}\left[V\left(\mathbf{x}^{\prime}\right)\right]
$$

- Policy Q-Evaluation Backup Operator:

$$
\mathcal{T}_{\pi}[Q](\mathbf{x}, \mathbf{u}):=\ell(\mathbf{x}, \mathbf{u})+\gamma \mathbb{E}_{\mathbf{x}^{\prime} \sim p_{f}(\cdot \mid \mathbf{x}, \mathbf{u})}\left[Q\left(\mathbf{x}^{\prime}, \pi\left(\mathbf{x}^{\prime}\right)\right)\right]
$$

- Operators for the optimal value function:
- Value Iteration Backup Operator:

$$
\mathcal{T}_{*}[V](\mathbf{x}):=\min _{\mathbf{u} \in \mathcal{U}(\mathbf{x})} H[\mathbf{x}, \mathbf{u}, V(\cdot)]=\min _{\mathbf{u} \in \mathcal{U}(\mathbf{x})}\left\{\ell(\mathbf{x}, \mathbf{u})+\gamma \mathbb{E}_{\mathbf{x}^{\prime} \sim p_{f}(\cdot \mid \mathbf{x}, \mathbf{u})}\left[V\left(\mathbf{x}^{\prime}\right)\right]\right\}
$$

- Q-Value Iteration Backup Operator:

$$
\mathcal{T}_{*}[Q](\mathbf{x}, \mathbf{u}):=\ell(\mathbf{x}, \mathbf{u})+\gamma \mathbb{E}_{\mathbf{x}^{\prime} \sim p_{f}(\cdot \mid \mathbf{x}, \mathbf{u})}\left[\min _{\mathbf{u}^{\prime} \in \mathcal{U}\left(\mathbf{x}^{\prime}\right)} Q\left(\mathbf{x}^{\prime}, \mathbf{u}^{\prime}\right)\right]
$$

Model-free Prediction

- The main idea of model-free prediction is to approximate the Policy Evaluation backup operators $\mathcal{T}_{\pi}[V]$ and $\mathcal{T}_{\pi}[Q]$ using samples instead of computing the expectation over \mathbf{x}^{\prime} exactly:
- Monte-Carlo (MC) methods:
- The expected long-term cost can be approximated by a sample average over whole system trajectories (only applies to the First-Exit and Finite-Horizon settings)
- Temporal-Difference (TD) methods:
- The expected long-term cost can be approximated by a sample average over a single system transition and an estimate of the expected long-term cost at the new state (bootstrapping)
- Sampling: value estimates rely on samples:
- DP does not sample
- MC samples
- TD samples
- Bootstrapping: value estimates rely on other value estimates:
- DP bootstraps
- MC does not bootstrap
- TD bootstraps

Unified View of Reinforcement Learning

Monte-Carlo Policy Evaluation

- Assumption: MC policy evaluation applies only to the First-Exit (terminating) formulation
- Episode: a random sequence ρ_{τ} of states and controls from the start x_{τ}, following the system dynamics under policy π :

$$
\rho_{\tau}:=\mathbf{x}_{\tau}, \mathbf{u}_{\tau}, \mathbf{x}_{\tau+1}, \mathbf{u}_{\tau+1}, \ldots, \mathbf{x}_{T-1}, \mathbf{u}_{T-1}, \mathbf{x}_{T} \sim \pi
$$

- Long-term Cost: $L_{\tau}\left(\rho_{\tau}\right):=\gamma^{T-\tau} \mathfrak{q}\left(\mathbf{x}_{T}\right)+\sum_{t=\tau}^{T-1} \gamma^{t-\tau} \ell\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)$
- Goal: approximate $V^{\pi}\left(\mathbf{x}_{0}\right)$ from several episodes $\rho_{0}^{(k)} \sim \pi$
- MC Policy Evaluation: uses the empirical mean of long-term costs obtained from different episodes $\rho_{t}^{(k)}$ to approximate the value of π, i.e., the expected long-term cost:

$$
V^{\pi}(\mathbf{x})=\mathbb{E}_{\rho \sim \pi}\left[L_{\tau}(\rho) \mid \mathbf{x}_{\tau}=\mathbf{x}\right] \approx \frac{1}{K} \sum_{k=1}^{K} L_{\tau}\left(\rho_{t}^{(k)}\right)
$$

First-visit Monte-Carlo Policy Evaluation

- First-visit MC Policy Evaluation:
- for each state \mathbf{x} and episode $\rho^{(k)}$, find the first time step t that state \mathbf{x} is visited in $\rho^{(k)}$ and increment:
the number of visits to $\mathbf{x}: \quad N(\mathbf{x}) \leftarrow N(\mathbf{x})+1$
- the long-term cost starting from $\mathbf{x}: \quad C(\mathbf{x}) \leftarrow C(\mathbf{x})+L_{t}\left(\rho^{(k)}\right)$
- Approximate the value function of $\pi: V^{\pi}(\mathbf{x}) \approx \frac{C(\mathbf{x})}{N(\mathbf{x})}$
- Every-visit MC Policy Evaluation: same idea but the long-term costs are accumulated following every time step t that state \mathbf{x} is visited in $\rho^{(k)}$

First-visit MC Policy Evaluation

Algorithm 1 First-visit MC Policy Evaluation

1: Initialize $V^{\pi}(\mathbf{x}), \pi(\mathbf{x}), C(\mathbf{x}) \leftarrow 0, N(\mathbf{x}) \leftarrow 0$
2: loop
3: \quad Generate $\rho:=\mathbf{x}_{0}, \mathbf{u}_{0}, \mathbf{x}_{1}, \mathbf{u}_{1}, \ldots, \mathbf{x}_{T-1}, \mathbf{u}_{T-1}, \mathbf{x}_{T}$ from π
4: \quad for $\mathbf{x} \in \rho$ do
5: $\quad L \leftarrow$ return following first appearance of \mathbf{x} in ρ
6: $\quad N(\mathbf{x}) \leftarrow N(\mathbf{x})+1$
7: $\quad C(\mathbf{x}) \leftarrow C(\mathbf{x})+L$
8: $\quad V^{\pi}(\mathbf{x}) \leftarrow \frac{C(\mathbf{x})}{N(\mathbf{x})}$

- Every-visit MC would add to $C(\mathbf{x})$ not a single return L but the returns $\{L\}$ following all appearances of \mathbf{x} in ρ

Running Sample Average

- Consider a sequence x_{1}, x_{2}, \ldots, of samples from a random variable
- Usual way of computing the sample mean: $\mu_{k+1}=\frac{1}{k+1} \sum_{j=1}^{k+1} x_{j}$
- Running sample average:

$$
\begin{aligned}
\mu_{k+1} & =\frac{1}{k+1} \sum_{j=1}^{k+1} x_{j}=\frac{1}{k+1}\left(x_{k+1}+\sum_{j=1}^{k} x_{j}\right)=\frac{1}{k+1}\left(x_{k+1}+k \mu_{k}\right) \\
& =\mu_{k}+\frac{1}{k+1}\left(x_{k+1}-\mu_{k}\right)
\end{aligned}
$$

- Recency-weighted average: update μ_{k} using a step-size $\alpha \neq \frac{1}{k+1}$:

$$
\mu_{k+1}=\mu_{k}+\alpha\left(x_{k+1}-\mu_{k}\right)=(1-\alpha)^{k} x_{1}+\sum_{j=1}^{k} \alpha(1-\alpha)^{k-j} x_{j+1}
$$

- Robbins-Monro Step Sizes: convergence to the true mean is guaranteed almost surely under the following conditions:

$$
\binom{\text { independence from }}{\text { initial conditions }} \quad \sum_{k=1}^{\infty} \alpha_{k}=\infty \quad \sum_{k=1}^{\infty} \alpha_{k}^{2}<\infty \quad \text { (ensures convergence) }
$$

First-visit MC Policy Evaluation

Algorithm 2 First-visit MC Policy Evaluation

1: Initialize $V^{\pi}(\mathbf{x}), \pi(\mathbf{x})$
2: loop
3: \quad Generate $\rho:=\mathbf{x}_{0}, \mathbf{u}_{0}, \mathbf{x}_{1}, \mathbf{u}_{1}, \ldots, \mathbf{x}_{T-1}, \mathbf{u}_{T-1}, \mathbf{x}_{T}$ from π
4: \quad for $\mathbf{x} \in \rho$ do
5: $\quad L \leftarrow$ return following first appearance of \mathbf{x} in ρ
6: $\quad V^{\pi}(\mathbf{x}) \leftarrow V^{\pi}(\mathbf{x})+\alpha\left(L-V^{\pi}(\mathbf{x})\right) \quad \triangleright$ usual choice: $\alpha:=\frac{1}{N(\mathbf{x})+1}$

- The recency-weighted updates can be useful to track the value average in non-stationary problems (e.g., forgeting old episodes)

Temporal-Difference Policy Evaluation

- Bootstrapping: the value estimate of state \mathbf{x} relies on the value estimate of another state
- TD combines the sampling of MC with the bootstrapping of DP:

$$
\begin{aligned}
& V^{\pi}(\mathbf{x})=\mathbb{E}_{\rho \sim \pi}\left[L_{\tau}(\rho) \mid \mathbf{x}_{\tau}=\mathbf{x}\right] \\
& \quad \xlongequal{M C} \mathbb{E}_{\rho \sim \pi}\left[\gamma^{T-\tau} \mathfrak{q}\left(\mathbf{x}_{T}\right)+\sum_{t=\tau}^{T-1} \gamma^{t-\tau} \ell\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right) \mid \mathbf{x}_{\tau}=\mathbf{x}\right] \\
& \quad=\mathbb{E}_{\rho \sim \pi}\left[\ell\left(\mathbf{x}_{\tau}, \mathbf{u}_{\tau}\right)+\gamma\left(\gamma^{T-\tau-1} \mathfrak{q}\left(\mathbf{x}_{T}\right)+\sum_{t=\tau+1}^{T-1} \gamma^{t-\tau-1} \ell\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)\right) \mid \mathbf{x}_{\tau}=\mathbf{x}\right] \\
& \xlongequal[\text { bootstrap }]{T D(0)} \mathbb{E}_{\rho \sim \pi}\left[\ell\left(\mathbf{x}_{\tau}, \mathbf{u}_{\tau}\right)+\gamma V^{\pi}\left(\mathbf{x}_{\tau+1}\right) \mid \mathbf{x}_{\tau}=\mathbf{x}\right] \\
& \xlongequal[\text { bootstrap }]{T D(n)} \mathbb{E}_{\rho \sim \pi}\left[\sum_{t=\tau}^{\tau+n} \gamma^{t-\tau} \ell\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)+\gamma^{n+1} V^{\pi}\left(\mathbf{x}_{\tau+n+1}\right) \mid \mathbf{x}_{\tau}=\mathbf{x}\right]
\end{aligned}
$$

Temporal-Difference Policy Evaluation

- Prediction: estimate V^{π} from trajectory samples

$$
\rho=\mathbf{x}_{0}, \mathbf{u}_{0}, \mathbf{x}_{1}, \mathbf{u}_{1}, \ldots, \mathbf{x}_{T-1}, \mathbf{u}_{T-1}, \mathbf{x}_{T} \sim \pi
$$

- MC Policy Evaluation: updates the value estimate $V^{\pi}\left(\mathbf{x}_{t}\right)$ towards the long-term cost $L_{t}\left(\rho_{t}\right)$:

$$
V^{\pi}\left(\mathbf{x}_{t}\right) \leftarrow V^{\pi}\left(\mathbf{x}_{t}\right)+\alpha\left(L_{t}\left(\rho_{t}\right)-V^{\pi}\left(\mathbf{x}_{t}\right)\right)
$$

- TD(0) Policy Evaluation: updates the value estimate $V^{\pi}\left(\mathbf{x}_{t}\right)$ towards an estimated long-term cost $\ell\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)+\gamma V^{\pi}\left(\mathbf{x}_{t+1}\right)$:

$$
V^{\pi}\left(\mathbf{x}_{t}\right) \leftarrow V^{\pi}\left(\mathbf{x}_{t}\right)+\alpha\left(\ell\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)+\gamma V^{\pi}\left(\mathbf{x}_{t+1}\right)-V^{\pi}\left(\mathbf{x}_{t}\right)\right)
$$

- TD(n) Policy Evaluation: updates the value estimate $V^{\pi}\left(x_{t}\right)$ towards an estimated long-term cost $\sum_{\tau=t}^{t+n} \gamma^{\tau-t} \ell\left(\mathbf{x}_{\tau}, \mathbf{u}_{\tau}\right)+\gamma^{n+1} V^{\pi}\left(\mathbf{x}_{t+n+1}\right)$:

$$
V^{\pi}\left(\mathbf{x}_{t}\right) \leftarrow V^{\pi}\left(\mathbf{x}_{t}\right)+\alpha\left(\sum_{\tau=t}^{t+n} \gamma^{\tau-t} \ell\left(\mathbf{x}_{\tau}, \mathbf{u}_{\tau}\right)+\gamma^{n+1} V^{\pi}\left(\mathbf{x}_{t+n+1}\right)-V^{\pi}\left(\mathbf{x}_{t}\right)\right)
$$

TD(n) Prediction

MC and TD Errors

- TD Error: measures the difference between the estimated value $V^{\pi}\left(\mathbf{x}_{t}\right)$ and the better estimate $\ell\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)+\gamma V^{\pi}\left(\mathbf{x}_{t+1}\right)$:

$$
\delta_{t}:=\ell\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)+\gamma V^{\pi}\left(\mathbf{x}_{t+1}\right)-V^{\pi}\left(\mathbf{x}_{t}\right)
$$

- MC Error: a sum of TD errors:

$$
\begin{aligned}
L_{t}\left(\rho_{t}\right)-V^{\pi}\left(\mathbf{x}_{t}\right) & =\ell\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)+\gamma L_{t+1}\left(\rho_{t+1}\right)-V^{\pi}\left(\mathbf{x}_{t}\right) \\
& =\delta_{t}+\gamma\left(L_{t+1}\left(\rho_{t+1}\right)-V^{\pi}\left(\mathbf{x}_{t+1}\right)\right) \\
& =\delta_{t}+\gamma \delta_{t+1} \gamma^{2}\left(L_{t+2}\left(\rho_{t+2}\right)-V^{\pi}\left(\mathbf{x}_{t+2}\right)\right) \\
& =\sum_{n=0}^{T-t-1} \gamma^{n} \delta_{t+n}
\end{aligned}
$$

- MC and TD converge: $V^{\pi}(\mathbf{x})$ approaches the true value function of π as the number of sampled episodes $\rightarrow \infty$ as long as α_{k} is a Robbins-Monro sequence and \mathcal{X} is finite (needed for TD convergence)

Monte-Carlo Backup

$$
V^{\pi}\left(\mathbf{x}_{t}\right) \leftarrow V^{\pi}\left(\mathbf{x}_{t}\right)+\alpha\left(L_{t}\left(\rho_{t}\right)-V^{\pi}\left(\mathbf{x}_{t}\right)\right)
$$

Temporal-Difference Backup

Dynamic-Programming Backup

MC vs TD Policy Evaluation

- MC:
- Must wait until the end of an episode before updating $V^{\pi}(\mathbf{x})$
- The value estimates are zero bias but high variance (long-term cost depends on many random transitions)
- Not very sensitive to initialization
- Has good convergence properties even with function approximation (infinite state space)
- TD:
- Can update $V^{\pi}(\mathbf{x})$ before knowing the complete episode and hence can learn online, after each transition, regardless of subsequent controls
- The value estimates are biased but low variance (the TD(0) target depends on one random transition)
- More sensitive to initialization than MC
- May not converge with function approximation (infinite state space)

Bias-Variance Trade-off

Batch MC and TD Policy Evaluation

- Batch setting: given finite experience $\left\{\rho^{(k)}\right\}_{k=1}^{K}$
- Accumulate value function updates according to MC or TD for $k=1, \ldots, K$
- Apply the update to the value function only after a complete pass through the data
- Repeat until the value function estimate converges
- Batch MC: converges to V^{π} that best fits the observed costs:

$$
V^{\pi}(\mathbf{x})=\underset{V}{\arg \min } \sum_{k=1}^{K} \sum_{t=0}^{T_{k}}\left(L_{t}\left(\rho^{(k)}\right)-V\right)^{2} \mathbb{1}\left\{\mathbf{x}_{t}^{(k)}=\mathbf{x}\right\}
$$

- Batch TD(0): converges to V^{π} of the maximum likelihood MDP model that best fits the observed data

$$
\begin{aligned}
\hat{p}_{f}\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{u}\right) & =\frac{1}{N(\mathbf{x}, \mathbf{u})} \sum_{k=1}^{K} \sum_{t=1}^{T_{k}} \mathbb{1}\left\{\mathbf{x}_{t}^{(k)}=\mathbf{x}, \mathbf{u}_{t}^{(k)}=\mathbf{u}, \mathbf{x}_{t+1}^{(k)}=\mathbf{x}^{\prime}\right\} \\
\hat{\ell}(\mathbf{x}, \mathbf{u}) & =\frac{1}{N(\mathbf{x}, \mathbf{u})} \sum_{k=1}^{K} \sum_{t=1}^{T_{k}} \mathbb{1}\left\{\mathbf{x}_{t}^{(k)}=\mathbf{x}, \mathbf{u}_{t}^{(k)}=\mathbf{u}\right\} \ell\left(\mathbf{x}_{t}^{(k)}, \mathbf{u}_{t}^{(k)}\right)
\end{aligned}
$$

Averaging n-Step Returns

- Define the n-step return:

$$
\begin{align*}
& L_{t}^{(n)}(\rho):=\ell\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)+\gamma \ell\left(\mathbf{x}_{t+1}, \mathbf{u}_{t+1}\right)+\ldots+\gamma^{n} \ell\left(\mathbf{x}_{t+n}, \mathbf{u}_{t+n}\right)+\gamma^{n+1} V^{\pi}\left(\mathbf{x}_{t+n+1}\right) \\
& L_{t}^{(0)}(\rho)=\ell\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)+\gamma V^{\pi}\left(\mathbf{x}_{t+1}\right) \tag{0}\\
& L_{t}^{(1)}(\rho)=\ell\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)+\gamma \ell\left(\mathbf{x}_{t+1}, \mathbf{u}_{t+1}\right)+\gamma^{2} V^{\pi}\left(\mathbf{x}_{t+2}\right)
\end{align*}
$$

$$
\begin{equation*}
L_{t}^{(\infty)}(\rho)=\ell\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)+\gamma \ell\left(\mathbf{x}_{t+1}, \mathbf{u}_{t+1}\right)+\ldots+\gamma^{T-t-1} \ell\left(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}\right)+\gamma^{T-t} \mathfrak{q}\left(\mathbf{x}_{T}\right) \tag{MC}
\end{equation*}
$$

- TD (n) :

$$
V^{\pi}\left(\mathbf{x}_{t}\right) \leftarrow V^{\pi}\left(\mathbf{x}_{t}\right)+\alpha\left(L_{t}^{(n)}(\rho)-V^{\pi}\left(\mathbf{x}_{t}\right)\right)
$$

- Averaged-return TD: combines bootstrapping from several states:

$$
V^{\pi}\left(\mathbf{x}_{t}\right) \leftarrow V^{\pi}\left(\mathbf{x}_{t}\right)+\alpha\left(\frac{1}{2} L_{t}^{(2)}(\rho)+\frac{1}{2} L_{t}^{(4)}(\rho)-V^{\pi}\left(\mathbf{x}_{t}\right)\right)
$$

- Can we combine information from all time-steps?

Forward-view TD (λ)

- λ-return: combines all n-step returns:

$$
L_{t}^{\lambda}(\rho)=(1-\lambda) \sum_{n=0}^{\infty} \lambda^{n} L_{t}^{(n)}(\rho)
$$

- Forward-view $T D(\lambda)$:

$$
V^{\pi}\left(\mathbf{x}_{t}\right) \leftarrow V^{\pi}\left(\mathbf{x}_{t}\right)+\alpha\left(L_{t}^{\lambda}(\rho)-V^{\pi}\left(\mathbf{x}_{t}\right)\right)
$$

$$
\Sigma=1
$$

- Like MC, the L_{t}^{λ} return can only be computed from complete episodes

Backward-view TD (λ)

- Forward-view $T D(\lambda)$ is equivalent to $T D(0)$ for $\lambda=0$ and to every-visit MC for $\lambda=1$
- Backward-view $T D(\lambda)$ allows online updates from incomplete episodes
- Credit assignment problem: did the bell or the light cause the shock?

- Frequency heuristic: assigns credit to the most frequent states
- Recency heuristic: assigns credit to the most recent states
- Eligibility trace: combines both heuristics

$$
e_{t}(\mathbf{x})=\gamma \lambda e_{t-1}(\mathbf{x})+\mathbb{1}\left\{\mathbf{x}=\mathbf{x}_{t}\right\}
$$

- Backward-view $T D(\lambda)$: updates in proportion to the TD error δ_{t} and the eligibility trace $e_{t}(\mathbf{x})$:

$$
V^{\pi}\left(\mathbf{x}_{t}\right) \leftarrow V^{\pi}\left(\mathbf{x}_{t}\right)+\alpha\left(\ell\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)+\gamma V^{\pi}\left(\mathbf{x}_{t+1}\right)-V^{\pi}\left(\mathbf{x}_{t}\right)\right) e_{t}\left(\mathbf{x}_{t}\right)
$$

